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And

The standard abbreviation for and is the symbol ∧, called
conjunction.
And is used for combining sentences to form a new
sentence:
S1 and S2. (Abbreviated form: S1 ∧ S2)

A sentence formed this way is called a conjunctive
sentence.
Here S1 is called the first conjunct and S2 is called the
second conjunct.
A conjunctive sentence is considered to be true if both
conjuncts are true. Otherwise it is false.
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Or

The standard abbreviation for or is the symbol ∨, called
disjunction.
Or is used for combining sentences to form a new sentence:
S1 or S2. (Abbreviated form: S1 ∨ S2)
A sentence formed this way is called a disjunctive
sentence.

Here S1 is called the first disjunct and S2 is called the
second disjunct.
A disjunctive sentence is considered to be true if at least
one disjunct is true. Otherwise it is false.
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Implies (1/2)

The standard abbreviation for implies is the symbol →,
called implication.
Some authors write ⊃ instead of → for implication.
Implies is used for combining sentences to form a new
sentence:
S1 implies S2. (Abbreviated form: S1 → S2)

A synonym for ‘implies’ is ‘if . . ., then . . .’, as in:
If S1, then S2.
A sentence formed this way is called an implicative
sentence, or alternatively, a conditional sentence.
S1 is called the antecedent and S2 the consequent.
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Implies (2/2)

A conditional sentence is considered to be true if either the
antecedent is false or the consequent is true (or both), even
if the antecedent and the consequent seem to have nothing
to do with each other. Otherwise it is false.
For example:
If there does not exist a set with no members, then 0 = 0.
is true!
Another example:
If 0 6= 0 then 1 6= 1.
is true!
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If and only if

The standard abbreviation for if and only if is the symbol
↔, called biimplication.
A synonym for if and only if is the invented word iff.
If and only if (iff) is used for combining sentences to form
a new sentence:
S1 iff S2. (Abbreviated form: S1 ↔ S2)

A sentence formed this way is called an biimplicative
sentence, or alternatively, a biconditional sentence.
A biconditional sentence is considered to be true if either
(1) both S1 and S2 are true, or (2) both S1 and S2 are false.
Otherwise, it is false.
S1 iff S2 can be thought of as shorthand for:
S1 implies S2, and S2 implies S1.
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It is not the case that (1/3)

The standard abbreviation for it is not the case that is the
symbol ¬, called negation.
Some authors write ∼ instead of ¬ for negation.
Negation is written before the sentence it negates:
It is not the case that S. (Abbreviated form: ¬S)

The sentence it is not the case that S is called the
negation of S, or, equivalently, the denial of S, and S is
called the scope of the negation.
A sentence formed this way is called a negative sentence.
More colloquial synonyms of it is not the case that S are S
not! and no way S.
Unsurprisingly, a negative sentence is considered to be true
if the scope is false, and false if the scope is true.
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It is not the case that (2/3)

Often, the effect of negation with it is not the case that can
be achieved by ordinary English verb negation, which
involves:

replacing the finite verb (the one that agrees with the
subject) V with ‘does not V’ if V is not an auxiliary verb
(such as has or is), or
negating V with a following not or -n’t if it is an auxiliary.

for example, these pairs of sentences are equivalent (express
the same thing):
It is not the case that 2 belongs to 1.
2 does not belong to 1.

It is not the case that 1 is empty.
1 isn’t empty.
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It is not the case that (3/3)

But: negation by it is not the case that and verb negation
cannot be counted on to produce equivalent effects if the
verb is in the scope of a quantifier (see below).
Example: these are not equivalent:
(i) It is not the case that for every x, x belongs to x.
(ii) For every x, x doesn’t belong to x.
For (i) is clearly true (for example, 0 doesn’t belong to 0).
But the truth or falsity of (ii) can’t be determined on the
basis of the assumptions about sets made in Chapter 1. (In
fact, different ways of adding further set-theoretic
assumptions resolve the issue in different ways.)
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Variables (1/2)

Very roughly speaking, Mathese variables are the
counterparts of ordinary English pronouns (but without
such distinctions as case, number, and gender).
Variables are “spelled” as upper- or lower-case roman
letters (usually italicized except in handwriting), with or
without numerical subscripts, e.g. x, y, x0, x1, X, Y, etc.
In a context where the subject matter is set theory, we
think of variables as ranging over arbitrary sets.
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Variables (2/2)

Unlike pronouns, variables are not ambiguous with respect to
what their ‘antecedents’ are. If ordinary English had variables
instead of pronouns, we could disambiguate the sentence:

A donkey kicked a mule, and then it told its mother.

as follows:

There exists x such that there exists y such that . . .

x told x’s mother
x told y’s mother.
y told x’s mother.
y told y’s mother.
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For all

Mathese ‘for all’, abbreviated by the universal quantifier
symbol ∀, forms a sentence by combining first with a
variable and then with a sentence, as in:
For all x, S (abbreviated form: ∀xS).

The variable x is said to be bound by the quantifier, and
the sentence S is called the scope of the quantifier.
Synonyms of ‘for all’ include ‘for each’, ‘for every’, and ‘for
any’.
Usually the bound variable also occurs in the scope; if it
doesn’t, then the quantification is said to be vacuous.
A sentence formed in this way is said to be universally
quantified, or simply universal.
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Restricted Universal Sentences (1/2)

As long as we are using Mathese only to talk about set
theory, we can assume that the bound variable in a
universal sentence ranges over all sets, that is, ‘for all x’ is
implicitly understood as ‘for all sets x’.
However, often we want to universally quantify not over
every set, but just over the sets that satisfy some condition
on x, S1[x]. Then we say:
For every x with S1[x], S2[x].

This is understood to be shorthand for
For every x, S1[x] implies S2[x]. (Abbreviated form:
∀x(S1[x]→ S2[x]))

A sentence of this form is called a restricted universal
sentence.
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Restricted Universal Sentences (2/2)

A restricted universal sentence ∀x(S1[x]→ S2[x]) is true
provided, for every x, either S1[x] is false or S2[x] is true.
In that case, we say that S1[x] is a sufficient condition
for S2[x], or, equivalently, that S2[x] is a necessary
condition for S1[x].
A special case of this is that a restricted universal sentence
is true provided, no matter what x is, S1[x] is false. Such a
sentence is said to be vacuously true.
For example, the sentence
For every x with x 6= x, x = 2.
is (vacuously) true.
If a universal sentence of the form
For every x, S1[x] iff S2[x]
(i.e. whose scope is a biconditional) is true, then we say
S1[x] is a necessary and sufficient condition for S2[x].
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There exists . . . such that

Mathese ‘there exists . . . such that’, abbreviated by the
existential quantifier symbol ∃, forms a sentence by
combining first with a variable and then with a sentence, as
in:
There exists x such that S (abbreviated form: ∃xS).

The variable x is said to be bound by the quantifier, and
the sentence S is called the scope of the quantifier.
Synonyms of ‘there exists . . . such that’ include ‘for some’
and ‘there is a(n) . . . such that’.
Usually the bound variable also occurs in the scope; if it
doesn’t, then the quantification is said to be vacuous.
A sentence formed in this way is said to be existentially
quantified, or simply existential.
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Restricted Existential Sentences

As long as we are using Mathese only to talk about set
theory, we can assume that the bound variable in an
existential sentence ranges over all sets, that is, ‘there
exists x’ is implicitly understood as ‘there exists a set x’.
However, often we want to existentially quantify not over
every set, but just over the sets that satisfy some condition
S1[x]. Then we say:
There exists x with S1[x], such that S2[x].

This is understood to be shorthand for
There exists x such that S1[x] and S2[x].
(Abbreviated form: ∃x(S1[x] ∧ S2[x]))
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Using Parentheses for Disambiguation

Note the use of parentheses in restricted universal or
existential formulas:

∀x(S1[x]→ S2[x])
∃x(S1[x] ∧ S2[x]))

Without the parentheses, it would be hard to be sure
whether the scope of the quantifier in the first (second)
example was whole the conditional (conjunctive) formula
or just its antecdent (first conjunct).
This is a common notational device in FOL and other
symbolic logical languages.
Both round and square parentheses can be used.
Multiple sets of parentheses can be used in the same
formula.
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Free Variables

A variable in a sentence (or formula) is called free if it is
not bound by any (universal or existential) quantifier.
A sentence (or formula) is called closed if it has no free
variables, and open otherwise.
A sentence (or formula) whose free variables are x0, . . . , xn

is often called a condition on x0, . . . , xn.
The number of free variables in a condition is called its
arity. Thus conditions might be nullary (no free variables,
i.e. a closed sentence), unary (one free variable), binary
(two free variables), ternary (three free variables), etc.

Carl Pollard Mathese



There exists unique . . . such that

In Mathese, ‘there exists unique . . . such that’ (abbreviated
form: ∃!x) combines first with a variable, then with a
sentence, as in:
There exists unique x such that S. (Abbreviated form:
∃!x S)

This is understood to be shorthand for:

∃x(S[x] ∧ ∀y(S[y]→ (y = x)))
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Defining Predicates

At the outset, the only predicates in Mathese are equals
(abbreviated =) or synonyms such as is the same as or is
identical to, and is a member of (abbreviated ∈) or
synonyms such as belongs to or is an element of.
But we can define new predicates in terms of these and
other predicates which have already been defined.
The arity of a defined predicate is the arity of the
condition that is used to define it.
Examples: we defined “x is empty” to mean ∀y(y /∈ x),
and “x is a singleton” to mean ∃!y(y ∈ x).
So is empty and is a singleton are unary predicates.
Example: We defined “x is a subset of y” (abbreviation:
x ⊆ y) to mean ∀z(z ∈ x→ z ∈ y).
So ⊆ is a binary predicate.
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Defining Names

If we can prove, for some unary condition S[s], that

∃!xS[x]

then we permit ourselves to bestow a name on the unique
set that satisfies that condition.
Example: We already gave the name ‘∅’ to the unique set x
satisfsying the condition ‘x is empty’.
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Defining Functional Names (1/3)

Often we can prove that for any set y, there exists a unique
set x satisfying some condition S[x, y].
In such cases, we permit ourselves to introduce a
functional name, a scheme which, for each y, provides a
name for the unique set x such that S[x, y].
To make an analogy with real life: obviously everybody has
a mother, so we can use the functional name y’s mom to
refer to the unique individual x such that x is a mother of
y, no matter who y is.
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Defining Functional Names (2/3)

Example: It is easy to prove that for any set y, there is a
unique set x such that y is the only member of x.
This justifies introducing the functional name
singleton(y), abbreviated {y}.
Example: Likewise, we introduce the functional name
successor(y), abbreviated s(y) which, for each set y,
names the unique set x that satisfies the binary condition
x = y ∪ {y}.
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Defining Functional Names (3/3)

This practice extends to names that depend on more than
one variable. To take anotherreal-life example, we might
introduce the functional name x’s seniority over y.
For any two individuals x and y this is defined to be the
number of days (rounded off) from x’s birthdate to y’s
birthdate (this is a negative integer if y’s birthdate
precedes x’s).
In general: if, for some positive natural number n and some
(n + 1)-ary condition S[x0, . . . xn] we can prove

∀x1 . . . ∀xn∃!x0S[x0, . . . xn]

then we can introduce a functional name name(x1, . . . , xn)
which, for each choice of values for the n variables
x1, . . . , xn provides a name for the unique set which
satisfies the condition for that choice of values.
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