Linguistics 280: Problem Set 2

Scott Martin

February 8, 2011

Instructions. Complete these problems by the start of class on Tuesday, February 15, 2011. All submitted work must be your own.

Problem 1. Construct a truth table for each of the following sentences:

$$\neg((A \land B) \to C) \tag{1}$$

$$(A \to (B \to C)) \tag{2}$$
$$(\neg A \lor (\neg B \lor C)) \tag{3}$$

$$(\neg A \lor (\neg B \lor C)) \tag{3}$$
$$((A \to B) \to \neg (A \land \neg B)) \tag{4}$$

$$(\neg(\neg A \lor B) \land \neg(A \land \neg B)) \tag{1}$$

Now answer the following questions about the propositions expressed by these sentences.¹

- a. Which is a tautology?
- b. Which is a contradiction?
- c. Which are equivalent?
- d. Which are mutually inconsistent?

Problem 2. Assume the following translation key from English to PL:

- **P** Evelyn eats Powdermilk biscuits.
- **S** Evelyn travels to St. Paul.
- **C** Clarence goes with Evelyn.
- **W** Wally goes with Evelyn.
- **E** Evelyn travels to the cities.

Use this key to represent the following English sentences in PL:

- a. Unless Clarence and Wally go with her, Evelyn won't travel to the cities.
- b. Evelyn will travel to the cities only if she eats Powdermilk biscuits, and if she travels to the cities, Clarence will go with her.

¹Two propositions being **mutually inconsistent** means that both can't be true for a given truth assignment.

- c. It's not true that if Evelyn doesn't eat Powdermilk biscuits she won't travel to the cities.
- d. For Evelyn to travel to St. Paul, it's not necessary that Clarence and Wally go with her.
- e. If Evelyn travels to the cities, she will travel to St. Paul, but she will go to the cities just in case she eats Powdermilk biscuits.

Problem 3. Assume the same translation key from Problem 2 and give an English sentence corresponding to each sentence of PL below:

- a. $((P \leftrightarrow E) \land (C \lor W))$
- b. $S \to P$
- c. $((C \lor W) \lor \neg S)$
- d. $\neg(E \rightarrow C)$
- e. $(((E \land C) \lor (E \land W)) \land \neg (C \land W))$