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Review of the Natural Numbers (1/3)

• We defined a set to be inductive provided:

– ∅ is a member, and

– the successor of every member is a member.

• We defined a set to be a natural number provided it is a member of
every inductive set.

• We added to our set theory the assumption that there is a set (which we
called ω) whose members are the natural numbers.

Review of the Natural Numbers (2/3)

• We proved that ω is inductive.

• We proved that ω is a subset of every inductive set.

• We proved the Principle of Mathematical Induction (PMI), that
the only inductive subset of ω is ω.

Soon we’ll see that PMI is an invaluable resource for proving important
theorems.

Review of the Natural Numbers (3/3)

• We mentioned the < and ≤ relations on ω.

• We mentioned (but didn’t prove) that ω is well ordered by ≤ (i.e. forms
a chain where every nonempty subset has a least member).

• We called the function that maps each natural number to its successor
suc.

• We mentioned (but didn’t prove) that suc is a bijection from ω to ω \{0}.
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• We promised to define the binary operations addition (+), multiplica-
tion (·), and exponentiation (?).

• The missing proofs and definitions are supplied in FFLT ch. 4.3; right
now we’ll just survey the main points.

The < Relation on ω

• We defined < to be proper subset inclusion on ω.

• But it’s more convenient to redefine < as the relation

< =def {〈m,n〉 ∈ ω × ω | m ∈ n}

• Later we’ll see that these two definitions are equivalent (in the sense of
defining the same set of ordered pairs).

How to Do Inductive Proofs

• PMI is the tool of choice whenever we want to prove that a condition φ[n]
is true for every natural number n.

• The trick is to consider the set

{n ∈ ω | φ[n]}

and show that it is inductive.

• To do that, first we prove φ[0] (called the base case).

• Then we prove that, if we assume φ[k] for an arbitrary natural number
k (the so-called inductive hypothesis), then φ[suc(k)] follows (the so-
called inductive step).

A Simple Inductive Proof

Theorem: ran(suc) = ω \ {0}.

Proof. Obviously 0 /∈ ran(suc).
Let T be the set of all natural numbers that are either 0 or else the successor

of some natural number.
We must show that T is inductive, that is that (1) 0 ∈ T and (2) for each

n ∈ T, suc(n) ∈ T .
But both of these are immediate consequences of the definition of T .
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Motivating Recursive Definition (1/2)

• Why don’t we just say ‘1 + n’ instead of ‘suc(n)’?

• Answer: because we haven’t defined + yet!

• Yet it seems clear how + should work: for any m ∈ ω

– m+ 0 should be m

– if k 6= 0, so that k = suc(n) for some n, m+k should be suc(m+n).

Motivating Recursive Definition (2/2)

• That is, for each m ∈ ω we would like to define addition recursively by
the equations

m+ 0 = m

m+ suc(n) = suc(m+ n)

• But how do we know recursive definitions make sense?

• Answer: because of the Recursion Theorem.

The Recursion Theorem (RT)
Theorem: Let X be a set, x ∈ X, and F : X → X. Then there exists a

unique function h : ω → X such that:

1. h(0) = x, and

2. (2) for every n ∈ ω, h(suc(n)) = F (h(n)).

Proof. By induction. For details, see the Appendix of FFLT.

Defining Addition (1/2)

• Suppose m ∈ ω. We will define a unary operation on ω Am such that

Am(0) = m

Am(suc(n)) = suc(Am(n))

using RT with the following instantiations of X, x, and F :

– X = ω

– x = m

– F = suc.

• Then the function h whose unique existence is guaranteed by RT has just
the properties we want for Am.
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Defining Addition (2/2)

• We then define + to be the binary operation on ω that maps each 〈m,n〉 ∈
ω × ω to Am(n).

• It follows from this definition that for all m,n ∈ ω:

m+ 0 = m

m+ suc(n) = suc(m+ n)

Another Simple Inductive Proof (Exercise)
Theorem: For every natural number n, 1 + n = suc(n).

Proof. Exercise.

Defining Multiplication (1/2)

• Suppose m ∈ ω. We will define a unary operation on ω Mm such that

Mm(0) = 0

Mm(suc(n)) = m+ (Mm(n))

using RT with the following instantiations of X, x, and F :

– X = ω

– x = m

– F = Am.

• Then the function h whose unique existence is guaranteed by RT has just
the properties we want for Mm.

Defining Multiplication (2/2)

• We then define · to be the binary operation on ω that maps each 〈m,n〉 ∈
ω × ω to Mm(n).

• It follows from this definition that for all m,n ∈ ω:

m · 0 = m

m · (1 + n) = m+m · n

Note 1: You might recognize this last equation as an instance of the
Distributive Law, but we haven’t proved that yet.

Note 2: As in everyday life, the ‘·’ for multiplication is often omitted.
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Yet Another Simple Inductive Proof (Exercise)

Theorem: For every natural number n, 1 · n = n.

Proof. Exercise.

Five Laws of Arithmetic

The following can all be proved inductively:

1. Commutativity of Addition:

m+ n = n+m

2. Associativity of Addition:

m+ (n+ p) = (m+ n) + p

3. Commutativity of Multiplication:

mn = nm

4. Associativity of Multiplication:

m(np) = (mn)p

5. Distributivity of Mulitplication over Addition:

m(n+ p) = mn+mp

Some Notation

• Recall that an A-string of length n is a function f : n → A, i.e. a
member of An.

• Suppose that for each i < n, f(i) = xi. Then
⋃

ran(f) is often written as⋃
i<n xi.

• By an infinite sequence in A, we mean a function f : ω → A.

• Suppose that for each i ∈ ω, f(i) = xi. Then
⋃

ran(f) is often written as⋃
i∈ω xi.

• Example: For any A, let fA be the infinite sequence in ℘(ω × A) that
maps each i ∈ ω to Ai. Then

⋃
i∈ω Ai is the set of all A-strings, usually

abbreviated as A∗.
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The (Reflexive) Transitive Closure of a Relation

Suppose R is a binary relation on A. Then informally, the transitive clo-
sure of R, written R+, is usually recursively “defined” as follows:

• For all n ∈ ω, define h(n) by:

h(0) =def idA

h(n+ 1) =def h(n) ◦R.

• Then R+ =def

⋃
n∈ω h(n+ 1).

• And the reflexive transitive closure of R is defined as:

R∗ =def R
∗ ∪ idA =

⋃
n∈ω h(n).

Exercise: Use RT to give a formal recursive definition of h.

The Transitivity of R+

Theorem: Suppose R is a binary relation on A. Then R+ is transitive.

Proof. Exercise.

A Characterization of R+

Theorem: Suppose R is a binary relation on A. Then R+ is the intersection
of all transitive relations on A which are supersets of R.

Proof. Exercise.

Transitive Sets (1/2)

• A set A is said to be transitive iff every member of a member of A is
itself a member of A.

• It is easy to show that each of the following three conditions on A are
equivalent to transitivity:

1. (
⋃
A) ⊆ A

2. every member of A is a subset of A

3. A ⊆ ℘(A)
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Transitive Sets (2/2)

Lemma: If A is transitive, then
⋃
s(A) = A.

Proof. See FFLT, ch. 4.

Lemma: Every natural number is transitive.

Proof. Exercise. [Hint: use induction.]

Injectivity of the Successor Function

Theorem: suc is injective.

Proof. See FFLT, ch. 4.

Note: Soon we will use this to prove that ω is infinite (not in one-to-one
correspondence with any natural number).

More Key Facts about ω

Remember that by definition:

m < n iff m ∈ n
m ≤ n iff m < n or m = n

• For all n ∈ ω, n = {m ∈ ω | m < n}.

• For all n ∈ ω, n /∈ n.

• < is transitive, irreflexive, and connex.

• For all m,n ∈ ω, m ∈ n iff m ( n.

• ≤ is a chain.

• Every nonemempty subset of ω has a least element (and so ≤ is a well-
ordering).
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Equinumerosity, Finiteness and Infinity

• Two sets A and B are said to be equinumerous, written A ≈ B, iff there
is a bijection from A to B.

• A set is called:

– finite iff it is equinumerous with a natural number

– infinite iff it is not finite

– Dedekind infinite iff it is equinumerous with a proper subset of
itself

• We’ve already shown that suc is a bijection from ω to ω \ {0}, so ω is
Dedekind infinite.

Every Set is ‘Smaller’ than its Powerset

Theorem: No set is equinumerous with its powerset.

Proof. Let g be any function from A to ℘A, and let B = {x ∈ A | x 6∈ g(x)}.
We will show B 6∈ ran(g), so that g cannot be surjective (and therefore

cannot be bijective).
Suppose it were true that B ∈ ran(g). Then there would have to be some

y ∈ A such that B = g(y).
But then we would have y ∈ B iff y /∈ g(y), i.e. y ∈ B iff y 6∈ B, which is a

contradiction.
So our assumption that B ∈ ran(g) must have been false.

Facts about Finite and Infinite Sets (1/2)
Theorem: No natural number is Dedekind infinite.

Proof. Exercise.

Corollary: No finite set is Dedekind infinite (and so every Dedkind infinite
set is infinite).

Proof. Exercise.

Corollary: ω is infinite.

Proof. Immediate.
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Facts about Finite and Infinite Sets (2/2)
Corollary: No two distinct natural numbers are equinumerous.

Proof. Exercise.

Corollary: Each finite set A is equinumerous with a unique natural number
|A|, called its cardinality.

Proof. Exercise.

Theorem: Every subset of a finite subset is finite.

Proof. See ch. 5.

Domination

• We say a set A is dominated by a set B, written A � B, iff there is
an injection from A to B, or, equivalently, iff A is equinumerous with a
subset of B.

• If A � B and A 6≈ B, A is said to be strictly dominated by B, written
A � B or A ≺ B.

• Exercises For any sets A, B, and C:

– A � A
– if A � B and B � C then A � C
– A � ℘(A)

The Schröder-Bernstein Theorem

Theorem:
For any sets A and B, if A � B and B � A, then A ≈ B.

Proof. See the Appendix of FFLT. The proof is not hard, but extraordinarily
ingenious and a bit on the long side.

Choice Functions

• For any set A, the nonempty powerset of A, written ℘ne(A), is the set
℘A \ {∅} of nonempty subsets of A.

• A choice function for A is a function c : ℘ne(A)→ A such that, for each
nonempty subset B of A, c(B) ∈ B.
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Assumption 7: Choice

Every set has a choice function.

About Choice

• It has been proved (Cohen, 1963) that Choice is independent of our other
assumptions, i.e. if if our other assumptions are consistent, then either
Choice or its denial can be consistently added.

• Some mathematicians consider Choice less intuitive than the other as-
sumptions.

• But most mathematicians assume Choice, because there many useful the-
orems can’t be proved without it, such as the following.

ω is a ‘Least’ Infinite Set
Theorem: If A is infinite, then ω � A.

Proof. See the Appendix of FFLT. This is another clever proof, and not too
long. It makes crucial use of Choice.

Corollary (Dedekind-Peirce Theorem): Every infinite set is Dedekind
infinite.

Proof. See FFLT, ch. 5. (Note that the converse, proved earlier, did not require
Choice.)

Countable and Denumerable Sets

A set is called:

• countable iff it is dominated by ω

• denumerable, denumerably infinite, or countably infinite iff it is
countable and infinite

Theorem: Any countably infinite set is equinumerous with ω.

Proof. Exercise.

Theorem: Any infinite subset of ω is equinumerous with ω.

Proof. Exercise.
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Some Countably Infinite Sets

• ω (natural numbers)

• ω × ω (ordered pairs of natural numbers)

• ω \ {0} (positive natural numbers)

• {2n | n ∈ ω} (even natural numbers)

• the primes

• Z (the integers)

• Q (the rationals)

• A∗ (the A-strings, for any nonempty finite A)

Nondenumerable Sets

• A set is called uncountable, nondenumerable, or nondenumerably
infinite, iff it is not countable.

• Some nondenumerable sets equinumerous with ℘(ω):

– R (the reals)

– {r ∈ R | 0 ≤ r ≤ 1} (the unit interval)

– R \Q (the irrationals)

– R× R (the plane)

– ωω (infinite sequences of natural numbers)

– ℘(A∗) (the A-languages, i.e. sets of A-strings, for any nonempty
finite A)
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