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Relations (Intuitive Idea)

Intuitively, a relation is “the kind of thing that either holds
or doesn’t hold between certain things.”
Examples:

Being less than is a relation between two numbers.
Loving is a relation between two people.
Owning is a relation between a person and a thing.
Being at is a relation between a thing and a location.
Knowing that is a relation between a person and a
proposition.
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The Extension of a Relation (Intuitive Idea, 1/3)

The extension of a relation is the set of ordered pairs 〈x, y〉
such that x is in the relation with y.
For example, the extension of the love relation is the set of
ordered pairs 〈x, y〉 such that x loves y.
In general, which pairs are in the extension of a relation is
contingent, i.e. depends on how things happen to be.
For example, the way things actually are, Brad loves
Angelina (let’s say). But they could have been otherwise.
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The Extension of a Relation (Intuitive Idea, 2/3)

Different relations can have the same extension.
Example: suppose it just so happened that for all pairs of
people x and y, x loves y iff x’s social security number is
less than y’s social security number.
However, we wouldn’t then say that loving someone is the
same thing as having a lower social security number than
that person.
More generally, in natural language semantics, it’s very
important to distinguish between the sense of the word
love, which is the love relation itself, and the reference of
the word love, which is the extension of that relation.
We postpone the question of how to model relations
themselves (as opposed to their extensions) until we’ve
introduced the semantic notion of a proposition (roughly:
what a declarative sentence expresses).
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The Extension of a Relation (Intuitive Idea, 3/3)

Mathematical relations (such as being less than) differ from
relations such as loving, owning, being at, or knowing that,
in this important respect: which ordered pairs are in the
relation is not contingent.
For example,it doesn’t just so happen that 2 < 3; rather.
things couldn’t have been otherwise.
Another way to say this is that 2 is necessarily less than 3
(not merely contingently less than 3).
Since, with mathematical relations, which ordered pairs are
in the relation is a matter of necessity (and not of
contingency), mathematicians don’t bother to make a
distinction between a relation and its extension.
So the idea of relation we are about to introduce will work
fine for math, but when we start to discuss linguistic
meaning, we will have to rethink things.
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Preliminary Definition: Relation

A relation from A to B, also called a relation between
A and B, is a subset of A×B.
A relation on A is a relation between A and A, i.e. a
subset of A(2).

Note: if R is a relation, we usually write a R b as a shorthand
for 〈a, b〉 ∈ R.
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Some Important Relations

For any set A, the identity relation

idA =def {〈x, y〉 ∈ A×A | x = y}

is a relation on A.
For any set A, the subset inclusion relation

⊆A =def {〈x, y〉 ∈ ℘(A)× ℘(A) | x ⊆ y}

and the proper subset inclusion relation

(A =def {〈x, y〉 ∈ ℘(A)× ℘(A) | x ( y}

are relations on ℘(A).
The less than relation

< =def {〈m, n〉 ∈ ω × ω | m ( n}

is a relation on ω.
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Definition: Inverse of a Relation

If R is a relation from A to B, the inverse of R is the
relation from B to A defined as follows:

R−1 =def {〈x, y〉 ∈ B ×A | y R x}

Examples:

<−1= >

⊆−1
A = ⊇A

id−1
A = idA

For any relation R, (R−1)−1 = R.
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Definition: Composition of Relations

Suppose R is a relation from A to B and S is a relation
from B to C. Then the composition of S and R is the
relation from A to C defined by

S ◦R =def {〈x, z〉 ∈ A× C | ∃y ∈ B(x R y ∧ y S z)}

Obvious fact: If R is a relation from A to B, then

idB ◦R = R = R ◦ idA
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Definitions: Domain and Range of a Relation

Suppose R is a relation from A to B. Then:

the domain of R is:

dom(R) =def {x ∈ A | ∃y ∈ B(x R y)}

the range of R is:

ran(R) =def {y ∈ B | ∃x ∈ A(x R y)}
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Definition: Relations of any Arity

We defined a relation to be a subset of a cartesian product
A×B. More precisely. this is a binary relation.
We define a ternary relation among the sets A, B, and C
to be a subset of the threefold cartesian product A×B×C;
thus a ternary relation is a set of ordered triples.
For n > 3, n-fold cartesian products and n-ary relations are
defined in the obvious way.
For any n ∈ ω, we define an n-ary relation on A to be a
subset of A(n).
So a unary relation on A is a subset of A(1) = A.
And a nullary relation on A is a subset of A(0) = 1,
i.e. either 0 or 1.
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Definitions: Comparability and Connexity

Suppose R is a binary relation on A.

Distinct a, b ∈ A are called (R-)comparable if either a R b
or b R a; otherwise, they are called incomparable.
R is called connex iff a and b are comparable for all
distinct a, b ∈ A.
Exercise: Are any of the relations we’ve already introduced
connex?
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Definitions: Reflexivity and Irreflexivity

Suppose R is a binary relation on A.

R is called reflexive if a R a for all a ∈ A (i.e. idA ⊆ R).
R is called irreflexive if a 6R a for all a ∈ A
(i.e. idA ∩R = ∅).
Exercise: Are any of the relations we’ve already introduced
reflexive? Irreflexive?
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Definitions: Reflexive Closure and Irreflexive Interior

Suppose R is a binary relation on A.

The reflexive closure of R is the relation R ∪ idA.
The irreflexive interior of R is the relation R \ idA
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More Exercises

Prove: a relation is reflexive iff it is equal to its reflexive
closure, and irreflexive iff it is equal to its irreflexive
interior.
Prove: the reflexive closure of R is the intersection of the
set of reflexive relations on A which have R as a subset.
Prove: The irreflexive interior of R is the union of the set
of irreflexive relations which are subsets of R.
What are the reflexive closure and the irreflexive interior of
idA? Of ⊆A? Of <?
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Definition: Symmetry, Asymmetry, and Antisymmetry

Suppose R is a binary relation on A.

R is called symmetric if a R b implies b R a for all
a, b ∈ A (i.e. R = R−1).
R is called asymmetric if a R b implies b 6R a for all
a, b ∈ A (i.e. R ∩R−1 = ∅).
R is called antisymmetric if a R b and b R a imply a = b
for all a, b ∈ A (i.e. R ∩R−1 ⊆ idA).
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More Exercises

Which relations that we’ve discussed so far are symmetric?
Asymmetric? Antisymmetric?
Prove that a relation is asymmetric iff it is both
antisymmetric and irreflexive.
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Definitions: Transitivity and Intransitivity

Suppose R is a binary relation on A.

R is called transitive if a R b and b R c imply a R c for all
a, b, c ∈ A (i.e. R ◦R ⊆ R).
R is called intransitive if a R b and b R c imply a 6R c for
all a, b, c ∈ A (i.e. (R ◦R) ∩R = ∅).

Note: these concepts have nothing to do with the syntactic
notions of transitive and intransitive verbs!
Exercise: Which relations that we’ve discussed so far are
transitive? Intransitive?
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Definition: Equivalence Relation

Suppose R is a binary relation on A.

R is called an equivalence relation iff it is reflexive,
transtive, and symmetric.
If R is an equivalence relation, then for each a ∈ A the
(R-)equivalence class of a is

[a]R =def {b ∈ A | a R b}

Usually the subscript is dropped when it is clear from
context which equivalence relation is in question.
The members of an equivalence class are called its
representatives.
If R is an equivalence relation, the set of equivalence
classes, written A/R, is called the quotient of A by R.
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More Exercises

Which relations that we’ve discussed so far are equivalence
relations?
What are their equivalence classes?
Prove that if R is an equivalence relation on A, then A/R
is a partition of A, i.e. it is (i) pairwise disjoint, and (2)
its union is A.
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(Pre-)Orders and Induced Equivalence

A preorder on a set A is a binary relation v (‘less than or
equivalent to’) on A which is reflexive and transitive.
An antisymmetric preorder is called an order.
The equivalence relation ≡ induced by the preorder is
defined by a ≡ b iff a v b and b v a.
If v is an order, then ≡ is just the identity relation on A,
and correspondingly v is read as ‘less than or equal to’.
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Important Examples of (Pre-)Orders

Two important orders in set theory:

For any set A, ⊆A is an order on ℘(A).
≤ is an order on ω.

The most important relation in linguistic semantics is the
the entailment preorder on propositions.
Before discussing entailment, we have to introduce the
things that it relates: propositions.
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An Intuitive Introduction to Propositions (1/3)

Earlier we noted that linguistic semanticists in general
(following Frege (1892)) distinguish between the sense of
(an utterance of) a linguistic expression and its reference.
An expression’s sense is independent of how things are.
(Remember our example: the sense of the verb love is the
love relation, whatever that is.)
Whereas the reference of an expression is the extension of
its sense, which in general depends on how things are.
(Remember our example: the reference of the verb love is
the set of ordered pairs 〈x, y〉 such that x loves y.)
The things that can be the senses of declarative sentences
are usually called propositions.
What’s the extension of a proposition? We’ll return to that.
What are propositions?
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An Intuitive Introduction to Propositions (2/3)

Something similar to the notion of proposition used here
was first suggested by the mathematician/philosopher
Bernard Bolzano (Wissenschaftlehre, 1837)—his term was
Satz an sich ‘proposition in itself’.
They are expressed by declarative sentences.
They are the ‘primary bearers of truth and falsity’. (A
sentence is only secondarily, or derivatively, true or false,
depending on what proposition it expresses.)
They are the the ‘objects of the attitudes’, i.e. they are the
things that are known, believed, doubted, etc.
They are not linguistic.
They are not mental.
They are outside space, time, and causality.
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An Intuitive Introduction to Propositions (3/3)

What proposition a sentence expresses depends on the
context in which it is uttered.
For now we have to postpone consideration of what
contexts are and how to model them.
Sentences in different languages, or different sentences in
the same language, can express the same proposition.
Whether a proposition is true or false in general depends
on how things are (or, in other words, the way things are).
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An Intuitive Introduction to Worlds (1/2)

A (possible) world is a way things might be.
Here we mean not just a snapshot at a particular time, but
a whole history, stretching as far back and as far forward as
things go.
One of the worlds, called the actual world, or just
actuality, is the way things really are (again, stretching as
far back and as far forward as things go).
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An Intuitive Introduction to Worlds (2/2)

There have been two main schools of thought about what
worlds are and how they relate to propositions:

the view (apparently first advocated by Wittgenstein
(1921) and C.I. Lewis (1923) that worlds are certain sets of
propositions, called maximal consistent sets.
the view expressed by Carnap (1947) and Kripke (1963)
that propositions are sets of possible worlds.

In Carnap’s version, worlds are complete state descriptions,
which are sets of sentences in some logical language.
Whereas in Kripke’s version, worlds are theoretical
primitives and so not subject to further analysis.
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The Wittgenstein/Lewis Take on Worlds and
Propositions

The Wittgenstein/Lewis view (worlds are maximal
consistent sets of propositions) fits naturally with the
semantics for modal logic (largely based on mathematics
invented by Marshall Stone in the 1930s) developed by
Tarski and his collaborators in the 1940s-early 1950s.
This view has been advocated by numerous philosphers,
such as Robert Adams, Alvin Plantinga, William Lycan,
and Peter Forrest.
But scarcely any linguistic semanticists seem to be familiar
with this view.
We’ll try to correct that imbalance.
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The Carnap/Kripke Take on Worlds and Propositions

Carnap’s (1947) idea that propositions are sets of worlds is
still the mainstream view among linguistic semanticists.
However, his idea that worlds themselves are sets of
sentences in a logical language (‘complete state
descriptions’) was discarded in favor of Kripke’s (1963)
treatment of worlds as theoretical primitives.
Kripke’s view was subsequently advocated by certain
philosophers—David Lewis, Robert Stalnaker, Richard
Montague, and David Kaplan—who exerted a powerful
influence on linguistic semanticists, such as Barbara Partee
and David Dowty.
But among philosophers, nowadays it seems that Stalnaker
is the only one still defending this view.
Soon we’ll see why.
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First Steps in Theoretical Foundations of Semantics

We assume there is a set P of things we call propositions.
We assume there is a set W of things we call worlds.
We assume that there is a distinguished world w ∈W
called the actual world.
We assume there is a relation @, called holding, between
propositions and worlds.
If p@w, we say p holds at w, or is true at w, or is a fact
of w; otherwise, we say p is false at w.
The theory unfolds differently depending on whether we
develop it in accordance with the Wittgenstein/Lewis view
or the Kripke view.
We will consider both.
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Kinds of Propositions

A proposition p is called:

a necessary truth, or a necessity, iff p@w for every
world w

a truth iff p@w

a falsehood iff ¬(p@w)
a necessary falsehood, or an impossibility, iff p@w for
no world w

a possibility iff p@w for some world w

contingent iff it is neither a necessary truth nor a
necessary falsehood.

Carl Pollard Relations



Intuitive Introduction to Entailment

Most semanticists assume that there is a binary relation (in
the mathematical sense) between propositions, called
entailment.
The basic intuition about entailment is that for two
propositions p and q, p entails q just in case, no matter how
things are, if p is true with things that way, then so is q.
If sentence S1 expresses p and sentence S2 expresses q, then
we also say S1 entails S2, or that S2 follows from S1, if p
entails q.
p and q (or S1 and S2) are called (truth-conditionally)
equivalent iff they entail each other.
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Formalizing Entailment

We define the (binary) entails relation on propositions as
follows: for all p, q ∈ P, p entails q iff for every w ∈W, if
p@w then q@w.
It’s easy to see that entails is a preorder.
We say p and q are (truth-conditionally) equivalent iff
p ≡ q, where ≡ is the equivalence relation induced by
entailment.
So p and q are equivalent iff they are true at the same
worlds.
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Formalizing Entailment à la Kripke (1/2)

To formalize the Kripke view of worlds and propositions,
we first assume that propositions are the same thing as sets
of worlds, i.e.

P =def ℘(W )

Next, we define the holding relation between propositions
and worlds as follows:

@ =def {〈p, w〉 ∈ P×W | w ∈ p}

From this it follows from the definition of entailment
(previous slide) that entailment is just the inclusion
relation on sets of worlds:

entails = ⊆W
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Formalizing Entailment à la Kripke (2/2)

An outstanding virtue of the Kripke view is how
breathtakingly easy it is to model mathematically.
Could the overwhelming popularity of this approach among
linguistic semanticists have anything to do with this?
Unfortunately, on the Kripke view, entailment is not just a
preorder, but a order, i.e. it is not just reflexive and
transitive but also antisymmetric. So if two propositions
are equivalent, they are the same proposition.
And so, if two sentences entail each other, they must have
the same sense, a consequence that philosophers (Stalnaker
excluded) generally find unacceptable.
Linguists are aware of the problem, but for the most part
stick with the Kripke view anyway. (Be prepared for this if
you are planning to take Semantics next quarter.)
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Formalizing Entailment à la Wittgenstein/Lewis

To formalize the Wittgenstein/Lewis view of worlds and
propositions, we first assume that worlds are certain sets of
propositions, i.e.:

W ( ℘(P)

More specifically, we take worlds to be maximal consistent
sets of propositions. Intuitively speaking, this means that:

a world has enough propositions to ‘settle all questions’, and
a world doesn’t have any impossiblities (necessarily false
propositions)

But before we can say exactly what we mean by a maximal
consistent set, we need to put a little more mathematical
machinery in place.
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More Definitions for Preorders

Background assumptions:

v is a preorder on A
≡ is the induced equivalence relation
S ⊆ A
a ∈ A (not necessarily ∈ S)

We call a an upper (lower) bound of S iff, for every
b ∈ S, b v a (a v b).
Suppose moreover that a ∈ S. Then a is said to be:

greatest (least) in S iff it is an upper (lower) bound of S
a top (bottom) iff it is greatest (least) in A
maximal (minimal) in S iff, for every b ∈ S, if a v b
(b v a), then a ≡ b.

Note: the definition of greatest/least above is equivalent to the
one in Chapter 3.
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Some Observations

Background assumptions:

v is a preorder on A
≡ is the induced equivalence relation
S ⊆ A

If S has any greatest (least) elements, then they are the
only maximal (minimal) elements of S.
All greatest (least) members of S are equivalent.
And so all tops (bottoms) of A are equivalent.
And so if v is an order, S has at most one greatest (least)
member, and A has at most one top (bottom).
Maximal (minimal) elements needn’t be greatest (least).
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(Pre-)Chains

A connex (pre-)order is called a (pre-)chain.
Chains are also called total orders, or linear orders.
In a (pre-)chain, being maximal (minimal) in S is the same
thing as being greatest (least) in S.
A chain is called well-ordered iff every nonempty subset
has a least element.
It is possible to prove based on the set-theoretic
assumptions we have alreay made that ω is well-ordered by
the usual (≤) order.
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LUBs and GLBs

Background assumptions:

v is a preorder on A
S ⊆ A

Let UB(S) (LB(S)) be the set of upper (lower) bounds of
S.

A least member of UB(S) is called a least upper bound
(lub) of S.
A greatest member of LB(S) is called a greatest lower
bound (glb) of S.

Carl Pollard Relations



More about LUBs and GLBs

Background assumptions:

v is a preorder on A
S ⊆ A

Any greatest (least) member of S is a lub (glb) of S.
All lubs (glbs) of S are equivalent.
If v is an order, then S has at most one lub (glb).
A lub (glb) of A is the same thing as a top (bottom).
A lub (glb) of ∅ is the same thing as a bottom (top).
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