
Introduction to Linear Grammar

Carl Pollard

December 1, 2011

LG Overview

• An LG for an NL is a sequent-style ND system that recursively defines a
set of ordered triples called signs, each of which is taken to represent an
expression of the NL.

• Signs are notated in the form

a : A;B; c : C

where

– a : A is a typed term of a HO theory (the pheno theory), called
the pheno term, or simply the pheno

– B is a formula of a LL (the tecto logic) called the tecto type, or
simply the tecto

– c : C is a typed term of a HO theory (the semantic theory), called
the semantic term, or simply the semantics

The Pheno Theory

• There is a basic type s (strings (of phonological words))

• The nonlogical constants are:

– e : s, which denotes the null string

– a large number of string constants which denote phenos of lexical
signs, such as it, rained, chiquita, pedro, maria, every, some, farmer,
donkey, brayed, saw, believed, that, etc.

– · : s→ s→ s, which denotes concatenation (written infix)

• We have the following nonlogical axioms (here s, t, u : s):

` ∀stu .(s · t) · u = s · (t · u)

1

` ∀s .(e · s) = s

` ∀s .(s · e) = s

These axioms say that the set of strings forms a monoid with concatenation
as the associative operation and the null string as the identity element.

The Tecto Logic

This is (implicative intuitionistic propositional) LL, with basic tecto types
(i.e. atomic formulas) such as NP, It, S, S̄, N, etc.

Note: We abbreviate the type (NP (S) (S by QP (mnemonic for ‘quan-
tifcational NP).

The Semantic Theory (1/2)

• There is a basic type e (entities), and types p (propositions) and w (worlds).

• Here we don’t commit to which of p and w is basic (Wittgenstein/Lewis
vs. Kripke/Montague).

• For convenience, we abbreviate certain types as follows:

a. p0 =def p

b. pn+1 =def e→ pn

• Nonlogical constants include the following:

a. @ : p→ w→ t (‘true at’, written infix)

b. a large number of constants which denote meanings of lexical signs,
to be given below.

The Semantic Theory (2/2)

The nonlogical axioms (‘meaning postulates’) describe relationships between
meanings, or between meanings and their extensions. For example, we could
have the following axioms about the meanings of and, every, and some respec-
tively (here the variables x, y, z have type e, P,Q have type p1 , p, q have type
p, and w has type w)

` ∀pqw .(p and q)@w ↔ (p@w ∧ q@w)

` ∀PQw .(every P Q)@w ↔ ∀x .(P x)@w → (Q x)@w

` ∀PQw .(some P Q)@w ↔ ∃x .(P x)@w ∧ (Q x)@w

2

LG Architecture

In its simplest form, an LG consists of:

• Two kinds of axioms:

– logical axioms, called traces

– nonlogical axioms, called lexical entries

• Two rule schemas:

– Modus Ponens

– Hypothetical Proof

Before considering the precise form of the axioms and rules, we need to
discuss the form of LG sequents.

LG Sequents

• A sign is called hypothetical provided its pheno and semantics are both
variables.

• An LG sequent is an ordered pair whose first component (the context) is
a finite multiset of hypothetical signs, and whose second component (the
statement) is a sign.

• The hypothetical sign occurrences in the context are called the hypothe-
ses or assumptions of the sequent.

• We require that no two hypotheses have the same pheno variable, and
that no two hypotheses have the same semantic variable.

• So the contexts are actually just finite sets.

Notational convention: we often omit the types of tecto and semantic terms
when no confusion will result.

The Trace Axiom Schema

Full form:

x : A;B; z : C ` x : A;B; z : C

Short form (when types of variables are known):

x;B; z ` x;B; z

3

Two Lexical Entries to Get Started

` it; It; ∗ (dummy pronoun it)

Recall that ∗ is the logical constant of type T!

` λs .s · rained; It (S;λo .rain

Here o is of type T, and the constant rain is of type p.

The Two LG Rule Schemas (Full Form)

• Modus Ponens

Γ ` f : A→ D;B (E; g : C → F ∆ ` a : A;B; c : C

Γ,∆ ` f a : D;E; g c : F

• Hypothetical Proof

Γ, x : A;B; z : C ` d : D;E; f : F

Γ ` λx .d : A→ D;B (E;λz .f : C → F

The Two LG Rule Schemata (Short Form)

These forms are used when the types of the terms are known.

• Modus Ponens

Γ ` f ;B (E; g ∆ ` a;B; c

Γ,∆ ` f a;E; g c

• Hypothetical Proof

Γ, x;B; z ` d;E; f

Γ ` λx .d;B (E;λz .f

An LG Proof

Here both axiom instances are lexical entries, and the only rule instance is
Modus Ponens.

Unsimplified:

` λs .s · rained; It (S;λo .rain ` it; It; ∗
` (λs .s · rained) it; S; (λo .rain) ∗

Simplified:

` λs .s · rained; It (S;λo .rain ` it; It; ∗
` it · rained; S; rain

We use TLC term equivalences and meaning postulates to simplify terms in
intermediate conclusions before using them as premisses for later rule instances.

4

More Nonlogical Constants for Lexical Semantics

` p : e (Pedro)

` c : e (Chiquita)

` m : e (Maria)

` donkey : p1

` farmer : p1

` bray : p1

` see : p2

` give : p3

` believe : e→ p→ p

` persuade : e→ e→ p→ p

` every : p1 → p1 → p

` some : p1 → p1 → p

More Lexical Entries

` pedro; NP; p

` chiqita; NP; c

` maria; NP;m

` donkey; N; donkey

` farmer; N; farmer

` λs .s · brayed; NP (S; bray

` λst .s · saw · t; NP (NP (S; see

` λst .s · gave · t; NP (NP (NP (S; give

` λst .s · believed · t; NP (S̄ (S; believe

` λstu .s · persuaded · t · u; NP (NP (S̄ (S; believe

Note: The finite verb entries are written to combine the verb first with the
subject, then with the complements (the reverse of how things are traditionally
done!)

Still More Lexical Entries

` λs .that · s; S (S̄;λp .p (complementizer that)

` λfs .s · that · (f e); (NP (S) (N (N;λPQx .(Q x) and (P x) (relativizer
that)

` λsf .f (every · s); N (QP; every

` λsf .f (some · s); N (QP; some

5

Another LG Proof

` λs .s · brayed; NP (S; bray ` chiqita; NP; c

` chiqita · brayed; S; bray c

Yet Another LG Proof

` λst .s · saw · t; NP (NP (S; see4 ` pedro; NP; p

λt .pedro · saw · t; NP (S; see p ` chiqita; NP; c

pedro · saw · chiquita; S; see p c

Note that we had to shrink this to tiny to fit it on the slide! This approach
of course has its limits.

The Same Proof with Semantics Omitted

Alternatively, if we are not concerned about semantics, we can sometimes
overcome the space problem by omitting the semantics components of the signs:

` λst .s · saw · t; NP (NP (S ` pedro; NP

λt .pedro · saw · t; NP (S ` chiqita; NP

pedro · saw · chiquita; S

Of course this approach also has its limits.

An Oversized LG Proof

` λst .s · believed · t; NP (S̄ (S ` pedro; NP

` λt .pedro · believed · t; S̄ (S

` λs .that · s; S (S̄

` λs .s · brayed; NP (S ` chiqita; NP

` chiquita · brayed; S

` that · chiquita · brayed; S̄

` pedro · believed · that · chiquita · brayed; S

Another Solution to the Space Problem
[1]:

` λst .s · believed · t; NP (S̄ (S; believe ` pedro; NP; p

` λt .pedro · believed · t; S̄ (S; believe p

[2]:

` λs .that · s; S (S̄;λp .p

` λs .s · brayed; NP (S; bray ` chiqita; NP; c

` chiquita · brayed; S; bray c

` that · chiquita · brayed; S̄; bray c

[1] [2]

` pedro · believed · that · chiquita · brayed; S; believe p (bray c)

6

