Problem Set Three: Relations

Carl Pollard The Ohio State University

October 12, 2011

Problem 1

Let A be any set. In this problem "relation" means "binary relation on A." Prove that:

- a. The intersection of two transitive relations is a transitive relation.
- b. The intersection of two symmetric relations is a symmetric relation,
- c. The intersection of two reflexive relations is a reflexive relation.
- d. The intersection of two equivalence relations is an equivalence relation.

Problem 2

Background. For any binary relation R on a set A, the **symmetric interior** of R, written $\mathbf{Sym}(R)$, is defined to be the relation $R \cap R^{-1}$ on A. For example, if R is the relation that holds between a pair of people when the first respects the other, then $\mathbf{Sym}(R)$ is the relation of mutual respect. Another example: if R is the entailment relation on propositions, then the symmetric interior is truth-conditional equivalence.

Prove that the symmetric interior of a preorder is an equivalence relation.

Problem 3

Background. If \sqsubseteq is a preorder, then $\mathbf{Sym}(\sqsubseteq)$ is called the equivalence relation **induced by** \sqsubseteq and written \equiv_{\sqsubseteq} , or just \equiv if it's clear from the context which preorder is under discussion. If $a \equiv b$, then we say a and b are **tied** with respect to the preorder \sqsubseteq .

Also, for any relation R, there is a corresponding asymmetric relation called the **asymmetric interior** of R, written $\mathbf{Asym}(R)$ and defined to be $R \setminus R^{-1}$. For example, the asymmetric interior of the love relation on people is the unrequited love relation.

In a context where there is a fixed preorder \sqsubseteq , recall that $a \sqsubseteq b$ is usually read "a is less than or equivalent to b"; if in addition \sqsubseteq is antisymmetric (i.e. an order), then it is read "a is less than or equal to b" because the only thing tied with a is a itself.

In a context where there is a fixed preorder \sqsubseteq , $\mathbf{Asym}(\sqsubseteq)$ is abbreviated \sqsubset , read "strictly less than". [Confession: the symbol I really wanted here was the squared-off version of \subsetneq , but I couldn't figure out how to produce it!] Careful: if $a \sqsubset b$, then not only are a and b not equal, but also they are not equivalent.

If \sqsubseteq is a preorder, then we say c is **strictly between** a and b to mean that $a \sqsubset c$ and $c \sqsubset b$.

Given a preorder \sqsubseteq on a set A and $a, b \in A$, we say a is covered by b if $a \sqsubset b$ and there is nothing strictly between them. The relation consisting of all such pairs $\langle a, b \rangle$ is called the covering relation induced by \sqsubseteq and written \prec_{\sqsubset} , or just \prec when no confusion can arise.

- a. Prove that \prec is an intransitive relation.
- b. Let \leq be the usual order on ω . What is the induced covering relation? [Hint: it is a function that we have already encountered.]
- c. Remember from grade school (or maybe middle school?) that any positive rational number less than 1 can be represented in a unique way by a fraction m/n where both m and n are nonzero natural numbers, m < n, and m and n have no common factor (other than 1), i.e. the fraction is 'reduced to lowest terms'. In this context, let \leq represent the usual order on the set of such numbers (just take it on faith that there *is* such a set). What is the induced covering relation on \leq ?
- d. Let U be a set, \subseteq_U the subset inclusion relation on $\wp(U)$, and \prec the corresponding covering relation. In simple English, how do you tell by looking at two subsets A and B of U whether $A \prec B$?

Problem 4

Background. For any binary relation R on A, the **reflexive closure** of R, written $\operatorname{Refl}(R)$, is defined to be the relation $R \cup \operatorname{id}_A$. Clearly if R is transitive then $\operatorname{Refl}(R)$ is a preorder.

Now suppose P is the set of all people who have ever lived (i.e. a set that we are using to *represent* the collection of people who have ever lived) and let

D be a transitive asymmetric relation on P used to represent the relation that holds between a pair of people if the first is a descendant of the second. Let $\sqsubseteq = _{\text{def}} \operatorname{\mathbf{Refl}}(D)$, and \prec the corresponding covering relation. To keep things simple, assume (counterfactually, of course) that (1) every person has exactly two parents, and (2) any two people with a parent in common have both of their parents in common.

- a. In plain English, why did we require that D be transitive and asymmetric? (That is, what facts of life are modelled by imposing these conditions on D?)
- b. Write a formula (sentence made up of Mathese symbols) expressing the condition (1). [Hint: it is much easier to express this in terms of \prec than in terms of D!]
- c. Write a formula expressing the condition (2). [Same hint as immediately above.]
- d. Suppose *a* and *b* are two people. Write a formula that means that *a* and *b* are cousins. (To eliminate any variation in or unclarity about the meaning of English kin terms, assume that a person's cousins are the children of his or her parents' siblings, not counting ones with whom he or she has a parent in common).

Translate the following formulas into plain English, using familiar kinship terms.

e. $a \prec b$ f. $b \prec^{-1} a$ g. $a \prec \circ \prec b$ h. $a \ (\prec \circ \prec^{-1}) \setminus \operatorname{id}_P b$ i. $a \ (\prec^{-1} \circ \prec) \setminus \operatorname{id}_P b$