(Pre-)Lattices

Carl Pollard

November 17, 2011

Prelattices

- A **prelattice** is a preordered algebra $\langle P, \sqsubseteq, \sqcap, \sqcup \rangle$ where
 - $\ \langle P,\sqsubseteq,\sqcap\rangle$ is a lower semilattice and
 - $\ \langle P,\sqsubseteq,\sqcup\rangle$ is an upper semilattice.
- A bounded prelattice is a preordered algebra $\langle P, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ where
 - $-\langle P, \sqsubseteq, \sqcap, \sqcup \rangle$ is a prelattice
 - \top is a top
 - $-\perp$ is a bottom

Basic Facts about Prelattices (Review)

- \sqcap and \sqcup are:
 - monotonic in both arguments
 - associative u.t.e.
 - commutative u.t.e.
 - idempotent u.t.e.
- \sqcap (\sqcup) is a glb (lub) operation
- Interdefinability: for all $p, q \in P$,

$$p \sqcap q \equiv p \text{ iff } p \sqsubseteq q \text{ iff } p \sqcup q \equiv q$$

• Absorption u.t.e.:

$$(p \sqcup q) \sqcap q \equiv q \equiv (p \sqcap q) \sqcup q;$$

More Facts about Prelattices

• Semidistributivity: For all $a, b \in P$:

$$(p \sqcap q) \sqcup (p \sqcap r) \sqsubseteq p \sqcap (q \sqcup r)$$

• A prelattice is called **distributive u.t.e** if the inequality reverse to Semidistributivity holds:

$$p \sqcap (q \sqcup r) \sqsubseteq (p \sqcap q) \sqcup (p \sqcap r)$$

so that in fact

$$p \sqcap (q \sqcup r) \equiv (p \sqcap q) \sqcup (p \sqcap r)$$

• **Theorem:** a prelattice is distributive u.t.e. iff the following equivalence holds for all $a, b, c \in P$ (obtained from the one above by interchanging \sqcap and \sqcup):

$$p \sqcup (q \sqcap r) \equiv (p \sqcup q) \sqcap (p \sqcup r)$$

RPC Operations (Review)

• Let $\langle P, \sqsubseteq, \sqcap \rangle$ be a lower semilattice, and \dashv a binary operation on A, such that for all $p, q, r \in P$:

$$p \sqcap r \sqsubseteq q$$
 iff $r \sqsubseteq p \dashv q$

i.e. $p \dashv q$ is a greatest member of $\{r \in A \mid p \sqcap r \sqsubseteq q\}$

Then \dashv is called a **relative pseudocomplement (rpc)** operation with respect to \sqcap .

• It can be shown that an rpc operation is antitonic on its first argument and monotonic on its second argument.

(Pseudo-)Complement Operations (Review)

• Suppose $\langle , P, \sqsubseteq, \sqcap, \bot \dashv \rangle$ is a lower presemilattice with a bottom \bot , , and \prime is a unary operation on A such that, for all $p \in P$:

$$p' \equiv p \dashv \bot$$

Then \prime is called a **pseudocomplement** operation, and p' is called the **pseudocomplement** of p.

- It is easy to show that \perp' is a top.
- It is easy to show that, for all $p \in A$, $p \sqsubseteq (p')'$.
- If additionally, for all $p \in A$, $(p')' \sqsubseteq p$, so that

 $(p')' \equiv p,$

then \prime is called a **complement** operation, and p' is called the **complement** of p.

Preheyting Algebras

- A pre-heyting algebra is a preordered algebra $\langle P, \sqsubseteq, \sqcap, \sqcup, \dashv, \prime, \top, \bot \rangle$ where:
 - $-\langle P, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ is a bounded prelattice
 - \dashv is an rpc operation
 - / is a pseudocomplement operation.
- Preheyting algebras can be shown to be distributive u.t.e.
- The set of sentences of propositional logical forms a preheyting algebra with the preorder defined by

 $A \sqsubseteq B$ iff $A \vdash B$ where \vdash is IPL provability.

Preboolean Algebras

- A **pre-boolean algebra** is a pre-heyting algebra satisfying either of the following (equivalent!) conditions:
 - The pseudocomplement operation \prime is a complement operation, i.e. for all $p \in P$,

 $(p')' \equiv p,$

- For all $p \in P$, $p \sqcup p' \equiv \top$.

• The set of sentences of propositional logical forms a preboolean algebra with the preorder defined by

 $A \sqsubseteq B$ iff $A \vdash B$ where \vdash is CPL provability.

• Under standard assumptions about how natural language entailment works, propositions (the kinds of things that can be senses expressed by declarative sentence utterances) form a preboolean algebra with entailment as the preorder.

The Preboolean Algebra of Propositions

- \sqsubseteq (renamed entails) represents entailment
- \sqcap (renamed and) represents the meaning of and
- \sqcup (renamed or) represents the meaning of or
- \dashv (renamed implies) represents the meaning of *if*... *then*
- / (renamed not) represents the meaning of it is not the case that or no way
- \top (renamed truth) represents some necessarily true proposition
- \perp (renamed falsity) represents some necessarily false proposition
- In the Lewis/Wittgenstein-style modelling, worlds are *maximal consistent* sets of propositions (yet to be defined).

Heyting Algebras and Boolean Algebras

- Predictably, a **heyting (boolean) algebra** is an antisymmetric preheyting (preboolean) algebra.
- An example of a heyting algebra is the set of open sets of real numbers ordered by inclusion. (Exercise: what are the operations?)
- The most familiar boolean algebras are power sets ordered by subset inclusion. (Exercise: what are the operations?)
- Special case: 2 = \varnothinspace(1) = {0,1}. Semanticists often call this the algebra of truth values, and rename 1 and 0 to t and f respectively.
- Special case: Under the Kripke/Montague-style modelling of propositions as sets of worlds, propositions form a boolean algebra with the entailment order being subset inclusion.

Worlds and Propositions à la Kripke/Montague

- We take worlds to be a set W of unanalyzed primitives
- We model propositions as sets of worlds: $P =_{def} \wp(W)$
- p@w means $w \in p$, so entails is \subseteq_W
- and is intersection
- or is union
- implies is relative complement
- not is complement

- There is only one necessary truth.
- There is only one necessary falsehood.
- Sentences with the same truth conditions have the same meaning.

Toward Modelling Worlds as Maximal Consistent Sets

- We take worlds to be certain subsets of the preboolean algebra of propositions, i.e. $W \subsetneq \wp(P)$. (Which subsets? We'll come back to that.)
- p@w means $p \in w$.
- For the preorder entails in P to be a good representation of entailment, it will have to be the case that for any two propositions p and q, p entails q iff for every world w, if $p \in w$ then $q \in w$.
- Turning things around, for any p and q such that it is *not* the case that p entails q, there must exist a w such that $p \in w$ but $q \notin w$.
- Informally: whatever worlds are, there have to be 'enough' of them.
- So which subsets of P should be in W?
- To answer this, we need to know more about certain special subsets of preboolean algebras.