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Introducing Sets

Let’s suppose there are:

things which we call sets, and
a relationship between sets called membership.
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Some Basic Terminology and Notation

We use italic letters as names of arbitrary sets.
We write ‘A ∈ B’ to express that A is a member of B.
We write ‘A /∈ B’ to express that A is not a member of B.
If A ∈ B, we call A a member, or element, of B.
Another way to say that A ∈ B is to say A belongs to B.
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Informal Set Theory

We will make some basic assumptions about membership.
We usually express our assumptions in ordinary English.
But often, to avoid ambiguity, we use a special-purpose
English-like language that we call Mathese.
The assumptions we make about membership, together
with the statements that follow from them by valid
arguments, we call informal set theory.
For now we won’t try to make precise what we mean by
‘valid arguments’.
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Axiomatic Set Theory (1/2)

Soon we will introduce a special symbolic language,
first-order logic (FOL), that will let us make statements
about membership more precisely and more concisely.
Mathese is a spoken approximation of FOL.
We call the FOL counterparts of sentences formulas.
We call the formulas that express assumptions axioms.
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Axiomatic Set Theory (2/2)

We will also see how to formalize the notion of ‘valid
argument’ within FOL.
Such formalized arguments are called proofs.
And turning things around, valid arguments in English or
Mathese are often called informal proofs.
We call formulas that can be proved from the axioms
theorems.
Our axioms, together with the theorems we can prove from
them, we will call axiomatic set theory.
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Some Words of Caution

Set theory will not tell you what sets and membership are;
they are unanalyzed primitives of set theory.
For now, you might find it helpful to think of a set as
something like an invisible basket, and its members as
something like marbles in the basket, but this analogy will
only carry you so far.
The assumptions we will make about membership are not
the only possible assumptions one might make; our set
theory is a set theory, not the set theory.
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Before We Start

We’ll start with the least controversial assumptions.
For those of you who already know FOL, we’ll write below
each assumption the corresponding FOL axiom.
Don’t worry if you don’t know FOL; we’ll fix that soon.
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Assumption 1: Extensionality

English: If A and B have the same members, then they are the
same set.

Mathese: For all x, for all y, if for all z, z is a member of x iff z
is a member of y, then x equals y.

FOL: ∀x∀y((∀z(z ∈ x↔ z ∈ y))→ x = y)

Note 1: The intuition behind Extensionality is that, once you
know what members a set has, you know which set it is.

Note 2: But there is nothing in our set theory so far that
guaranteees that there actually are any sets.
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Definitions: Subset and Proper Subset

If every member of A is a member of B, we say that A is a
subset of B, or included in B, written ‘A ⊆ B’. If not,
we write ‘A * B.’
Note 1: if A ⊆ B and B ⊆ A, then it follows from
Extensionality that A = B.
Note 2: for any set A, A ⊆ A.

If A ⊆ B but A 6= B then we say A is a proper subset of
B, written ‘A ( B’.
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Assumption 2: Empty Set

English: There is a set with no elements.

Mathese: There exists x such that, for all y, y is not a member
of x.

FOL: ∃x∀y(y /∈ x)
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Notation for the Empty Set

By Extensionality, there can be only one set with no
elements. We call it the empty set, written ‘∅’.
This is our first example of a commonplace practice in set
theory: once we establish that there is exactly one set that
has a given property (or equivalently, meets a certain
description), then we can make up a name for it.
Soon we will see that it is possible to do arithmetic within
set theory, and that when we do so, it turns out that ∅ and
the number 0 are the same thing. So we use ‘0’ as a
synonym for ‘∅′.
Obviously, for every set A, ∅ ⊆ A.
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Why are We Doing This?

We aren’t doing set theory just to kill time.
We are doing it because we are going to use it to construct
precise (although abstract) models of empirical linguistic
phenomena (such as linguistic expressions, prosodic tunes,
meanings, utterance contexts, etc.).
To put it another way, set theory will be our workspace for
linguistic modelling.
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We Need More Sets

In order for set theory to serve as our linguistic modelling
workspace, we need for it to make plenty of sets available.
But so far, the only set we ‘have’ is ∅.
For example, we have no way to make a valid argument
that there’s a set with just one member, namely ∅.
We will ‘get’ more sets the same we got ∅: by willing them
into existence.
And the way we do that is by making more assumptions.
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Assumption 3: Pairing

English: If A and B are sets, then there is a set whose only
members are A and B.

Mathese: For all x, for all y, there exists z such that x is a
member of z, y is a member of z, and for all w, if w is a
member of z, then either w equals x or w equals y.

FOL:
∀x∀y∃z((x ∈ z) ∧ (y ∈ z) ∧ ∀w((w ∈ z)→ ((w = x) ∨ (w = y))))
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Curly Bracket Notation (1/2)

Because of Extensionality again, there is only one set
whose only members are A and B, called the (unordered)
pair of A and B, written ‘{A, B}’,
We could just as well have called this set {B, A}.
Nothing rules out the possibility that A and B are the
same set, so it follows from pairing that for any set A there
is a set whose only member is A, namely {A, A}.
We might as well just call that set {A} rather than {A, A}.
Such a set, with exactly one member, is called a singleton.
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Curly Bracket Notation (2/2)

More generally, we notate a nonempty finite set by listing
its members, separated by commas, between curly brackets.
We postpone getting clear about exactly what we mean by
‘finite’ and just rely on intuition for the time being.
The order in which the members are listed doesn’t matter.
It doesn’t make any sense to talk about what order the
members of a set come in.
Repetitions inside curly brackets don’t matter either.
It doesn’t make any sense to talk about how many times
one set is a member of another.
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This Could be the Start of Something Big

Remember 0 is a synonym for ∅.
Now consider the singleton set {0}, which we call 1.
Next, consider the set {0, 1}, which we call 2.
Notice that 0 has zero members, 1 has one member, and 2
has two members.
Notice also that 1 has 0 as a member, and that 2 has 0 and
1 as members.
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What’s 3?

The obvious next step would be to say that 3 is {0, 1, 2}.
But we have no way to make a valid argument that there
actually is a set whose only members are 0, 1, and 2.
Looks like it’s time to make another assumption.
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Assumption 4: Union

English: If A is a set, then there is a set whose members are
those sets which are members of some member of A.

Mathese: For all x, there exists y such that, forall z, z is a
member of y iff there exists w such that w is a member of x and
z is a member of w.

FOL: ∀x∃y∀z(z ∈ y ↔ (∃w((w ∈ x) ∧ (z ∈ w))))
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Notation for Union

The set whose members are those sets which are members
of some member of A is called the union of A, written
‘
⋃

A’.
If A = {B, C}, then

⋃
A is the set each of whose members

is in either B or C (or both), written ‘B ∪ C’.
Note that in general B ∪ C is not the same set as {B, C}.
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Three and Beyond

For example, compare 2 ∪ {2} with {2, {2}}.
{2, {2}} only has two members, namely 2 and {2}.
Whereas 2 ∪ {2} has three members:

2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2}

Hey! That’s the set we wanted to call ‘3’ !
We can use this same trick over and over to keep getting
more and more new sets.
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Definition: Successor

For any set A, the successor of A, written ‘s(A)’, is the
set A ∪ {A}.
That is, s(A) is the set with the same members as A,
except that A itself is also a member of s(A).
Nothing we have said rules out the possibility that A ∈ A,
in which case A = s(A).
The most widely used set theory (called Zermelo-
Fraenkel set theory, or just ZF) includes an assumption
(called Foundation) which does rule out this possibility.
But we will not assume Foundation in this book.
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A Preview of the Natural Numbers

Notice that 1 is the successor of 0, 2 is the successor of 1,
and 3 is the successor of 2.
Intuitively, the sets 0, 1, 2, 3, . . . we get by starting with 0
and ‘taking successors forever’ are the natural numbers.
But what are natural numbers? We’ll come back to that.
Do they form a set? We’ll come back to that too.
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Assumption 5: Powerset

English: If A is a set, then there is a set whose members are the
subsets of A.

Mathese: For all x, there exists y such that, forall z, z is a
member of y iff z is a subset of x.

FOL: ∀x∃y∀z(z ∈ y ↔ (z ⊆ x))
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Notation for Powersets

By Extensionality again, for any set A there can only be
one sets whose members are the subsets of A.
That set is called the powerset of A, written ‘℘(A)’.
Notice that ℘(A) is not in general the same set as A,
because usually the subsets of a set are not the same as the
members of the set.
For example, 0 ⊆ 0, but 0 /∈ 0.
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Definitions vs. Assumptions

There’s a crucial difference between the notions of
successor and powerset.
The successor of A is defined in terms of things whose
existence can already be established on the basis of
previous assumptions (singletons, unions); whereas the
existence of the powerset of A is assumed.
Why didn’t we just define ℘(A) to be the set whose
members are the subsets of A?
It’s because nobody has found a valid argument (based on
just the first four assumptions) that there is such a set!
More generally, for an arbitrary condition on sets P [x],
there is no guarantee that there is a set whose members are
all the sets x such that P [x].
The first person to realize this was the philosopher and
mathematician Bertrand Russell, in 1902.
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Russell’s Paradox

Let P [x] be the condition ‘x is not a member of itself’. Russell
showed that there cannot be a set whose members are all the
sets x such that P [x].

a. Suppose R were such a set.
b. Then either (i) R is a member of itself, or (ii) it isn’t. Let’s

consider both possibilities.
c. Possibility 1 (R ∈ R): then R /∈ R, since the only members

of R are sets which are not members of themselves.
d. Possibility 1 (R /∈ R): then R is not a member itself, so

that it is a member of R.
e. Either way leads to a contradiction.
f. So the assumption must have been false that there is a set

whose members are those sets which are not members of
themselves.
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A Bad Set-Theoretic Assumption Bites the Dust

Russell’s Paradox shows we don’t have the option of adding
the following to our set theory:
Tentative Assumption: Comprehension
For any condition P [x] there is a set whose members are all
the sets x such that P [x].

A more modest assumption is usually adopted instead.
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Assumption 6: Separation

For any set A and any condition P [x], there is a set whose
members are all the x in A that satisfy P [x].

So far, assuming Separation has not been shown to lead to
a contradiction.
Separation is so-called because, intuitively, we are
separating out from A some members that are special in
some way, and collecting them together into a set.
By Extensionality, there can be only one set whose
members are all the sets x in A that satisfy P [x].
We call that set {x ∈ A | P [x]}.
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Intersection

In naive introductions to set theory, the intersection of
two sets A and B, written ‘A ∩B’, is often ‘defined’ as the
set whose members are those sets which are members of
both A and B.
But how do we know there is such a set?
If we assume Separation and take P [x] to be the condition
x ∈ B, then we can (unproblematically) define A ∩B to be
{x ∈ A | x ∈ B}.
A and B are said to intersect provided A∩B is nonempty.
Otherwise, A and B are said to be disjoint.
A set is called pairwise disjoint if no two distinct
members of it intersect.
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Set Difference

For two sets A and B, if we take P [x] to be the condition
x /∈ B, then Separation guarantees the existence of the set
{x ∈ A | x /∈ B}.
This set is called the set difference of A and B, or
alternatively the complement of B relative to A,
written ‘A \B’.
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There is No Universal Set

A set is called universal if every set is a member of it.
We can prove in our set theory that there is no universal set
For suppose A were a universal set. Let P [x] be the
condition x /∈ x. Then by Separation, there must be a set
{x ∈ A | x /∈ x}. But Russell’s argument showed that there
can be no such set. So the assumption that there was a
universal set must have been false.
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Definition: Ordered Pair

If A and B are sets, we call the set {{A}, {A, B}} the
ordered pair of A and B, also written ‘〈A, B〉’.
〈A, B〉 differs from {A, B} in the crucial respect that no
matter what A and B are, {A, B} = {B, A}, but
〈A, B〉 = 〈B, A〉 only if A = B.
More generally, if A, B, C, and D are sets, then
〈A, B〉 = 〈C, D〉 only if A = C and B = D.
If C is the ordered pair of A and B, A is called the first
component of C, and B is called the second
component of C.
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Definition: Cartesian Product

For any sets A and B, there is a set whose members are all
those sets which are ordered pairs whose first component is
in A and whose second component is in B. (It’s instructive
to try to prove this. Hint: use Separation.)
By Extensionality there can be only one such set. It is
called the cartesian product of A and B, written ‘A×B’.
For any sets A, B, C, and D, A×B = C ×D only if
A = C and B = D. (Try to prove this.)
A is called the first factor of A×B, and B the second
factor.
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Definition: Ordered Triple

The ordered triple of A, B, and C, written ‘〈A, B,C〉’, is
defined to be the ordered pair whose first component is
〈A, B〉 and whose second component is C.
Then A, B, and C are called, respectively, the first,
second, and third components of 〈A, B,C〉.
The (threefold) cartesian product of A, B, and C,
written ‘A×B × C’, is defined to be (A×B)× C. This is
the set of all ordered triples whose first, second, and third
components are in A, B, and C respectively.
The definitions can be extended to ordered quadruples,
quintuples, etc., and to n-fold cartesian products for n > 3,
in an obvious way.
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Definition: Cartesian Power

For any set A, a cartesian power of A is a cartesian product
all of whose factors are A.

The first cartesian power of A, written ‘A(1)’, is just A.
The cartesian square of A, written ‘A(2)’, is A×A.
The cartesian cube of A, written ‘A(3)’, is A×A×A

More generally, for n > 3, the n-th cartesian power of A,
written ‘A(n)’, is the n-fold cartesian product all of whose
factors are A.
Additionally, the zero-th cartesian power of A, written
‘A(0)’, is defined to be the set 1 (= {∅}).
This last definition is closely related to the arithmetic fact
that for any natural number n, n0 = 1, but we postpone
the explanation.
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