Calculating Truth Conditions

Scott Martin

January 30, 2012

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣

1/9

- Truth tables let us determine the truth value of the propositions connected by a given connective.
- By repeatedly applying truth tables to connectives and the propositions they connect, we can calculate the truth conditions of an arbitrarily complex sentence of PL.

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

 $(\neg A) \land B$

(1)

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

$$(\neg A) \land B$$

We use Table 1 to calculate the truth conditions of (1). The truth values for the main connective \wedge are in boldface.

$$A \quad B \mid (\neg A) \quad \land \quad B$$

(1)

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

$$(\neg A) \land B$$
 (1)

イロト イロト イヨト イヨト 三日

3/9

$$\begin{array}{c|ccc} A & B & (\neg A) & \wedge & B \\ \hline T & T & F & F \end{array}$$

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

$$(\neg A) \land B$$
 (1)

$$\begin{array}{c|ccc} A & B & (\neg A) & \wedge & B \\ \hline T & T & F & \mathbf{F} \\ T & F & F & \mathbf{F} \end{array}$$

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

$$(\neg A) \land B$$
 (1)

イロト イロト イヨト イヨト 三日

A	B	$(\neg A)$	\wedge	В
Т	Т	F	\mathbf{F}	
Т	\mathbf{F}	F	\mathbf{F}	
\mathbf{F}	Т	Т	\mathbf{T}	

Example 1

We start with a simple case of a binary connective between two atomic sentences of PL.

$$(\neg A) \land B$$
 (1)

A	B	$(\neg A)$	\wedge	В
Т	Т	\mathbf{F}	\mathbf{F}	
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	
F	Т	Т	\mathbf{T}	
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	

Table 1: Truth condition calculation for (1).

• On the left side of the line are the truth assignments for all the atomic propositions contain within (1), namely A and B.

- On the left side of the line are the truth assignments for all the atomic propositions contain within (1), namely A and B.
- On the right side of the line, we write beneath each connected proposition (namely $\neg A$ and $(\neg A) \land B$) what its truth value would be given the calculated truth values of the propositions it connects.

- On the left side of the line are the truth assignments for all the atomic propositions contain within (1), namely A and B.
- On the right side of the line, we write beneath each connected proposition (namely $\neg A$ and $(\neg A) \land B$) what its truth value would be given the calculated truth values of the propositions it connects.
- For example, the second row beneath $\neg A$ contains an F because that's what the truth table for negation says the value of $\neg A$ is under a truth assignment that makes A true.

- On the left side of the line are the truth assignments for all the atomic propositions contain within (1), namely A and B.
- On the right side of the line, we write beneath each connected proposition (namely $\neg A$ and $(\neg A) \land B$) what its truth value would be given the calculated truth values of the propositions it connects.
- For example, the second row beneath $\neg A$ contains an F because that's what the truth table for negation says the value of $\neg A$ is under a truth assignment that makes A true.
- Similarly, the first row under ∧ contains an F because one of the conjuncts of (¬A) ∧ B (namely, ¬A) is false under the assignment on the first row, making (¬A) ∧ B false under that assignment as the truth table for ∧ says.

• Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.

- Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.
- Since (1) is sometimes false and sometimes true, depending on the truth assignment chosen, it is called a **contingent** proposition.

- Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.
- Since (1) is sometimes false and sometimes true, depending on the truth assignment chosen, it is called a **contingent** proposition.
- Some sentences (e.g. $A \lor \neg A$ and $A \to A$) are true under *every* truth assignment; such sentences are said to express a **tautology** or **logical truth**.

- Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.
- Since (1) is sometimes false and sometimes true, depending on the truth assignment chosen, it is called a **contingent** proposition.
- Some sentences (e.g. $A \lor \neg A$ and $A \to A$) are true under *every* truth assignment; such sentences are said to express a **tautology** or **logical truth**.
- Sentences that are false under every assignment are called contradictions or logical falsehoods, for example the negated tautology ¬(A ∨ ¬A).

- Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.
- Since (1) is sometimes false and sometimes true, depending on the truth assignment chosen, it is called a **contingent** proposition.
- Some sentences (e.g. $A \lor \neg A$ and $A \to A$) are true under *every* truth assignment; such sentences are said to express a **tautology** or **logical truth**.
- Sentences that are false under every assignment are called contradictions or logical falsehoods, for example the negated tautology ¬(A ∨ ¬A).
- If two or more sentences have the same interpretation on every truth assignment, they are said to be **equivalent**. For example, any two tautologies are equivalent to each other (but *not* equal!).

- Notice that, in Example 1, the entire proposition $(\neg A) \land B$ is only true in the third row, the truth assignment with A false and B true.
- Since (1) is sometimes false and sometimes true, depending on the truth assignment chosen, it is called a **contingent** proposition.
- Some sentences (e.g. $A \lor \neg A$ and $A \to A$) are true under *every* truth assignment; such sentences are said to express a **tautology** or **logical truth**.
- Sentences that are false under every assignment are called contradictions or logical falsehoods, for example the negated tautology ¬(A ∨ ¬A).
- If two or more sentences have the same interpretation on every truth assignment, they are said to be **equivalent**. For example, any two tautologies are equivalent to each other (but *not* equal!).
- If an argument's premises are true in the actual world, we say that the argument is sound.

Example 2

A slightly more complex example:

 $(A \land (A \to B)) \to B$

(2)

Example 2

A slightly more complex example:

$$(A \land (A \to B)) \to B$$

We proceed as before, using the truth tables for \wedge and \rightarrow :

$$A \quad B \mid (A \quad \land \quad (A \to B)) \quad \to \quad B$$

Example 2

A slightly more complex example:

$$(A \land (A \to B)) \to B$$

We proceed as before, using the truth tables for \land and \rightarrow :

Example 2

A slightly more complex example:

$$(A \wedge (A \to B)) \to B$$

We proceed as before, using the truth tables for \land and \rightarrow :

イロト イロト イヨト イヨト 三日

Example 2

A slightly more complex example:

$$(A \wedge (A \to B)) \to B$$

We proceed as before, using the truth tables for \land and \rightarrow :

A	B	(A	\wedge	$(A \to B))$	\rightarrow	B
Т	Т		Т	Т	Т	
Т	\mathbf{F}		\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	Т		\mathbf{F}	Т	\mathbf{T}	

イロト イロト イヨト イヨト 三日

Example 2

A slightly more complex example:

$$(A \land (A \to B)) \to B$$

We proceed as before, using the truth tables for \land and \rightarrow :

A	B	(A	\wedge	$(A \to B))$	\rightarrow	B
Т	Т		Т	Т	Т	
Т	\mathbf{F}		\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	Т		\mathbf{F}	Т	\mathbf{T}	
\mathbf{F}	\mathbf{F}		\mathbf{F}	Т	\mathbf{T}	

Table 2: Truth condition calculation for (2).

Example 2

A slightly more complex example:

$$(A \wedge (A \to B)) \to B$$

We proceed as before, using the truth tables for \wedge and \rightarrow :

A	B	(A	\wedge	$(A \to B))$	\rightarrow	B
Т	Т		Т	Т	\mathbf{T}	
Т	\mathbf{F}		\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	Т		\mathbf{F}	Т	\mathbf{T}	
\mathbf{F}	\mathbf{F}		\mathbf{F}	Т	\mathbf{T}	

Table 2: Truth condition calculation for (2).

What is another name for the class of sentences that (2) belongs to? $_{2220}$

Exercises I

Problem 1

For each of the following sentences of PL, say what the main connective is:

- $(A \land B) \leftrightarrow C$
- $\ \, \circ \ \, \neg (\neg A \land \neg B)$

$$(\neg A \land \neg B)$$

$$\ \, \bigcirc \ \, \neg(B \to (A \lor \neg C))$$

$$(\neg B \to (A \lor \neg C))$$

Exercises II

Problem 2

Construct truth tables that show that de Morgan's laws are indeed tautologies:

Problem 3

Let φ and ψ be equivalent propositions. What do we know about the interpretation of the sentence $\varphi \leftrightarrow \psi$?

Exercises III

Problem 4

Construct truth tables for the following two sentences:

- $\textcircled{0} A \to B$
- $(\neg B) \to (\neg A)$

Given the truth tables you constructed, how are these sentences related?

Problem 5

Let S be a sound argument. What do we know about the truth value of the conclusion(s) of S?