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Review of Chains

• Recall that a chain is an order where any two distinct elements a and b
are comparable (i.e. either a v b or b v a).

• Recall also that in a chain, a is minimal (maximal) in a subset S iff it is
least (greatest) in S.

A Finite Order has a Maximal/Minimal Element

Theorem 7.1: Any nonempty finite order has a minimal (and so, by duality,
a maximal) member.

Proof. Let T be the set of natural numbers n such that every ordered set of
cardinality n + 1 has a minimal member, and show that T is inductive.

A Nonempty Finite Chain has a Bottom/Top

Corollary 7.1: Any nonempty finite chain has a bottom(and so, by duality,
a top).

Proof. This follows from the preceding theorem together with the fact just re-
viewed that in a chain, a member is least (greatest) iff it is minimal (maxi-
mal).

A Finite Chain is Order-Isomorphic to a Natural

Theorem 7.2: For any natural number n, any chain of cardinality n is
order-isomorphic to the usual order on n (i.e. the restriction to n of the usual
≤ order on ω).

Proof. By induction on n. The case n = 0 is trivial.
By inductive hypothesis, assume the statement of the theorem holds for the

case n = k.
Let A of cardinality k + 1 be a chain with order v.
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By the Corollary, A has a greatest member a, so there is an order isomor-
phism f from k to A \ {a}.

The rest of the proof consists of showing that the function f ∪ {< k, a >} is
an order isomorphism.

Finite Orders and their Covering Relations

Theorem 7.3: If v is an order on a finite set A, then v = ≺∗.

Proof. That ≺∗ ⊆ v follows easily from the transitivity of v.
To prove the reverse inclusion, suppose a 6= b, a v b and let X be the set of

all subsets of A which, when ordered by v, are chains with b as greatest member
and a as least member. Then X is nonempty since one of its members is {a, b}.

Then X itself is ordered by ⊆X , and so by Theorem 1 has a maximal member
C.

Let n+1 be |C|; by Theorem 2, there is an order-isomorphism f : n+1→ C.
Clearly n > 0, f(0) = a, and f(n) = b.

Also, for each m < n, f(m) ≺ f(m+1), because otherwise, there would be a
c properly between f(m) and f(m + 1), contradicting the maximality of C.

Trees
A tree is a finite set A with an order v and a top >, such that the covering

relation ≺ is a function with domain A \ {>}.

Tree Terminology

• The members of A are called the nodes of the tree.

• > is called the root.

• If x v y, y is said to dominate x; and if additionally x 6= y, then y is
said to properly dominate x.

• If x ≺ y, then y is said to immediately dominate x; y =≺ (x) is called
the mother of x; and x is said to be a daughter of y.

• Distinct nodes with the same mother are called sisters.

• A minimal node (i.e. one with no daughters) is called a terminal node.

• A node which is the mother of a terminal node is called a preterminal
node.

A Node Can’t Dominate One of its Sisters

Theorem 7.4: In a tree, no node can dominate one of its sisters.

Proof. Exercise.
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The ↑ Notation

If 〈A,v〉 is a preordered set a ∈ A, we denote by ↑ a the set of upper bounds
of {a}, i.e.

↑ a = {x ∈ A | a v x}

In a Tree, ↑ a is Always a Chain

Theorem 7.5: For any node a in a tree, ↑ a is a chain.

Proof. Use RT to define a function h : ω → A, with X = A, x = a, and F the
function which maps non-root nodes to their mothers and the root to itself.

Now let Y = ran(h); it is easy to see that Y is a chain, and that Y ⊆ ↑ a.
To show that ↑ a ⊆ Y , assume b ∈ ↑ a; we’ll show b ∈ Y .
By definition of ↑ a, a v b, and so by Theorem 3, a ≺∗ b.
So there is n ∈ ω such that a ≺n b, where ≺n is the n-fold composition of ≺

with itself.
I.e., there is an A-string a0 . . . an such that a0 = a, an = b, and for each

k < n, ak ≺ ak+1.
But then b = h(n), so b ∈ Y .

When do Two Nodes in a Tree have a GLB?

Corollary 7.2: Two distinct nodes in a tree have a glb iff they are compa-
rable.

Proof. Exercise.

A Tree is an Upper Semilattice

Theorem 7.6: Any two nodes have a lub (and so a tree is an upper semi-
lattice).

Proof. Exercise.

Ordered Trees

• An ordered tree is a set A with two orders v and ≤, such that the
following three conditions are satisfied:

– A is a tree with respect to v.

– Two distinct nodes are ≤-comparable iff they are not v comparable.

– (No-tangling condition) If a, b, c, d are nodes such that a < b, c ≺ a,
and d ≺ b, then c < d.

• In an ordered tree, if a < b, then a is said to linearly precede b.
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The Daughters of a Node Form a Chain

Theorem 7.7: If a is a node in an ordered tree, then the set of daughters
of a ordered by ≤ is a chain.

Proof. Exercise.

The Terminal Nodes of an Ordered Tree Form a Chain

Theorem 7.8: In an ordered tree, the set of terminal nodes ordered by ≤
is a chain.

Proof. Exercise.

CFG Review

• Recall that a CFG is an ordered quadruple 〈T, N, D, P 〉 where

– T is a finite set called the terminals;

– N is a finite set called nonterminals

– D is a finite subset of N × T called the lexical entries;

– P is a finite subset of N × N+ called the phrase structure rules
(PSRs).

• Recall also these notational conventions:

– ‘A→ t ’ means 〈A, t〉 ∈ D.

– ‘A→ A0 . . . An−1’ means 〈A, A0 . . . An−1〉 ∈ P .

– ‘A→ {s0, . . . sn−1}’ abbreviates A→ si (i < n).

Phrase Structures for a CFG

• A phrase structure for a CFG G = 〈T, N, D, P 〉 is an ordered tree
together with a labelling function l from the nodes to T ∪N such that,
for each node a,

– l(a) ∈ T if a is a terminal node, and

– l(a) ∈ N otherwise.

• Given a phrase structure with linearly ordered (as per Theorem 8) set of
terminal nodes a0, . . . , an−1 with labels t0, . . . , tn−1 respectively, the string
t0 . . . tn−1 is called the terminal yield of the phrase structure.
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Weak and Strong Generative Capacity

• A phrase structure tree is generated by the CFG G = 〈T, N, D, P 〉 iff

– for each preterminal node with label A and (terminal) daughter with
label t, A→ t ∈ D; and

– for each nonterminal nonpreterminal node with label A and linearly
ordered (as per Theorem 7) daughters with labels A0, . . . , An−1 re-
spectively, (n > 0), A→ A0 . . . An−1 ∈ P .

• The strong generative capacity of G is the set of phrase structures
that it generates.

• The weak generative capacity of G is the function wgc : N → T ∗

that maps each nonterminal symbol A to the set of T -strings which are
terminal yields of phrase structures generated by G with root label A.
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