
Introduction to Formal Languages

Carl Pollard

Department of Linguistics
Ohio State University

October 27, 2011

Carl Pollard Introduction to Formal Languages

Review of Basic Concepts

The members of An are called A-strings of length n.
For any n ∈ ω, there’s a bijection from An to A(n) mapping
each A-string of length n to an n-tuple of elements of A.
A∗ =def

⋃
i∈ω Ai is the set of all A-strings.

For nonempty finite A:

A∗ is countably infinite
The set ℘(A∗) of A-languages (i.e. sets of A-strings) is
nondenumerable (in fact, equinumerous with ℘(ω)).

Carl Pollard Introduction to Formal Languages

The Monoid of A-Strings

For any set A, A∗ forms a monoid with

_ (concatenation) as the associative operation
εA (the null A-string) as the identity for _.

Here if f ∈ Am and g ∈ An, f _ g ∈ Am+n is given by

(f _ g)(i) = f(i) for all i < m; and
(f _ g)(m+ i) = g(i) for all i < n.

Note 1: Usually concatenation is expressed without the “_”,
by mere juxtaposition; e.g. fg for f _ g.
Note 2: Because concatenation is an associative operation, we
can write simply fgh instead of f(gh) or (fg)h.

Carl Pollard Introduction to Formal Languages

The Ordered Monoid of A-Languages

For any set A, ℘(A∗) forms an ordered monoid with

A-languages (i.e. sets of A-strings) as the elements
subset inclusion as the order
language concatenation, written •, as the binary
operation, where for any A-languages L and M , L •M is
the set of all strings of the form u _ v where u ∈ L and
v ∈M
1A = {εA} as the identity for •.

Carl Pollard Introduction to Formal Languages

One Way to Define a Language Recursively

1. Start with:

a. a set L0 of A-strings (the ‘lexicon’) which you know you
want in the language you wish to define, and

b. a unary operation R (the ‘rules’) on A-languages.

2. Then define L to be
⋃

n∈ω Ln, where where for each k ∈ ω,
Lk+1 = F (Lk).

3. This makes sense because of RT with X = ℘(A∗), x = L0,
and F = R.

Carl Pollard Introduction to Formal Languages

Example: the Mirror Image Language (1/2)

Intuitively Mir(A) is the language consisting of all strings
whose “second half is the reverse of its first half”.
Using a popular informal style of recursive definition, we
‘define’ the language Mir(A) as follows:

1. ε ∈ Mir(A);
2. If x ∈ Mir(A) and a ∈ A, then axa ∈ Mir(A);
3. Nothing else is in Mir(A).

Carl Pollard Introduction to Formal Languages

Example: the Mirror Image Language (2/2)

Formally, this definition is justified by RT with

X = ℘(A∗)
x = 1A

F is the function that maps any A-language S to

F (S) = {y ∈ A∗ | ∃a∃x[(a ∈ A) ∧ (x ∈ S) ∧ (y = axa)]}

RT then guarantees the existence of a function
h : ω → ℘(A∗) such that:

h(0) = {ε}
for every n ∈ ω, h(n+ 1) = F (h(n)).

Finally, we define

Mir(A) =def
⋃

n∈ω h(n).

Note that h(n) is the set of all mirror image strings of
length 2n.

Carl Pollard Introduction to Formal Languages

Some Teeny Languages

For any a ∈ A, a is the singleton A-language whose only
member is the string of length one a.
1A is the singleton language whose only member is the null
A-string ε.
∅ as always is just the empty set, but for any A we can also
think of this as the A-language which contains no strings!
An alternative notation for this language is 0A.

Carl Pollard Introduction to Formal Languages

New Languages from Old (1/3)

We define some operations on ℘(A∗). In these definitions L and
M range over A-languages.

The concatenation of L and M , written L •M , is the set
of all strings of the form u _ v where u ∈ L and v ∈M .
The right residual of L by M , written L/M , is the set of
all strings u such that u _ v ∈ L for every v ∈M .
The left residual of L by M , written M\L, is the set of
all strings u such that v _ u ∈ L for every v ∈M .

Carl Pollard Introduction to Formal Languages

New Languages from Old (2/3)

The Kleene closure of L, written kl(L), has the following
informal recursive definition:

1. (base clause) ε ∈ kl(L)

2. (recursion clause) if u ∈ L and v ∈ kl(L), then uv ∈ kl(L)

3. nothing else is in kl(L).

Intuitively: the members of kl(L) are the strings formed by
concatenating zero or more strings of L.

Carl Pollard Introduction to Formal Languages

New Languages from Old (3/3)

The positive Kleene closure of L, written kl+(L), has the
following informal recursive definition:

1. (base clause) If u ∈ L, then u ∈ kl+(L)

2. (recursion clause) if u ∈ L and v ∈ kl+(L), then
uv ∈ kl+(L)

3. nothing else is in kl+(L).

Intuitively: the members of kl+(L) are the strings formed
by concatenating one or more strings of L.

Carl Pollard Introduction to Formal Languages

The Set Reg(A) of Regular A-Languages

The following (informally) recursively defined set of languages is
important in computational linguistics applications:

1. (Base clauses)

a. For each a ∈ A, a ∈ Reg(A)
b. 0A ∈ Reg(A)
c. 1A ∈ Reg(A)

2. (Recursion clauses)

a. for each L ∈ Reg(A), kl(L) ∈ Reg(A)
b. for each L,M ∈ Reg(A), L ∪M ∈ Reg(A)
c. for each L,M ∈ Reg(A), L •M ∈ Reg(A)

3. nothing else is in Reg(A).

Carl Pollard Introduction to Formal Languages

Context-Free Grammars (CFGs)

A CFG is an ordered quadruple 〈T,N,D, P 〉 where

T is a finite set called the terminals;
N is a finite set called the nonterminals

D is a finite subset of N × T called the lexical entries;
P is a finite subset of N ×N+ called the phrase
structure rules (PSRs).

Carl Pollard Introduction to Formal Languages

CFG Notation

‘A→ t ’ means 〈A, t〉 ∈ D.
‘A→ A0 . . . An−1’ means 〈A,A0 . . . An−1〉 ∈ P .
‘A→ {s0, . . . sn−1}’ abbreviates A→ si (i < n).

Carl Pollard Introduction to Formal Languages

A ‘Toy’ CFG for English (1/2)

T = {Fido, Felix, Mary, barked, bit, gave, believed,
heard, the, cat, dog, yesterday}

N = {S, NP, VP, TV, DTV, SV, Det, N, Adv}

D consist of the following lexical entries:

NP→ {Fido, Felix, Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ {believed, heard}
Det→ the

N→ {cat, dog}
Adv→ yesterday

Carl Pollard Introduction to Formal Languages

A ‘Toy’ CFG for English (2/2)

P consists of the following PSRs:

S→ NP VP
VP→ {TV NP, DTV NP NP, SV S, VP Adv}
NP→ Det N

Carl Pollard Introduction to Formal Languages

Context-Free Languages (CFLs)

Given a CFG 〈T,N,D, P 〉, we can define a function C from
N to T -languages (we write CA for C(A)) as described
below.
The CA are called the syntactic categories of the CFG
(and so a nointerminal can be thought of as a name of a
syntactic category).
A language is called context free if it is a syntactic
category of some CFG.

Carl Pollard Introduction to Formal Languages

Historical Notes

Up until the mid 1980’s an open research questions was
whether NLs (considered as sets of word strings) were
context-free languages (CFLs).
Chomsky maintained they were not, and his invention of
transformational grammar (TG) was motivated in large
part by the perceived need to go beyond the expressive
power of CFGs.
Gazdar and Pullum (early 1980’s) refuted all published
arguments that NLs could not be CFLs.
Together with Klein and Sag, they developed a context-free
framework, generalized phrase structure grammar (GPSG),
for syntactic theory.
But in 1985, Shieber published a paper arguing that Swiss
German cannot be a CFL.
Shieber’s argument is still generally accepted today.

Carl Pollard Introduction to Formal Languages

Defining the Syntactic Categories of a CFG (1/2)

We will recursively define a function h : ω → ℘(T ∗)N .
Intuitively, for each nonterminal A, the sets h(n)(A) are
successively larger approximations of CA.
Then CA is defined to be CA =def

⋃
n∈ω h(n)(A).

Carl Pollard Introduction to Formal Languages

Defining the Syntactic Categories of a CFG (2/2)

We define h using the Recursion Theorem (RT) with X, x,
F set as follows:

X = ℘(T ∗)N

x is the function that maps each A ∈ N to the set of
length-one strings t such that A→ t.
F is the function from X to X that maps a function
L : N → ℘(T ∗) to the function that maps each nonterminal
A to the union of L(A) with the set of all strings that can
be obtained by applying a PSR A→ A0 . . . An−1 to strings
s0, . . . , sn−1, where, for each i < n, si belongs to L(Ai).
I.e. F (L)(A) =
L(A) ∪

⋃
{L(A0) • . . . • L(An−1) | A→ A0 . . . An−1}.

Given these values of X, x, and F , the RT guarantees the
existence of a unique function h from ω to functions from N
to ℘(T ∗).

Carl Pollard Introduction to Formal Languages

Proving that a String Belongs to a Category (1/2)

With the CA formally defined as above, the following two
clauses amount to an (informal) simultaneous recursive
definition of the syntactic categories:

(Base Clause) If A→ t, then t ∈ CA.
(Recursion Clause) If A→ A0 . . . An−1 and for each i < n,
si ∈ CAi

, then s0 . . . sn−1 ∈ CA.

This in turn provides a simple-minded way to prove that a
string belongs to a syntactic category (if in fact it does!).

Carl Pollard Introduction to Formal Languages

Proving that a String Belongs to a Category (2/2)

By way of illustration, consider the string
s = Mary heard Fido bit Felix yesterday.
We can (and will) prove that s ∈ CS.
But most syntacticians would say that s corresponds to two
different sentences, one roughly paraphrasable as Mary
heard yesterday that Fido bit Felix and another roughly
paraphrasable as Mary heard that yesterday, Fido bit Felix.
Of course, these two sentences mean different things; but
more relevant for our present purposes is that we can also
characterize the difference between the two sentences
purely in terms of two distinct ways of proving that s ∈ CS.

Carl Pollard Introduction to Formal Languages

First Proof

From the lexicon and the base clause, we know that Mary,
Fido, Felix ∈ CNP, heard ∈ CSV, bit ∈ CTV, and
yesterday ∈ CAdv.
Then, by repeated applications of the recursion clause, it
follows that:

1. since bit ∈ CTV and Felix ∈ CNP, bit Felix ∈ CVP;
2. since bit Felix ∈ CVP and yesterday ∈ CAdv, bit Felix

yesterday ∈ CVP;
3. since Fido ∈ CNP and bit Felix yesterday ∈ CVP, Fido

bit Felix yesterday ∈ CS;
4. since heard ∈ CSV and Fido bit Felix yesterday ∈ CS,

heard Fido bit Felix yesterday ∈ CPVP; and finally,
5. since Mary ∈ CNP and heard Fido bit Felix yesterday
∈ CVP, Mary heard Fido bit Felix yesterday ∈ CS.

Carl Pollard Introduction to Formal Languages

Second Proof

Same as for first proof.
Then, by repeated applications of the recursion clause, it
follows that:

1. since Fido ∈ CNP and bit Felix ∈ CVP, Fido bit Felix
∈ CS;

2. since heard ∈ CSV and Fido bit Felix ∈ CS, heard
Fido bit Felix ∈ CVP;

3. since heard Fido bit Felix ∈ CVP and yesterday
∈ CAdv, heard Fido bit Felix yesterday ∈ CVP; and
finally,

4. since Mary ∈ CNP and heard Fido bit Felix yesterday
∈ CVP, Mary heard Fido bit Felix yesterday ∈ CS.

Carl Pollard Introduction to Formal Languages

Proofs vs. Trees (1/4)

The analysis of NL syntax in terms of proofs is
characteristic of the family of theoretical approaches
collectively known as categorial grammar, initiated by
Lambek (1958).
But the most widely practiced approaches (sometimes
referred to as mainstream generative grammar)
analyze NL syntax in terms of trees, which will be
introduced presently.
For now, we just note that the two proofs above would
correspond in a more ‘mainstream’ syntactic approach to
the two trees represented informally by diagrams on the
next two slides.

Carl Pollard Introduction to Formal Languages

Tree corresponding to first proof (2/4)

S

VP

S

VP

Adv

yesterday

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Carl Pollard Introduction to Formal Languages

Tree corresponding to second proof (3/4)

S

VP

Adv

yesterday

VP

S

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Carl Pollard Introduction to Formal Languages

Proofs vs. Trees (4/4)

Intuitively, it seems clear that there is a close relationship
between the proof-based approach and the tree-based one,
but the nature of the relationship cannot be made precise
till we know more about trees and about proofs.

Carl Pollard Introduction to Formal Languages

