
Problem Set Six: Formal Languages

Carl Pollard
The Ohio State University

Linguistics 680

October 31, 2011

These problems are due Tue. Nov. 8.

Problem 1

Suppose A is finite and nonempty. Give an informal but persuasive argument
that A∗ is countably infinite. [Hints: (a) this means showing there is a
bijection from ω to A∗. So what you are asked to do is to describe informally
a way of listing all the A-strings without repetitions. It is a lot of work to
make this technically precise, but you are not asked to do that. (b) Look
at a (paper) phone directory. If you’re uncertain what that is, ask your
parents.]

Problem 2

Suppose A is finite and nonempty. Prove that the set of A-languages is
nondenumerable. You can use any of the theorems or corollaries stated
in Chapter Five or Problem Set Five, even if their proofs were not given.
Also, you can take the countable infinitude of A∗ to have been established
in Problem 1.

Problem 3

Given an A-language L, use RT to formally define kl(L). More specifically,
tell how X, x, and F in the statement of RT must be instantiated so that
the function h whose existence is guaranteed by RT has the property that
kl(L) is the union of all the languages h(n), where h(0) is x and for each
k ∈ ω, h(k + 1) is F (h(k)). [Hints: (a) The base clause in the informal
definition should tell you what x has to be, and the recursion clause should

1



tell you what F has to be. (b) Another informal, but perhaps more helpful
way to define kl(L) is as the union of all the languages kln(L), where

1. kl0(L) = 1A; and

2. klk+1(L) = L • klk(L) for all k ∈ ω.]

Problem 4

A logic consists of (1) a formal language whose members are called formu-
las; (2) a proof theory, i.e. a purely syntactic way of defining a relation
of provability between collections of formulas and formulas (this will be
made more precise in the weeks to come); and (3) a semantics, i.e. a way
of assigning meanings to formulas that ‘works in harmony’ with the proof
theory (this too will be made precise). Here we are concerned only with
PL, the formal language associated with one particularly simple logic called
propositional logic.

[Note: In propositional logic, the formulas can be thought of as (ex-
tremely) crude representations of natural language sentences; the proof the-
ory as representing our ability to reason to conclusions from premisses based
only on the forms of sentences (disregarding their meanings); and the mean-
ing assigned by the semantics to a sentence as representing the proposition
that the sentence expresses. However, in principle you don’t need to know
about any of this background to do the problem.]

Informally, the language PL is usually recursively defined in the following
way. We start by assuming we have a set Let of things called ‘propositional
letters’. To keep things simple, let’s suppose Let has three members, called
X, Y , and Z. (Intuitively, the propositional letters are thought of as stand-
ing for arbitrary atomic natural language sentences, where by ‘atomic’ we
mean sentences which do not themselves contain ‘logic words’ such as and,
or, implies, and not, or their counterparts in non-English languages). Then
the informal recursive definition goes like this:

1. (The length-one string corresponding to) each propositional letter is a
formula;

2. (The length-one strings corresponding to) > and ⊥ are formulas;

3. if P and Q are formulas, so are (∼ P ), (P ∧Q), (P ∨Q), (P → Q), and
(P ↔ Q); and

4. nothing else is a formula.

2



It’s important to be aware that what we are talking about here are formulas—
which are strings of ‘symbols’ (propositional letters, parentheses,>, ⊥, ∼,
∧, ∨, →, and ↔), and not the propositions (whatever they are) that the
formulas express. For example, in the informal definition, when we write
“(∼ P )” we mean the string obtained by stringing together the following
symbols in the specified order: (1) the left-paren symbol (; (2) the negation
symbol ∼; (3) the symbols in the string P ; and finally (4) the right paren
symbol ). In short, PL is an A-language where A is a set with 12 distinct
members X, Y , Z, ∼, ∧, ∨, →, ↔, >, ⊥, (, and ). The members of A are
called ‘symbols’, but it doesn’t really matter what they are.

The problem is to define PL formally as an A-language, using RT. As you
should realize by now, this means telling how X, x, and F in the statement
of RT should be instantiated. (Careful: ‘X’ is now being used in two distinct
ways!)

[Hints: (a) clauses (1) and (2) are the base clauses and clause (3) is the
recursion clauses. (b) After you think you have the right definition, check
to make sure it makes ((X ∧ Y )∧Z) a formula. If it doesn’t, you’ll need to
revise your definition.]

Problem 5

In autosegmental-metrical (AM) theory, the phonological structure of the
intonation of an English expression is represented by a string of tones.1

The question of how such a string is realized as a “tune” (pitch contour) is
a matter of phonetics, which doesn’t concern us here.

Simplifying slightly, in one version of this theory, the set A of tones has
ten members:

A = {H∗,L∗,H∗ + L,L∗ + H,H + L∗,L + H∗,H−,L−,H%,L%}

Note that each of these ten elements is to be thought of as a single member
of the tonal “alphabet”, no matter how many symbols it is written with. Of
these, the first six are called pitch accents (PAs)2, the next two are called

1The sense of the term ‘tone’ here is “minimal unit of intonational phonology”. This is
distinct from the notion of tone in the sense of pitch levels or contours within words that
function as part of the word phonology and distinguish words from each other, e.g. Man-
darin ma [high level] ‘mother’ vs. ma [high-falling-to-low] ‘scold’.

2The asterisks in the notation for the pitch accents have nothing to do with the asterisk
of formal language theory. Instead, they designate a tone (or part of a tone) that has to be
associated with a syllable that is specified by the word containing it as capable of bearing
stress.

3



intermediate-phrase final boundary tones (IFBTs); and the last two
are called (intonation phrase) final boundary tones (FBTs).

Certain sets of tone strings are defined informally as follows:

1. an intermediate phrase consists of one or more PAs followed by an
IFBT.

2. an intonation phrase consists of one or more intermediate phrases,
followed by an FBT.

3. an utterance consists of one or more intonation phrases.

The problem is to formally define each of the following as regular languages
A-languages:

1. the language IP of intermediate phrases;

2. the language IN of intonation phrases; and

3. the language UT of utterances.

You do not need to prove anything, you do not need to use RT, and you do
not need to use PMI. All you need to do is express each of the these three
languages in terms of (1) the ten tones; the underscore (that maps each
tone to the singleton language whose only string is the langth-one string of
that tone), the empty language 0A, the singleton language 1A whose only
member is the null string ε; and the operations on languages of union (∪),
concatenation (•), Kleene closure (kl), and positive Kleene closure (kl+).
Note: the fact that this is possible means that these languages are all regular.
[Hint: You will not necessarily need to use all the available operations.]

Problem 6

Let T be a finite set, and recall that T -language L is said to be context-
free if there exists a CFG 〈T,N,D, P 〉 such that L is one of its syntactic
categories, i.e. L = CA for some A ∈ N .

Prove that L = Mir(2) is context-free by presenting a CFG which has
L as one of its syntactic categories.

Problem 7

Same problem as the preceding, but with L = PL, the language of proposi-
tional logic with three propositional letters as in Problem 4.

4


