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Introducing Sets

Let’s suppose there are:

e things which we call sets, and

e a relationship between sets called membership.
Some Basic Terminology and Notation

e We use italic letters as names of arbitrary sets.

We write ‘A € B’ to express that A is a member of B.

We write ‘A ¢ B’ to express that A is not a member of B.
e If A€ B, we call A a member, or element, of B.

e Another way to say that A € B is to say A belongs to B.
Informal Set Theory

e We will make some basic assumptions about membership.
e We usually express our assumptions in ordinary English.

e But often, to avoid ambiguity, we use a special-purpose English-like lan-
guage that we call Mathese.

e The assumptions we make about membership, together with the state-
ments that follow from them by valid arguments, we call informal set
theory.

e For now we won’t try to make precise what we mean by ‘valid arguments’.



Axiomatic Set Theory (1/2)

e Soon we will introduce a special symbolic language, first-order logic
(FOL), that will let us make statements about membership more precisely
and more concisely.

e Mathese is a spoken approximation of FOL.
o We call the FOL counterparts of sentences formulas.

e We call the formulas that express assumptions axioms.
Axiomatic Set Theory (2/2)

e We will also see how to formalize the notion of ‘valid argument’ within
FOL.

e Such formalized arguments are called proofs.

e And turning things around, valid arguments in English or Mathese are
often called informal proofs.

e We call formulas that can be proved from the axioms theorems.

e Our axioms, together with the theorems we can prove from them, we will
call axiomatic set theory.

Some Words of Caution

e Set theory will not tell you what sets and membership are; they are un-
analyzed primitives of set theory.

e For now, you might find it helpful to think of a set as something like an
invisible basket, and its members as something like marbles in the basket,
but this analogy will only carry you so far.

e The assumptions we will make about membership are not the only possible
assumptions one might make; our set theory is a set theory, not the set
theory.

Before We Start

e We’ll start with the least controversial assumptions.

e For those of you who already know FOL, we’ll write below each assumption
the corresponding FOL axiom.

e Don’t worry if you don’t know FOL; we’ll fix that soon.



Assumption 1: Extensionality

English: If A and B have the same members, then they are the same set.

Mathese: For all x, for all y, if for all z, z is a member of z iff z is a member
of y, then = equals y.

FOL: VaVy((Vz(z €z = z €y)) . =y)
Note 1: The intuition behind Extensionality is that, once you know what
members a set has, you know which set it is.

Note 2: But there is nothing in our set theory so far that guaranteees that
there actually are any sets.

Definitions: Subset and Proper Subset

e If every member of A is a member of B, we say that A is a subset of B,
or included in B, written ‘A C B’. If not, we write ‘A ¢ B.

Note 1: if A C B and B C A, then it follows from Extensionality that
A=B.

Note 2: for any set A, A C A.

e If AC B but A # B then we say A is a proper subset of B, written
‘AC B.

Assumption 2: Empty Set
English: There is a set with no elements.

Mathese: There exists x such that, for all y, y is not a member of x.

FOL: JxVy(y ¢ x)

Notation for the Empty Set

e By Extensionality, there can be only one set with no elements. We call it
the empty set, written ‘().

e This is our first example of a commonplace practice in set theory: once
we establish that there is exactly one set that has a given property (or
equivalently, meets a certain description), then we can make up a name
for it.

e Soon we will see that it is possible to do arithmetic within set theory, and
that when we do so, it turns out that ¢ and the number 0 are the same
thing. So we use ‘0’ as a synonym for ‘()’.

e Obviously, for every set 4, ) C A.



Why are We Doing This?
e We aren’t doing set theory just to kill time.

e We are doing it because we are going to use it to construct precise (al-
though abstract) models of empirical linguistic phenomena (such as lin-
guistic expressions, prosodic tunes, meanings, utterance contexts, etc.).

e To put it another way, set theory will be our workspace for linguistic
modelling.

‘We Need More Sets

e In order for set theory to serve as our linguistic modelling workspace, we
need for it to make plenty of sets available.

e But so far, the only set we ‘have’ is 0.

e For example, we have no way to make a valid argument that there’s a set
with just one member, namely (.

e We will ‘get” more sets the same we got (): by willing them into existence.
e And the way we do that is by making more assumptions.

Assumption 3: Pairing

English: If A and B are sets, then there is a set whose only members are A
and B.

Mathese: For all z, for all y, there exists z such that x is a member of z, y
is a member of z, and for all w, if w is a member of z, then either w equals x
or w equals y.

FOL:
VxVyT3z((z € 2) A (y € 2) AVw((w € 2) = ((w=2z) V (w=1y))))

Curly Bracket Notation (1/2)

e Because of Extensionality again, there is only one set whose only members
are A and B, called the (unordered) pair of A and B, written ‘{A, B},

e We could just as well have called this set {B, A}.

e Nothing rules out the possibility that A and B are the same set, so it

follows from pairing that for any set A there is a set whose only member
is A, namely {A, A}.

o We might as well just call that set {A} rather than {A, A}.

e Such a set, with exactly one member, is called a singleton.



Curly Bracket Notation (2/2)

This

More generally, we notate a nonempty finite set by listing its members,
separated by commas, between curly brackets.

We postpone getting clear about exactly what we mean by ‘finite’ and just
rely on intuition for the time being.

The order in which the members are listed doesn’t matter.

It doesn’t make any sense to talk about what order the members of a set
come in.

Repetitions inside curly brackets don’t matter either.

It doesn’t make any sense to talk about how many times one set is a
member of another.

Could be the Start of Something Big

Remember 0 is a synonym for §.
Now consider the singleton set {0}, which we call 1.
Next, consider the set {0, 1}, which we call 2.

Notice that 0 has zero members, 1 has one member, and 2 has two mem-
bers.

Notice also that 1 has 0 as a member, and that 2 has 0 and 1 as members.

What’s 37

The obvious next step would be to say that 3 is {0, 1, 2}.

But we have no way to make a valid argument that there actually is a set
whose only members are 0, 1, and 2.

Looks like it’s time to make another assumption.

Assumption 4: Union

English: If A is a set, then there is a set whose members are those sets which
are members of some member of A.

Mathese: For all x, there exists y such that, forall z, z is a member of y iff

there

exists w such that w is a member of z and z is a member of w.

FOL: V23yVz(z € y < Buw((w € z) A (z € w))))



Notation for Union

The set whose members are those sets which are members of some member
of A is called the union of A, written ‘(J A’.

If A= {B,C}, then |JA is the set each of whose members is in either B
or C (or both), written ‘BUC".

Note that in general B U C' is not the same set as {B, C}.

Three and Beyond

For example, compare 2 U {2} with {2, {2}}.
{2,{2}} only has two members, namely 2 and {2}.
Whereas 2 U {2} has three members:

20{2} = {0,1}U{2} ={0,1,2}

Hey! That’s the set we wanted to call ‘3’!

We can use this same trick over and over to keep getting more and more
new sets.

Definition: Successor

For any set A, the successor of A, written ‘s(A)’, is the set AU {A}.

That is, s(A) is the set with the same members as A, except that A itself
is also a member of s(A).

Nothing we have said rules out the possibility that A € A, in which case
A=s(A).

The most widely used set theory (called Zermelo- Fraenkel set theory,
or just ZF) includes an assumption (called Foundation) which does rule
out this possibility.

But we will not assume Foundation in this book.

A Preview of the Natural Numbers

Notice that 1 is the successor of 0, 2 is the successor of 1, and 3 is the
successor of 2.

Intuitively, the sets 0,1,2,3,... we get by starting with 0 and ‘taking
successors forever’ are the natural numbers.

But what are natural numbers? We’ll come back to that.

Do they form a set? We’ll come back to that too.



Assumption 5: Powerset

English: If A is a set, then there is a set whose members are the subsets of

A.

Mathese: For all x, there exists y such that, forall z, z is a member of y iff
z is a subset of x.

FOL: Vx3yvz(z € y < (2 C x))

Notation for Powersets

By Extensionality again, for any set A there can only be one sets whose
members are the subsets of A.

That set is called the powerset of A, written ‘p(A)’.

Notice that p(A) is not in general the same set as A, because usually the
subsets of a set are not the same as the members of the set.

For example, 0 C 0, but 0 ¢ 0.

Definitions vs. Assumptions

There’s a crucial difference between the notions of successor and powerset.

The successor of A is defined in terms of things whose existence can already
be established on the basis of previous assumptions (singletons, unions);
whereas the existence of the powerset of A is assumed.

Why didn’t we just define p(A) to be the set whose members are the
subsets of A?

It’s because nobody has found a valid argument (based on just the first
four assumptions) that there is such a set!

More generally, for an arbitrary condition on sets P|x], there is no guar-
antee that there is a set whose members are all the sets = such that P[z].

The first person to realize this was the philosopher and mathematician
Bertrand Russell, in 1902.

Russell’s Paradox

Let P[z] be the condition ‘z is not a member of itself’. Russell showed that
there cannot be a set whose members are all the sets « such that P[x].

a.

b.

Suppose R were such a set.

Then either (i) R is a member of itself, or (ii) it isn’t. Let’s consider both
possibilities.



Possibility 1 (R € R): then R ¢ R, since the only members of R are sets
which are not members of themselves.

Possibility 1 (R ¢ R): then R is not a member itself, so that it is a member
of R.

Either way leads to a contradiction.

So the assumption must have been false that there is a set whose members
are those sets which are not members of themselves.

A Bad Set-Theoretic Assumption Bites the Dust

Russell’s Paradox shows we don’t have the option of adding the following
to our set theory:

Tentative Assumption: Comprehension

For any condition P[z] there is a set whose members are all the sets x
such that P[z].

A more modest assumption is usually adopted instead.

Assumption 6: Separation
For any set A and any condition P[xz], there is a set whose members are all
the z in A that satisfy P[z].

So far, assuming Separation has not been shown to lead to a contradiction.

Separation is so-called because, intuitively, we are separating out from A
some members that are special in some way, and collecting them together
into a set.

By Extensionality, there can be only one set whose members are all the
sets x in A that satisfy P[x].

We call that set {z € A | P[z]}.

Intersection

In naive introductions to set theory, the intersection of two sets A and
B, written ‘AN B’, is often ‘defined’ as the set whose members are those
sets which are members of both A and B.

But how do we know there is such a set?

If we assume Separation and take P[z] to be the condition x € B, then
we can (unproblematically) define AN B to be {x € A | z € B}.

A and B are said to intersect provided A N B is nonempty.
Otherwise, A and B are said to be disjoint.

A set is called pairwise disjoint if no two distinct members of it intersect.



Set Difference

e For two sets A and B, if we take P[z] to be the condition = ¢ B, then
Separation guarantees the existence of the set {z € A | z ¢ B}.

e This set is called the set difference of A and B, or alternatively the
complement of B relative to A, written ‘A \ B’.

There is No Universal Set

e A set is called universal if every set is a member of it.
e We can prove in our set theory that there is no universal set

e For suppose A were a universal set. Let P[z] be the condition = ¢ z.
Then by Separation, there must be a set {x € A | = ¢ x}. But Russell’s
argument showed that there can be no such set. So the assumption that
there was a universal set must have been false.

Definition: Ordered Pair

e If A and B are sets, we call the set {{A}, {A, B}} the ordered pair of A
and B, also written ‘(A, B)’.

o (A, B) differs from {A, B} in the crucial respect that no matter what A
and B are, {A, B} = {B, A}, but (4, B) = (B, A) only if A= B.

e More generally, if A, B, C, and D are sets, then (4, B) = (C, D) only if
A=Cand B=D.

e If C is the ordered pair of A and B, A is called the first component of

C, and B is called the second component of C.

Definition: Cartesian Product

e For any sets A and B, there is a set whose members are all those sets
which are ordered pairs whose first component is in A and whose sec-
ond component is in B. (It’s instructive to try to prove this. Hint: use
Separation.)

e By Extensionality there can be only one such set. It is called the cartesian
product of A and B, written ‘A x B’.

e For any sets A, B, C, and D, Ax B=CxDonlyif A=C and B=D.
(Try to prove this.)

e A is called the first factor of A x B, and B the second factor.



Definition: Ordered Triple

e The ordered triple of A, B, and C, written ‘(A, B,C)’, is defined to
be the ordered pair whose first component is (A, B) and whose second
component is C.

e Then A, B, and C are called, respectively, the first, second, and third
components of (A, B, C).

e The (threefold) cartesian product of A, B, and C, written ‘Ax Bx C”,
is defined to be (A x B) x C. This is the set of all ordered triples whose
first, second, and third components are in A, B, and C respectively.

e The definitions can be extended to ordered quadruples, quintuples, etc.,
and to n-fold cartesian products for n > 3, in an obvious way.

Definition: Cartesian Power
For any set A, a cartesian power of A is a cartesian product all of whose
factors are A.

e The first cartesian power of A, written ‘A™)’, is just A.
e The cartesian square of A, written ‘A)’, is A x A.
e The cartesian cube of A, written ‘A®)’ is A x A x A

e More generally, for n > 3, the n-th cartesian power of A, written ‘A",
is the n-fold cartesian product all of whose factors are A.

e Additionally, the zero-th cartesian power of A, written ‘A(®)’, is defined
to be the set 1 (= {0}).

e This last definition is closely related to the arithmetic fact that for any
natural number n, n° = 1, but we postpone the explanation.
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