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Introducing Sets

Let’s suppose there are:

• things which we call sets, and

• a relationship between sets called membership.

Some Basic Terminology and Notation

• We use italic letters as names of arbitrary sets.

• We write ‘A ∈ B’ to express that A is a member of B.

• We write ‘A /∈ B’ to express that A is not a member of B.

• If A ∈ B, we call A a member, or element, of B.

• Another way to say that A ∈ B is to say A belongs to B.

Informal Set Theory

• We will make some basic assumptions about membership.

• We usually express our assumptions in ordinary English.

• But often, to avoid ambiguity, we use a special-purpose English-like lan-
guage that we call Mathese.

• The assumptions we make about membership, together with the state-
ments that follow from them by valid arguments, we call informal set
theory.

• For now we won’t try to make precise what we mean by ‘valid arguments’.
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Axiomatic Set Theory (1/2)

• Soon we will introduce a special symbolic language, first-order logic
(FOL), that will let us make statements about membership more precisely
and more concisely.

• Mathese is a spoken approximation of FOL.

• We call the FOL counterparts of sentences formulas.

• We call the formulas that express assumptions axioms.

Axiomatic Set Theory (2/2)

• We will also see how to formalize the notion of ‘valid argument’ within
FOL.

• Such formalized arguments are called proofs.

• And turning things around, valid arguments in English or Mathese are
often called informal proofs.

• We call formulas that can be proved from the axioms theorems.

• Our axioms, together with the theorems we can prove from them, we will
call axiomatic set theory.

Some Words of Caution

• Set theory will not tell you what sets and membership are; they are un-
analyzed primitives of set theory.

• For now, you might find it helpful to think of a set as something like an
invisible basket, and its members as something like marbles in the basket,
but this analogy will only carry you so far.

• The assumptions we will make about membership are not the only possible
assumptions one might make; our set theory is a set theory, not the set
theory.

Before We Start

• We’ll start with the least controversial assumptions.

• For those of you who already know FOL, we’ll write below each assumption
the corresponding FOL axiom.

• Don’t worry if you don’t know FOL; we’ll fix that soon.
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Assumption 1: Extensionality

English: If A and B have the same members, then they are the same set.

Mathese: For all x, for all y, if for all z, z is a member of x iff z is a member
of y, then x equals y.

FOL: ∀x∀y((∀z(z ∈ x↔ z ∈ y))→ x = y)

Note 1: The intuition behind Extensionality is that, once you know what
members a set has, you know which set it is.

Note 2: But there is nothing in our set theory so far that guaranteees that
there actually are any sets.

Definitions: Subset and Proper Subset

• If every member of A is a member of B, we say that A is a subset of B,
or included in B, written ‘A ⊆ B’. If not, we write ‘A * B.’

Note 1: if A ⊆ B and B ⊆ A, then it follows from Extensionality that
A = B.

Note 2: for any set A, A ⊆ A.

• If A ⊆ B but A 6= B then we say A is a proper subset of B, written
‘A ( B’.

Assumption 2: Empty Set

English: There is a set with no elements.

Mathese: There exists x such that, for all y, y is not a member of x.

FOL: ∃x∀y(y /∈ x)

Notation for the Empty Set

• By Extensionality, there can be only one set with no elements. We call it
the empty set, written ‘∅’.

• This is our first example of a commonplace practice in set theory: once
we establish that there is exactly one set that has a given property (or
equivalently, meets a certain description), then we can make up a name
for it.

• Soon we will see that it is possible to do arithmetic within set theory, and
that when we do so, it turns out that ∅ and the number 0 are the same
thing. So we use ‘0’ as a synonym for ‘∅′.

• Obviously, for every set A, ∅ ⊆ A.
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Why are We Doing This?

• We aren’t doing set theory just to kill time.

• We are doing it because we are going to use it to construct precise (al-
though abstract) models of empirical linguistic phenomena (such as lin-
guistic expressions, prosodic tunes, meanings, utterance contexts, etc.).

• To put it another way, set theory will be our workspace for linguistic
modelling.

We Need More Sets

• In order for set theory to serve as our linguistic modelling workspace, we
need for it to make plenty of sets available.

• But so far, the only set we ‘have’ is ∅.

• For example, we have no way to make a valid argument that there’s a set
with just one member, namely ∅.

• We will ‘get’ more sets the same we got ∅: by willing them into existence.

• And the way we do that is by making more assumptions.

Assumption 3: Pairing
English: If A and B are sets, then there is a set whose only members are A

and B.

Mathese: For all x, for all y, there exists z such that x is a member of z, y
is a member of z, and for all w, if w is a member of z, then either w equals x
or w equals y.

FOL:
∀x∀y∃z((x ∈ z) ∧ (y ∈ z) ∧ ∀w((w ∈ z)→ ((w = x) ∨ (w = y))))

Curly Bracket Notation (1/2)

• Because of Extensionality again, there is only one set whose only members
are A and B, called the (unordered) pair of A and B, written ‘{A, B}’,

• We could just as well have called this set {B, A}.

• Nothing rules out the possibility that A and B are the same set, so it
follows from pairing that for any set A there is a set whose only member
is A, namely {A, A}.

• We might as well just call that set {A} rather than {A, A}.

• Such a set, with exactly one member, is called a singleton.
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Curly Bracket Notation (2/2)

• More generally, we notate a nonempty finite set by listing its members,
separated by commas, between curly brackets.

• We postpone getting clear about exactly what we mean by ‘finite’ and just
rely on intuition for the time being.

• The order in which the members are listed doesn’t matter.

• It doesn’t make any sense to talk about what order the members of a set
come in.

• Repetitions inside curly brackets don’t matter either.

• It doesn’t make any sense to talk about how many times one set is a
member of another.

This Could be the Start of Something Big

• Remember 0 is a synonym for ∅.

• Now consider the singleton set {0}, which we call 1.

• Next, consider the set {0, 1}, which we call 2.

• Notice that 0 has zero members, 1 has one member, and 2 has two mem-
bers.

• Notice also that 1 has 0 as a member, and that 2 has 0 and 1 as members.

What’s 3?

• The obvious next step would be to say that 3 is {0, 1, 2}.

• But we have no way to make a valid argument that there actually is a set
whose only members are 0, 1, and 2.

• Looks like it’s time to make another assumption.

Assumption 4: Union

English: If A is a set, then there is a set whose members are those sets which
are members of some member of A.

Mathese: For all x, there exists y such that, forall z, z is a member of y iff
there exists w such that w is a member of x and z is a member of w.

FOL: ∀x∃y∀z(z ∈ y ↔ (∃w((w ∈ x) ∧ (z ∈ w))))
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Notation for Union

• The set whose members are those sets which are members of some member
of A is called the union of A, written ‘

⋃
A’.

• If A = {B, C}, then
⋃

A is the set each of whose members is in either B
or C (or both), written ‘B ∪ C’.

• Note that in general B ∪ C is not the same set as {B, C}.

Three and Beyond

• For example, compare 2 ∪ {2} with {2, {2}}.

• {2, {2}} only has two members, namely 2 and {2}.

• Whereas 2 ∪ {2} has three members:

2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2}

• Hey! That’s the set we wanted to call ‘3’ !

• We can use this same trick over and over to keep getting more and more
new sets.

Definition: Successor

• For any set A, the successor of A, written ‘s(A)’, is the set A ∪ {A}.

• That is, s(A) is the set with the same members as A, except that A itself
is also a member of s(A).

• Nothing we have said rules out the possibility that A ∈ A, in which case
A = s(A).

• The most widely used set theory (called Zermelo- Fraenkel set theory,
or just ZF) includes an assumption (called Foundation) which does rule
out this possibility.

• But we will not assume Foundation in this book.

A Preview of the Natural Numbers

• Notice that 1 is the successor of 0, 2 is the successor of 1, and 3 is the
successor of 2.

• Intuitively, the sets 0, 1, 2, 3, . . . we get by starting with 0 and ‘taking
successors forever’ are the natural numbers.

• But what are natural numbers? We’ll come back to that.

• Do they form a set? We’ll come back to that too.
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Assumption 5: Powerset

English: If A is a set, then there is a set whose members are the subsets of
A.

Mathese: For all x, there exists y such that, forall z, z is a member of y iff
z is a subset of x.

FOL: ∀x∃y∀z(z ∈ y ↔ (z ⊆ x))

Notation for Powersets

• By Extensionality again, for any set A there can only be one sets whose
members are the subsets of A.

• That set is called the powerset of A, written ‘℘(A)’.

• Notice that ℘(A) is not in general the same set as A, because usually the
subsets of a set are not the same as the members of the set.

• For example, 0 ⊆ 0, but 0 /∈ 0.

Definitions vs. Assumptions

• There’s a crucial difference between the notions of successor and powerset.

• The successor of A is defined in terms of things whose existence can already
be established on the basis of previous assumptions (singletons, unions);
whereas the existence of the powerset of A is assumed.

• Why didn’t we just define ℘(A) to be the set whose members are the
subsets of A?

• It’s because nobody has found a valid argument (based on just the first
four assumptions) that there is such a set!

• More generally, for an arbitrary condition on sets P [x], there is no guar-
antee that there is a set whose members are all the sets x such that P [x].

• The first person to realize this was the philosopher and mathematician
Bertrand Russell, in 1902.

Russell’s Paradox

Let P [x] be the condition ‘x is not a member of itself’. Russell showed that
there cannot be a set whose members are all the sets x such that P [x].

a. Suppose R were such a set.

b. Then either (i) R is a member of itself, or (ii) it isn’t. Let’s consider both
possibilities.
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c. Possibility 1 (R ∈ R): then R /∈ R, since the only members of R are sets
which are not members of themselves.

d. Possibility 1 (R /∈ R): then R is not a member itself, so that it is a member
of R.

e. Either way leads to a contradiction.

f. So the assumption must have been false that there is a set whose members
are those sets which are not members of themselves.

A Bad Set-Theoretic Assumption Bites the Dust

• Russell’s Paradox shows we don’t have the option of adding the following
to our set theory:

Tentative Assumption: Comprehension

For any condition P [x] there is a set whose members are all the sets x
such that P [x].

• A more modest assumption is usually adopted instead.

Assumption 6: Separation
For any set A and any condition P [x], there is a set whose members are all

the x in A that satisfy P [x].

• So far, assuming Separation has not been shown to lead to a contradiction.

• Separation is so-called because, intuitively, we are separating out from A
some members that are special in some way, and collecting them together
into a set.

• By Extensionality, there can be only one set whose members are all the
sets x in A that satisfy P [x].

• We call that set {x ∈ A | P [x]}.

Intersection

• In naive introductions to set theory, the intersection of two sets A and
B, written ‘A ∩B’, is often ‘defined’ as the set whose members are those
sets which are members of both A and B.

• But how do we know there is such a set?

• If we assume Separation and take P [x] to be the condition x ∈ B, then
we can (unproblematically) define A ∩B to be {x ∈ A | x ∈ B}.

• A and B are said to intersect provided A ∩B is nonempty.

• Otherwise, A and B are said to be disjoint.

• A set is called pairwise disjoint if no two distinct members of it intersect.
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Set Difference

• For two sets A and B, if we take P [x] to be the condition x /∈ B, then
Separation guarantees the existence of the set {x ∈ A | x /∈ B}.

• This set is called the set difference of A and B, or alternatively the
complement of B relative to A, written ‘A \B’.

There is No Universal Set

• A set is called universal if every set is a member of it.

• We can prove in our set theory that there is no universal set

• For suppose A were a universal set. Let P [x] be the condition x /∈ x.
Then by Separation, there must be a set {x ∈ A | x /∈ x}. But Russell’s
argument showed that there can be no such set. So the assumption that
there was a universal set must have been false.

Definition: Ordered Pair

• If A and B are sets, we call the set {{A}, {A, B}} the ordered pair of A
and B, also written ‘〈A, B〉’.

• 〈A, B〉 differs from {A, B} in the crucial respect that no matter what A
and B are, {A, B} = {B, A}, but 〈A, B〉 = 〈B, A〉 only if A = B.

• More generally, if A, B, C, and D are sets, then 〈A, B〉 = 〈C, D〉 only if
A = C and B = D.

• If C is the ordered pair of A and B, A is called the first component of
C, and B is called the second component of C.

Definition: Cartesian Product

• For any sets A and B, there is a set whose members are all those sets
which are ordered pairs whose first component is in A and whose sec-
ond component is in B. (It’s instructive to try to prove this. Hint: use
Separation.)

• By Extensionality there can be only one such set. It is called the cartesian
product of A and B, written ‘A×B’.

• For any sets A, B, C, and D, A×B = C ×D only if A = C and B = D.
(Try to prove this.)

• A is called the first factor of A×B, and B the second factor.
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Definition: Ordered Triple

• The ordered triple of A, B, and C, written ‘〈A, B,C〉’, is defined to
be the ordered pair whose first component is 〈A, B〉 and whose second
component is C.

• Then A, B, and C are called, respectively, the first, second, and third
components of 〈A, B,C〉.

• The (threefold) cartesian product of A, B, and C, written ‘A×B×C’,
is defined to be (A× B)× C. This is the set of all ordered triples whose
first, second, and third components are in A, B, and C respectively.

• The definitions can be extended to ordered quadruples, quintuples, etc.,
and to n-fold cartesian products for n > 3, in an obvious way.

Definition: Cartesian Power
For any set A, a cartesian power of A is a cartesian product all of whose

factors are A.

• The first cartesian power of A, written ‘A(1)’, is just A.

• The cartesian square of A, written ‘A(2)’, is A×A.

• The cartesian cube of A, written ‘A(3)’, is A×A×A

• More generally, for n > 3, the n-th cartesian power of A, written ‘A(n)’,
is the n-fold cartesian product all of whose factors are A.

• Additionally, the zero-th cartesian power of A, written ‘A(0)’, is defined
to be the set 1 (= {∅}).

• This last definition is closely related to the arithmetic fact that for any
natural number n, n0 = 1, but we postpone the explanation.
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