(Pre-)Algebras

Carl Pollard

October 25, 2011

Definition: Equivalence Relation

Suppose R is a binary relation on A.

- *R* is called an **equivalence** relation iff it is reflexive, transtive, and symmetric.
- If R is an equivalence relation, then for each a ∈ A the (R-)equivalence class of a is

$$[a]_R =_{\operatorname{def}} \{ b \in A \mid a \mathrel{R} b \}$$

Usually the subscript is dropped when it is clear from context which equivalence relation is in question.

- The members of an equivalence class are called its representatives.
- If R is an equivalence relation, the set of equivalence classes, written A/R, is called the **quotient** of A by R.

(Pre-)Orders and Induced Equivalence

- A **preorder** on a set A is a binary relation \sqsubseteq ('less than or equivalent to') on A which is reflexive and transitive.
- An antisymmetric preorder is called an **order**.
- The equivalence relation \equiv **induced** by the preorder is defined by $a \equiv b$ iff $a \sqsubseteq b$ and $b \sqsubseteq a$.
- If ⊑ is an order, then ≡ is just the identity relation on A, and correspondingly ⊑ is read as 'less than or equal to'.

Important Examples of (Pre-)Orders

- Two important orders in set theory:
 - For any set A, \subseteq_A is an order on $\wp(A)$.
 - \leq is an order on ω .
- The most important relation in linguistic semantics is the the **entailment** preorder on propositions.

More Definitions for Preorders

- Background assumptions:
 - \sqsubseteq is a preorder on A
 - \equiv is the induced equivalence relation
 - $-S \subseteq A$
 - $-a \in A$ (not necessarily $\in S$)
- We call a an **upper** (lower) bound of S iff, for every $b \in S$, $b \sqsubseteq a$ ($a \sqsubseteq b$).
- Suppose moreover that $a \in S$. Then a is said to be:
 - greatest (least) in S iff it is an upper (lower) bound of S
 - a **top** (**bottom**) iff it is greatest (least) in A
 - maximal (minimal) in S iff, for every $b \in S$, if $a \sqsubseteq b$ ($b \sqsubseteq a$), then $a \equiv b$.

Some Observations

- Background assumptions:
 - \sqsubseteq is a preorder on A
 - \equiv is the induced equivalence relation
 - $-S \subseteq A$
- If S has any greatest (least) elements, then they are the only maximal (minimal) elements of S.
- All greatest (least) members of S are equivalent.
- And so all tops (bottoms) of A are equivalent.
- And so if \sqsubseteq is an order, S has at most one greatest (least) member, and A has at most one top (bottom).
- Maximal (minimal) elements needn't be greatest (least).

(Pre-)Chains

- A connex (pre-)order is called a (pre-)chain.
- Chains are also called **total orders**, or **linear orders**.
- In a (pre-)chain, being maximal (minimal) in S is the same thing as being greatest (least) in S.

LUBs and GLBs, MUBs and MLBs

- Background assumptions:
 - \sqsubseteq is a preorder on A
 - $-S \subseteq A$
 - UB(S) (LB(S)) is the set of upper (lower) bounds of S.
- A least (minimal) member of UB(S) is called a **least (minimal) upper bound** or **lub (mub)** of S.
- A greatest (maximal) member of LB(S) is called a greatest (maximal) lower bound or glb) (mlb) of S.

More about LUBs and GLBs

- Background assumptions:
 - $-\sqsubseteq \text{ is a preorder on } A$ $-S \subseteq A$
- Any greatest (least) member of S is a lub (glb) of S.
- All lubs (glbs) of S are equivalent.
- If \sqsubseteq is an order, then S has at most one lub (glb).
- A lub (glb) of A is the same thing as a top (bottom).
- A lub (glb) of \emptyset is the same thing as a bottom (top).

Monotonicity, Antitonicity, and Tonicity

Suppose A and B are preordered by \sqsubseteq and \leq respectively. Then a function $f: A \to B$ is called:

- monotonic or order-preserving iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a) \le f(a')$;
- antitonic or order-reversing iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a') \le f(a)$; and
- tonic iff it is either monotonic or antitonic.

Preorder (Anti-)Isomorphism

- A monotonic (antitonic) bijection is called a **preorder isomorphism** (preorder anti-isomorphism) provided its inverse is also monotonic (antitonic).
- Two preordered sets are said to be **preorder-isomorphic** provided there is a preorder isomorphism from one to the other.

Algebras

- An **algebra** is a set A with one or more operations (where 'special elements' are thought of as nullary operations).
- Some of the simplest algebras are ones with just a single binary operation
 Some important examples:
 - **Semigroups**: \circ is associative.
 - Commutative semigroups: is associative and commutative.
 - Semilattices: \circ is associative, commutative, and idempotent (i.e. $a \circ a = a$ for all $a \in A$).
- A monoid is a semigroup with a two-sided identity element \mathbf{e} (i.e. $a \circ \mathbf{e} = a = \mathbf{e} \circ a$ for all $a \in A$).

Examples of Monoids

- ω with + as the operation and 0 as the identity for +.
- ω with \cdot as the operation and 1 as the identity for \cdot
- For any set A, A^* with \frown (concatenation) as the operation and ϵ_A (the null A-string) as the identity for \frown .

Here if $f \in A^m$ and $g \in A^n$, $f \frown g \in A^{m+n}$ is given by

 $-(f \frown g)(i) = f(i)$ for all i < m; and

 $-(f \frown g)(m+i) = g(i) \text{ for all } i < n.$

Tonicity Generalized

- Recall: a unary operation on a (pre)order is called **tonic** provided it is either monotonic or antitonic.
- An operation of arbitrary arity on a (pre)order is called **tonic** if it is 'tonic in each argument as the other arguments are held fixed'.
 - All nullary operations are (trivially) tonic.
 - The two definitions coincide in the unary case.
 - a binary operation \circ is tonic iff (1) for each a, the function that maps each b to $a \circ b$ is tonic, and (2) for each b, the function that maps each a to $a \circ b$ is tonic.

(Pre)ordered Algebras

- A (pre)ordered algebra is a (pre)order A which is also an algebra whose operations are all tonic.
- An operation in a preordered algebra is said to have a property up to equivalence (u.t.e.) if it holds with = replaced by \equiv , where \equiv is the equivalence relation induced by the preorder.
- For example, \circ is commutative u.t.e. iff for all $a, b \in A$, $a \circ b \equiv b \circ a$.

Substitutivity u.t.e

- Preordered algebras enjoy the property of **substitutivity u.t.e**, i.e. replacing the arguments of any operation by equivalents yields an equivalent result.
- For example, in the binary case, this means that if $a \equiv b$ and $c \equiv d$, then $a \circ c \equiv b \circ d$.

Some Kinds of Preordered Algebras

For future reference:

- A **presemigroup** is a preorder with one binary operation \circ which is monotonic on both arguments and associative u.t.e.
- A **presemilattice** is a presemigroup which is both commutative u.t.e. and idempotent u.t.e.
- A **premonoid** is a presemigroup with an additional unary operation **e** which is a two-sided identity u.t.e.

Ordered Algebras

A 'prewidget' is a called an 'ordered widget' iff it is antisymmetric. Examples:

- An ordered semigroup is an antisymmetric presemigroup.
- An ordered semilattice is an antisymmetric presemilattice.
- An ordered monoid is an antisymmetric premonoid.

An Important Example of an Ordered Monoid

For any set A, $\wp(A^*)$ forms a monoid with

- A-languages (i.e. sets of A-strings) as the elements
- • (language concatenation) as the binary operation, where for any Alanguages L and M, $L \bullet M$, is the set of all strings of the form $u \frown v$ where $u \in L$ and $v \in M$
- $1_A = \{\epsilon_A\}$ as the identity for •.

We turn this into an ordered monoid by taking the order to be subset inclusion of languages. (You need to check that \bullet is monotonic in both arguments.)

Two Important Examples of an Ordered Semilattice

In both examples, we take the order to be the subset inclusion ordering on $\wp(A)$, for some set A.

- Example 1: take the binary operation to be set intersection. Observation: $a \subseteq b$ iff $a \cap b = a$.
- Example 2: take the binary operation to be set union.

Observation: $a \subseteq b$ iff $a \cup b = b$.

These observations motivate the following definitions.

Two Kinds of Presemilattices

Suppose $\langle A, \sqsubseteq, \circ \rangle$ is a presemilattice, i.e. \circ is monotonic in both arguments, associative u.t.e., commutative u.t.e., and idempotent u.t.e. Then it is called:

- **upper** iff, for all $a, b \in A$, $a \sqsubseteq b$ iff $a \circ b \equiv b$.
- lower iff, for all $a, b \in A$, $a \sqsubseteq b$ iff $a \circ b \equiv a$.

A Theorem about Presemilattices

- In an upper presemilattice, is a join (lub operation), hence usually written ⊔.
- In a lower presemilattice, \circ is a meet (glb operation), hence usually written \Box .

A Theorem about lubs and glbs

Suppose $\langle A, \sqsubseteq, \circ \rangle$ is a preorder with a join (meet) \circ .

Then it is an upper (lower) presemilattice, i.e. \circ is tonic in both arguments, associative u.t.e., commutative u.t.e., idempotent u.t.e., and for all $a, b \in A$, $a \sqsubseteq b$ iff $a \circ b \equiv b$ $(a \circ b \equiv a)$.

Relative Pseudocomplement (RPC) Operations

• Let $\langle A, \sqsubseteq, \sqcap \rangle$ be a lower semilattice, and \dashv a binary operation on A, such that for all $a, b, c \in A$:

$$a \sqcap c \sqsubseteq b \text{ iff } c \sqsubseteq a \dashv b$$

i.e. $a \dashv b$ is a greatest member of $\{c \in A \mid a \sqcap c \sqsubseteq b\}$

Then \dashv is called a **relative pseudocomplement (rpc)** operation with respect to \sqcap .

• It can be shown that an rpc operation is antitonic on its first argument and monotonic on its second argument.

(Pseudo)complement

Suppose ⟨, A, ⊑, □, ⊥ ⊣⟩ is a lower presemilattice with a bottom element ⊥, and *i* is a unary operation on A such that, for all a ∈ A:

$$a' \equiv a \dashv \bot$$

Then \prime is called a **pseudocomplement** operation, and a' is called the **pseudocomplement** of a.

• If additionally, for all $a \in A$,

$$(a')' \equiv a_{i}$$

then \prime is called a **complement** operation, and a' is called the **complement** of a.