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Introduction

Even though linguistics departments are, by tradition, usually located in
colleges of humanities, linguistics itself aspires to be—and at its best, man-
ages to be—a science. That is, linguists aim to do much the same thing that
scientists in general (such as physicists, geologists, biologists, and chemists)
do: to make observations of certain kinds of natural phenomena, and then
state empirical hypotheses about them. The only difference is that the
phenomena linguists study have to do not with swinging pendulums, tec-
tonic plates, zebra mussels, or hydrocarbons, but with human language:
how it sounds, what it means, how it varies across space and time, how it is
learned, used, and understood.

Roughly speaking, an empirical hypothesis is just a well-informed and
careful guess about what certain kinds of events will be like, based on past
observations of events of that kind. To put it a bit more precisely, an
empirical hypothesis is a general statement about a class of phenomena that
has the following properties: (1) It is clear and unambiguous, that is, there
is no question what it asserts (how things would have to be in order for
it to be true). (2) It is general, in the sense that even though it is based
only on a finite number of observations, it makes predictions about how
other phenomena of the same kind will unfold. (3) There is a way to tell
whether or not a given observation of the kind of phenomenon in question
is consistent with it, so that if the hypothesis is wrong, there is some hope
of finding out that it is wrong. This third property of empirical hypotheses
is called falsifiability. Especially valued are empirical hypotheses with the
additional property of being illuminating, in the sense of being sufficiently
simple and comprehensible to help us grasp some of the hidden orderliness
or systematicity in seemingly random or chaotic phenomena.

A linguistic theory is just a set of empirical hypotheses about a class of
natural-language phenomena. Linguists often refer to the process of formu-
lating empirical hypotheses about human languages as ‘capturing linguistic
generalizations’. This is just a fancy name for linguistic theorizing. The
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2 Introduction

purpose of this book is to introduce some techniques for doing just that.
The techniques introduced in this book are drawn from areas of mathe-

matics (such as set theory, logic, algebra, and formal language theory) that
are usually described as discrete, as opposed to continuous (such as cal-
culus, differential equations, Fourier analysis, or probability). The natural
numbers are discrete; the real numbers are continuous. The subdisciplines
of linguistics that most readily lend themselves to analysis by discrete meth-
ods include (but are not limited to) the following: (1) morphology (how
words are built up from their meaningful subparts); (2) syntax (how words
combine into successively larger phrases, including sentences); and (3) se-
mantics (how linguistic expressions manage to refer to things in the world
and express propositions about them, and how it is that some propositions
follow from (or are entailed by) other propositions). There are also parts
of phonology (how human languages structure spoken sounds) and com-
putational linguistics (the analysis and manipulation of human language
using computational concepts or computer programs) that yield to such
methods. But other linguistic disciplines, such as phonetics, psycholinguis-
tics, sociolinguistics, and historical linguistics in general call for continuous
methods. Interestingly, many of the discrete mathematical techniques that
come into play in the analysis of human language are the same ones used in
analyzing the artifical languages employed in logic and computer science.

This is an applied mathematics book, not a linguistics book, and so the
emphasis is primarily on the mathematical concepts and techniques them-
selves, not on the phenomena to which they are applied. In fact, most of
these are of inherent interest independent of the linguistic applications, and
it is entirely possible to master them without knowing or caring about lin-
guistics at all! But the book is written primarily with the needs of linguistics
students in mind.



Chapter 1

Sets

1.1 Introduction

Scientific theories usually do not directly describe the natural phenomena
under investigation, but rather a mathematical idealization of them that
abstracts away from various complicating factors. For example, a theory
about how the earth, the sun, and the moon move under mutual gravitation
might ignore such complications as the sizes of the three bodies, friction
arising from the presence of interstellar dust, the gravitational force exerted
by other planets and stars, or relativistic effects that become significant
only as the velocities of the bodies in question approach the speed of light.
In the mathematical idealization, the time might be represented by a real
number; the mass of each of the three bodies by a positive real number; its
location in space (or more precisely the location of its center of gravity) at
a particular time by three real numbers (the x, y, and z coordinates relative
to a coordinate system); its velocity at a particular time by three more real
numbers; the state of the three-body system at a given time (real number) t
by the 18 real numbers that specify the locations and velocities of the three
bodies at time t; and the evolution of the system over time by 18 functions
that give the value of each of these 18 parameters at each time t. And the
theory itself is a mathematical specification of which evolutions (‘paths’)
through 18-dimensional Euclidean space) are possible. Armed with such a
theory, we can predict, given the state of the system at a given time t0 ,
what state it will be in at any future time t1 .

Linguistic theories make predictions not about celestial bodies, but ra-
ther about natural languages, for example: how their words can sound; how
their words can be combined into phrases; what meanings they can express;
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4 Sets

which natural-language arguments are judged valid; or how the meanings of
sentences can be related to the meanings of the words they contain. As it
turns out, the kinds of mathematical entities that have proven to be useful
for representing such things (words, phrases, sentences, their meanings, valid
arguments, etc.) are not real numbers or real-valued functions, but rather
discrete (roughly, non-continuous) things such as natural numbers, strings,
trees, algebras, formal languages, and proof systems. In linguistics these
mathematical idealizations are often called representations or models of
the phenomena in question. In this book the first of these terms will be pre-
ferred, to avoid confusion with a different, technical, use of the term “model”
(in the sense of an interpretation of a logical theory) to be introduced in
later chapters. For example, phrases (roughly speaking, multi-word expres-
sions, including sentences) are often represented as (mathematical) trees;
phonemes (roughly, minimal units of linguistic sound) as (mathematical)
graphs of a certain kind (feature structures); the sequences of sounds that
make up (the phonology of) words as (mathematical) strings of (representa-
tions of) phonemes; and linguistic meanings as (mathematical) functions of
various kinds. (Note that it is typical for technical mathematical terms, such
as tree, string, and function, to have other, nonmathematical meanings!)

In order to have a clear understanding of what these different kinds of
mathematical entities are and why they are able to serve as linguistic repre-
sentations, we will start out with an overview of set theory. Sets are basic
mathematical entities whose existence is taken for granted by most math-
ematicians, and set theory begins with certain assumptions about them.
Set theory is the workspace that most mathematicians work in; but more
importantly for us, it is where the idealized representation of natural phe-
nomena by linguists and other scientists is carried out. That is, sets are
used to construct the represesentations of natural-language phenomena that
linguistic theories talk about. In fact, all the kinds of linguistic representa-
tions mentioned above (trees, graphs, strings, and functions) are themselves
sets.

1.2 Sets and Membership

We assume that there exist things which we call sets, and that there is a
relationship, called membership, which either does or does not hold of any
two sets. That is, if A is a set and B is a set, then either A is a member of
B (written A ∈ B) or A is not a member of B (written A /∈ B). There are
many ways to say this. The members of a set are also called its elements,
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and instead of saying A is a member of B, we often say it belongs to B,
or is in B, or is contained in B. Intuitively, sets can be thought of as
something like collections, where the members are the things collected, or
as invisible baskets, with the members being the things in the baskets. But
set theory will never tell us what sets are; they are basic and cannot be
reduced to, or explained in terms of, more basic things that are not sets.
That is, they are the unanalyzed primitives of set theory.

We will make certain assumptions about how membership works based
on these intuitions, and then try to ascertain what follows from them. These
assumptions themselves, together with the facts that follow from them, con-
stitute set theory. To be slightly more precise, they are a set theory, since
some assumptions about how sets should work are controversial. In this
chapter, we will make some of the most generally accepted of these assump-
tions explicit and consider some of their consequences. (In due course we
will also consider some of the more controversial assumptions about how
sets work.)

For the time being, we will state our assumptions about sets in English,
and conduct our reasoning about what follows from these assumptions using
intuitively valid English arguments called informal proofs. Later on we
will see that it is possible to formalize the assumptions of set theory with
the help of specialized symbolic systems (formal logics, such as predicate
logic). In that case the formalized counterparts of the assumptions are
called axioms; the additional formulas that follow from them are called
theorems; and the formalized counterparts of the English arguments we
make to justify these theorems are called formal proofs.

In fact, informal (but precise) natural-language reasoning is the norm
amomg mathematicians and natural scientists. Usually they don’t bother
to formalize proofs unless they are studying proofs as mathematical objects
in their own right. Later we will have occasion to do just that, for the
(perhaps surprising) reason that linguistic expressions and their meanings
can themselves be thought of as proofs in certain kinds of logical systems.

In ascertaining what follows from the assumptions we will make about
sets and membership, the reasoning we use will be pretty much the same
kind of reasoning we use when we draw conclusions from assumptions about
ordinary things, e.g. kitchen appliances, furniture, people, etc. (There are,
however, some ways of arguing and ways of expressing arguments that are
typical of mathematical discourse, which we will look at more closely in the
following chapter.) In practice, mathematics consists of more or less ordinary
reasoning about not-so-ordinary things. The upshot, seemingly paradoxical,
is that so-called formal linguistics is mostly done within informal set theory.
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The resolution of the apparent paradox is that even informal set theory is
more precise and explicit than linguistics that uses no set theory at all.

Now we’re ready to start introducing our basic assumptions about sets,
and considering some of their consequences.

1.3 Basic Assumptions about Sets

We are already assuming that there are sets, and that if A and B are sets,
then either A ∈ B or A /∈ B. But to be able to do anything with sets, we
need to make some assumptions about how they work. The assumptions
we make in this chapter are the ones that are generally considered the most
basic, intuitively plausible, and uncontroversial. Later we will add a few
more (but not many more), including some that not all mathematicians are
entirely comfortable with. We give each assumption a name, to make it easy
to refer to.

Assumption 1 (Extensionality). If A and B have the same members, then
they are the same set (written A = B).

Note that in stating this assumption, we did not bother to mention that A
and B are sets. That is because we’ve already established that we are now
doing (informal) set theory, and in set theory, the only things being talked
about are sets. Note also that we do not have to explicitly assume (though
it is true) that if A and B do not have the same members, then they are
not the same set (written A 6= B). That’s because, if they were the same
set, then everything about them, including what members they have, would
be the same. This reasoning is no different than the kind of reasoning we
would use to conclude (given that A and B are people), that if A and B
do not have the same blood type, then they cannot be the same person: if
they were the same person, everything about them—including their blood
types—would be the same.

If every member of A is a member of B, we say that A is a subset of
B, or, alternatively, that A is included in B), written A ⊆ B. Note that
if A ⊆ B, B might have members that are not in A. On the other hand, if
both A ⊆ B and B ⊆ A, then it follows from Extensionality that A = B. If
A ⊆ B but A 6= B then we say A is a proper subset of B, written A ( B.

Assumption 2 (Empty set). There is a set with no members.

Note that from this assumption together with Extensionality we can con-
clude that the there is only one set with no members. We call this set the
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empty set. The empty set is usually denoted by the symbol ‘∅’. But later,
we’ll sometimes write it as ‘0’ (the symbol for the number zero), because ac-
cording to the most usual way of doing arithmetic within set theory (which
we’ll get to in Chapter 4), the number zero and the empty set are the same
thing (in spite of what you may have been taught in other math classes!).

Now so far, we have no basis for concluding that there are any sets other
than the empty set, not even sets with only one member. For example, we
are not even able to make a valid argument that there is a set with ∅ as its
only member. We remedy this situation by adding a few more assumptions,
beginning with the following:

Assumption 3 (Pairing). For any sets A and B, there is a set whose only
members are A and B.

Note that, because of Extensionality again, there is only one set whose only
members are A and B, which we write as {A,B}, Of course we could just
as well have called this set {B,A}. More generally, we will notate any
nonempty finite set by listing its members, separated by commas, between
curly brackets, in any order. (In Chapter 5, we’ll get clear about what we
mean when we say a set is ‘finite’, but for now we’ll just rely on intuition).
Notice that nothing rules out the possibility that A and B are the same set,
so it follows from pairing that for any set A there is a set whose only member
is A, namely {A,A}. Of course, once we realize this, then we might as well
just call it {A} rather than {A,A}: repetitions inside the curly brackets
don’t make any difference because for any given set, either A is a member
of it or it isn’t; it doesn’t make any sense to talk about how many times one
set is a member of another.

A set with only one member is called a singleton. A special case of
singleton sets is the set {0} whose only member is 0. This set is also called
1, because according to the usual way of doing arithmetic within set theory,
it is the same as the number one. Going one step further, we can use Pairing
again to form the set {0, 1}, also known as 2. There is a general pattern
here, which we will explain in Chapter 4.

Assumption 4 (Union). For any set A, there is a set whose members are
those sets which are members of (at least) one of the members of A.

Once again, Extensionality ensures the uniqueness of such a set, which is
called the union of A, written

⋃
A. As a special case, if A = {B,C}, then⋃

A is the set each of whose members is in either B or C (or both). This
set is usually written B ∪C. Note that in general this is not the same thing
as {B,C}!
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For any set A, the successor of A, written s(A), is the set A ∪ {A}.
That is, s(A) is the set with the same members as A, except that A itself is
also a member of s(A).1 For example, 1 is the successor of 0, and 2 is the
successor of 1.

Assumption 5 (Powerset). For any set A, there is a set whose members
are the subsets of A.

Yet again, Extensionality guarantees the uniqueness of such a set. We call
it the powerset of A, written ℘(A). It’s important to realize that ℘(A) is
usually not the same set as A. That’s because usually the subsets of a set
are not the same as the members of the set. For example, 0 is a subset of 0
(in fact, every set is a subset of itself), but obviously 0 is not a member of
0 (since 0 is the empty set).

1.4 Russell’s Paradox and Separation

Why do we need the powerset assumption? Why don’t we just define ℘(A)
to be the set of all subsets of A? The answer is that the other assumptions
we have made so far do not seem to enable us to conclude that there actually
is such a set. More generally, whenever one says “the set of all sets such
that blah-blah-blah”, there is no guarantee that the assumptions one has
made about sets enable one to conclude that there actually is a set meeting
that description. That may seem counterintuitive, but, perhaps surprisingly,
there is a knockdown argument that there is no such guarantee, which was
discovered by the philosopher and mathematician Bertrand Russell.2

The argument runs as follows. Consider the description “the set of all
sets which are not members of themselves.” Suppose for a moment there
were such a set, called R. Then would R be member of R? Well, either
it is or it isn’t. In the first case, we see right away that R cannot be a
member of R. And in the second case, we see right away that R must
be a member of R. Either way, we arrive at a contradiction, and so our
temporary assumption that there is a set whose members are the sets which

1Nothing we have said rules out the possibility that A ∈ A, in which case A = s(A).
However, the most widely used set theory (called Zermelo-Fraenkel set theory) includes
an assumption (called Foundation) which does rule out this possibility. We will not
assume Foundation in this book.

2Russell made this argument in a famous letter written in 1902 to Gottlob Frege,
another philosopher and mathematician, whose accomplishments include the invention of
predicate calculus and of modern linguistic semantics.
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are not members of themselves must have been false. This argument is called
Russell’s Paradox.

Russell’s Paradox shows that, in general, we cannot assume that, for any
set description, we can take for granted the existence of a set meeting that
description. However, there is a more cautious assumption that proves to be
extremely useful and which so far has not been shown to result in paradox.

Assumption 6 (Separation). If A is a set and P [x] is a condition on x
(where x is a variable that ranges over sets), then there is a set, written
{x ∈ A | P [x]}, whose members are all the x in A that satisfy P [x].

Separation is so-called because, intuitively, we are separating out from A
some members that are special in some way, and collecting them together
into a set. We call Separation an assumption, but to be more precise it is an
assumption schema: for each condition P [x], we get a different separation
assumption. For the moment we remain deliberately vague about what we
mean by “a condition on x”. (We’ll clear this up in due course when we
formalize set theory using predicate logic.) For the moment, the easiest way
to get an idea of what we mean by a condition on x is to look at some
examples.

First, suppose we have two sets A and B. Then by taking P [x] to be the
condition x ∈ B, Separation guarantees the existence of the set consisting of
those members of A which are also in B. This set is called the intersection
of A and B, written A ∩ B. A and B are said to intersect if A ∩ B is
non-empty; otherwise they are said to be disjoint. A set is called pairwise
disjoint if no two distinct members of it intersect.

Second, by taking P [x] to be the condition x /∈ B, Separation guarantees
the existence of the set consisting of those members of A which are not in B.
This set, called the complement of B relative to A, or the set difference
of A and B, is written A \B.

A rather different application of Separation shows that there can be no
set of all sets. For suppose there were; then applying Separation to it using
the condition x /∈ x, we would have the set of all sets which are not members
of themselves. But as we already saw (Russell’s Paradox), there can be no
such set.

1.5 Ordered Pairs and Cartesian (Co-)Products

Sets do not embody any notion of order: {A,B} = {B,A}. But for lin-
guistic applications, clearly we cannot escape from dealing with order! For
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example, we cannot describe the phonology of a word without specifying the
order of the phonemes in it, not can we fully describe a sentence without
specifying the order of its words. One way we might imagine responding
to this need is simply to assume that for any A,B, there is an ordered pair
〈A,B〉. But what properties should we assume that ordered pairs have?
Perhaps surprisingly, it turns out that once we have gotten clear about how
ordered pairs should work, the assumptions we have already made about
sets enable us to conclude that sets with the desired properties already ex-
ist. So we do not need to make any further assumptions in order to have
ordered pairs.

In fact, the crucial property of ordered pairs, from which their usefulness
derives, that they are uniquely determined by their components, in the sense
that 〈A,B〉 = 〈C,D〉 if and only if A = C and B = D. Any way of defining
the notion of ordered pair that results in their demonstrably having this
property will suffice. The approach we will adopt here is the standard one,
which is to define the ordered pair of A and B, written 〈A,B〉, to be the
set {{A}, {A,B}}. A and B are called, respectively, the first and second
component of 〈A,B〉. Notice that an ordered pair has either one or two
members. In the first case, which arises when A = B, the ordered pair is just
{{A}}, and both components are A. In the second case, the ordered pair
has two members, one with one member and one with two members. In that
case, the first component of the pair is the one that belongs to the set with
one member, and the second component is the member of the two-member
set which is not the member of the one-member set.

Given two sets A and B, it is also useful to have the notion of the
cartesian product of A and B, written A × B, which is supposed to be
the set of all ordered pairs 〈C,D〉 such that C ∈ A and D ∈ B. As it turns
out, we do not have to assume that cartesian products exist, because their
existence follows from Separation. (Showing this is left as an exercise.) A
and B are called the factors of A×B.

Having defined ordered pairs, we can now proceed to define an ordered
triple to be an ordered pair whose first component is an ordered pair:

〈A,B,C〉 =def 〈〈A,B〉, C〉

and correspondingly the threefold cartesian product:

A×B × C =def (A×B)× C

The definitions can be extended to quadruples, quintuples, etc. in the obvi-
ous way. Special cases of cartesian products, called cartesian powers, are
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ones where the factors are all the same set A. These are notated with paren-
thesized “exponents” (superscripts), e.g. A(2 ) = A× A, A(3 ) = A× A× A,
etc. Additionally, we define A(1 ) to be A, and we define A(0 ) to be 1. This
last definition is less mysterious than it appears to be, but we will be in a
better position to explain the motivation for it a little later. (It is actually
closely related to the reason that n0 = 1 in arithmetic, but for some readers,
that may seem equally mysterious.)

Less well known than cartesian product, but also important in some of
our applications, is the notion of the cartesian coproduct, also called the
disjoint union) of A and B, written A+B. This is defined as ({0}×A)∪
({1} × B), the set of all ordered pairs 〈C,D〉 such that either C = 0 and
D ∈ A or C = 1 and D ∈ B. A and B are called the cofactors of A+B.

Intuitively, A + B is the union of two sets, “copies” of A and B re-
spectively, and these copies are disjoint, even if A and B are not. As with
cartesian products, there is a straightforward extension to more than two
cofactors. For the case of identical cofactors (called cartesian copowers),
there does not seem to be a standard notation; here we write A(n), which,
intuitively, is the union of n pairwise disjoint copies of A. So it should not
come as much of a surprise that A(1 ) is defined to be A and A(0 ) is defined
to be 0.



Chapter 2

Mathese

2.1 Introduction

Mathematicians (well, English-speaking ones, anyway) talk and write about
things logical and mathematical (including set theory and anything they
construct inside it) in a mixture of ordinary colloquial English and a special
purpose dialect of English, which we will refer to as Mathese. Mathese is
intended to avoid the ambiguity, vagueness, and imprecision of much ordi-
nary colloquial English. It is a good idea to get into the habit of judiciously
using Mathese when writing about formally rigorous linguistic theory for an
audience with a reasonable degree of mathematical sophistication; e.g. when
writing up problem sets for this course. (Alert: it is every bit as important
not to write this way for a general linguistic audience!) Of course, unless
you have an unusually strong mathematical background, it takes some time
to get the hang of Mathese, so we will not require immediate mastery; and
of course it’s also okay to use ordinary English as long as the meaning is
completely clear.

In its most basic form, all Mathese has is a few “logicky” expressions and
some basic predicates for talking about set membership and equality. For-
tunately, it’s permissible to add new predicates and names to the language
as needed, as long as you take care to define them in terms of expressions
that are already in the language, as will be explained below. (Without such
abbreviations, Mathese quickly becomes opaque to the point of sheer incom-
prehensibility.) There are also symbols for abbreviating expressions, which
are mostly used in displayed calculations and inside of set descriptions; the
abbreviations (especially the logicky ones) are usually not used in writing

12
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Mathese prose (which is what you will usually be writing proofs in).1

2.2 “Logicky” expressions

2.2.1 Variables

These are upper- or lower-case roman letters (usually italicized in typing),
with or without numerical subscripts, used roughly as pronouns or as names
of arbitrary sets, e.g. x, y, x0 , x1 , X, Y, etc.

2.2.2 And

Mathese ‘and’ is abbreviated using the conjunction symbol ∧. It is used
mainly for combining sentences, as in:

S1 and S2 . (Abbreviated form: S1 ∧ S2 )

A sentence formed this way is called a conjunctive sentence. Here S1

is called the first conjunct and S2 is called the second conjunct. A
conjunctive sentence is considered to be true if both conjuncts are true;
otherwise it is false.

2.2.3 Or

Mathese ‘or’ is abbreviated using the disjunction symbol ∨. Like ‘and’, it
is used mainly for combining sentences, as in:

S1 or S2 . (Abbreviated form: S1 ∨ S2 )

A sentence formed this way is called a disjunctive sentence. Here S1 is
called the first disjunct and S2 is called the second disjunct. Mathese
or is inclusive disjunction, so that a disjunctive sentence is true if either or
both of the disjuncts are true, and it is false otherwise.

2.2.4 Implies

Mathese ‘implies’ is abbreviated using one of the two implication symbols
→ or ⊃. A synonym for ‘implies’ is ‘if . . . then . . .’. It too is used for
combining sentences, as in:

S1 implies S2 . (Abbreviated forms: S1 → S2 or S1 ⊃ S2 )

1Later on, we’ll introduce some formal languages, called first-order languages, which
consist entirely of such symbols. By then, you’ll have a good intutitive feeling for what
such symbols mean. If you’ve taken a basic course in predicate logic, you’ll already be
familar with these.
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A sentence formed this way is called a conditional or implicative sentence.
Here S1 is called the antecedent and S2 is called the consequent. Caution:
this does not mean quite exactly the same thing as if S1 then S2 in ordinary
English. One difference is that a conditional Mathese sentence is considered
to be true if the consequent is true, no matter whether the antecedent is
true or false and even if the antecedent and the consequent seem to have
nothing to do with each other, e.g.

If there does not exist a set with no members, then 0 = 0.

is true. Another difference is that a conditional Mathese sentence is consid-
ered to be true if the antecedent is false, no matter whether the consequent
is true or false, e.g.

If 0 6= 0 then 1 6= 1.

is true!

2.2.5 If and only if

Mathese ‘if and only if’, usually written simply as ‘iff’, is abbreviated using
the biimplication symbol ↔. It is used to combine sentences as in:

S1 iff S2 . (Abbreviated form: S1 ↔ S2 )

A sentence of this form is called a biconditional. S1 iff S2 can be thought
of as shorthand for:

S1 implies S2 , and S2 implies S1 .

Consequently, a sentence of this form is considered to be true if either (1)
both S1 and S2 are true, or (2) both S1 and S2 are false. Otherwise, it is
false.

2.2.6 It is not the case that

Mathese ‘it is not the case that’ is abbreviated using one of the two negation
symbols ¬ or ∼. It is placed before a sentence in order to negate it, as in:

It is not the case that S. (Abbreviated forms: ¬S or ∼ S)

A sentence of this form is called a negative sentence. Here S is called the
scope of the negation. Unsurprisingly, a negative sentence is considered to
be true if the scope is false, and false if the scope is true. For any sentence
S, the sentence it is not the case that S is called the negation of S, or,
equivalently, the denial of S.

Note that often, the effect of negation with it is not the case that can be
achieved by ordinary English verb negation, which (simplifying slightly)
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involves replacing the finite verb (the one that agrees with the subject) V
with ‘does not V’ if V is not an auxiliary verb (such as has or is), or negating
V with a following not or -n’t if it is an auxiliary. Thus, for example, these
pairs of sentences are equivalent (express the same thing):

It is not the case that 2 belongs to 1.
2 does not belong to 1.

It is not the case that 1 is empty.
1 isn’t empty.

But negation by it is not the case that and verb negation cannot be counted
on to produce equivalent effects if the verb is in the scope of a quantifier
(see following two sections). For example, these are not equivalent:

It is not the case that for every x, x belongs to x.
For every x, x doesn’t belong to x.

For the first is clearly true (for example, 0 doesn’t belong to 0), but the truth
of the second cannot be determined on the basis of the assumptions in Chap-
ter 1, and in fact different ways of adding further set-theoretic assumptions
resolve the issue in different ways.

Note that for predicates with an abbreviatory symbol, such as equals (=)
and belongs to (∈), the effect of verb negation is accomplished by a diagonal
slash, e.g. 6= ‘is not equal to’, /∈ ‘is not a member of’.

2.2.7 For all

Mathese ‘for all’, abbreviated by the universal quantifier symbol ∀, forms
a sentence by combining first with a variable and then with a sentence, as
in:

For all x, S (abbreviated form: ∀xS).

The variable x is said to be bound by the quantifier, and the sentence S is
called the scope of the quantifier. Synonyms of ‘for all’ include ‘for each’,
‘for every’, and ‘for any’. Usually the bound variable also occurs in the
scope; if it doesn’t, then the quantification is said to be vacuous.

A sentence formed in this way is said to be universally quantified, or
simply universal.

As long as we are using Mathese only to talk about set theory, we can
assume that the bound variable in a universal sentence ranges over all sets,
that is, ‘for all x’ is implicitly understood as ‘for all sets x’.

However, often we want to universally quantify not over every set, but
just over the sets that satisfy some condition on x, S1 [x]. Then we say:
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For every x with S1 [x], S2 [x].

This is understood to be shorthand for

For every x, S1 [x] implies S2 [x]. (Abbreviated form: ∀x(S1 [x]→ S2 [x]))

If such a sentence is true, then we say that S1 [x] is a sufficient condition
for S2 [x], or, equivalently, that S2 [x] is a necessary condition for S1 [x].
A special case of this is that a sentence of this format is true if, no matter
what x is, S1 [x] is false. Such a sentence is said to be vacuously true. For
example, the sentence

For every x with x 6= x, x = 2.

is (vacuously) true.

If a universal sentence of the form

For every x, S1 [x] iff S2 [x]

(i.e. whose scope is a biconditional) is true, then we say S1 [x] is a necessary
and sufficient condition for S2 [x].

2.2.8 There exists . . . such that

Mathese ‘there exists . . . such that’, abbreviated by the existential quan-
tifier symbol ∃, forms a sentence by combining first with a variable and
then with a sentence, as in:

There exists x such that S (abbreviated form: ∃xS).

The variable x is said to be bound by the quantifier, and the sentence S
is called the scope of the quantifier. Synonyms of ‘there exists . . . such
that’ include ‘for some’ and ‘there is a(n) . . . such that’. Usually the bound
variable also occurs in the scope; if it doesn’t, then the quantification is said
to be vacuous.

A sentence formed in this way is said to be existentially quantified, or
simply existential.

As long as we are using Mathese only to talk about set theory, we can
assume that the bound variable in an existential sentence ranges over all
sets, that is, ‘there exists x’ is implicitly understood as ‘there exists a set x’.

However, often we want to existentially quantify not over every set, but
just over the sets that satisfy some condition S1 [x]. Then we say:

There exists x with S1 [x], such that S2 [x].

This is understood to be shorthand for

There exists x such that S1 [x] and S2 [x].
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(Abbreviated form: ∃x(S1 [x] ∧ S2 [x]))

Note here the use of parentheses for disambiguation. Without the paren-
theses, it would be hard to be sure whether the scope of the quantifier was
the conjunctive sentence or just its first conjunct. This is a common device
in Mathese. Both round and square parentheses can be used, and multiple
sets of parentheses can be used in the same sentence.

If a sentence contains variables which are not bound by any quantifier,
those variables are called free. A sentence is called closed if it has no
free variables, and open otherwise. A sentence whose free variables are
x0 , . . . , xn is often called a condition on x0 , . . . , xn . The number of free
variables in a condition is called its arity. Thus conditions might be nullary
(no free variables, i.e. a closed sentence), unary (one free variable), binary
(two free variables), ternary (three free variables), etc.

2.2.9 There exists unique . . . such that

In Mathese, ‘there exists unique . . . such that’ (abbreviated form: ∃!x) com-
bines first with a variable, then with a sentence, as in:

There exists unique x such that S. (Abbreviated form: ∃!x S)

This is understood to be shorthand for:

∃x(S[x] ∧ ∀y(S[y]→ (y = x)))

2.3 Defining Predicates

At the outset, the only predicates in Mathese are equals (abbreviated =)
or synonyms such as is the same as or is identical to, and is a member of
(abbreviated ∈) or synonyms such as belongs to or is an element of. But
we can define new predicates in terms of these and other predicates which
have already been defined. The arity of a defined predicate is the arity of
the condition that is used to define it. For example, we define “x is empty”
to mean ∀y(y /∈ x), and “x is a singleton” to mean ∃!y(y ∈ x); these are
unary predicates. In “x is a subset of y” (abbreviation: x ⊆ y), ⊆ is a
binary predicate defined by the condition ∀z(z ∈ x→ z ∈ y).

2.4 Defining Names

If we can prove (i.e. provide a persuasive valid argument based only on
our assumptions about set theory and other things that have already been
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proved) that there exists a unique set x such that S[x], where S[x] is some
condition on x, then we permit ourselves to bestow a name on that set.
For example, it is easy to show that there is a unique set x such that x is
empty. (The existence part of the proof is by the Empty Set assumption,
and the uniqueness part of the proof is an application of Extensionality.) In
this case, as we saw in Chapter 1, the set in question is named ∅ (read “the
empty set”).

2.5 Defining Functional Names

Often we can show that for any set y, there exists a unique set x satisfying
some condition S[x, y]. In such cases, we permit ourselves to introduce a
functional name, which is basically a scheme which, for each y, provides
a name for the unique set x such that S[x, y]. To make an analogy with real
life: obviously everybody has a mother, so we can use the functional name
y’s mom to refer to the unique individual x such that x is a mother of y,
no matter who y is. Returning to sets, it is easy to prove that for any set y,
there is a unique set x such that y is the only member of x. This justifies
introducing the functional name singleton(y), abbreviated {y}. Likewise, we
introduce the functional name successor(y), abbreviated s(y) which, for each
set y, names the unique set x that satisfies the binary condition x = y∪{y}.

This naming convention extends to names that depend on more than
one variable. Again, to take a real-life example, we might introduce the
functional name x’s seniority over y: for any two individuals x and y
this is defined to be the number of days (rounded off) from x’s birthdate to
y’s birthdate (this is a negative integer if y’s birthdate precedes x’s). The
general principle is that if, for some positive natural number n and some
(n+ 1)-ary condition S[x0 , . . . xn ] we can prove

∀x1 . . . ∀xn∃!x0S[x0 , . . . xn ]

then we are allowed to make up a functional name name(x1 , . . . , xn) which
for each choice of values for the n variables x1 , . . . , xn provides a name for
the unique set which satisfies the condition for that choice of values.



Chapter 3

Relations and Functions

3.1 Relations

Intuitively, a relation is the sort of thing that either does or does not hold
between certain things, e.g. the love relation holds between Kim and Sandy
just in case Kim loves Sandy, and the less-than relation holds between two
natural numbers A and B just in case A < B. How should we represent
relations mathematically if sets are all we have to work with? A simple-
minded first pass might be to represent the love relation as the set of all pairs
{A,B} such that A and B are two people such that A loves B. (Actually,
A and B would not be people at all, but rather certain sets that we have
chosen as theoretical standins for (representations of) people: remember
that the only things in our mathematical workspace are sets!) Unfortunately,
this is too simple, since, for example, we are left with no way to represent
unrequited love: what if Kim loves Sandy but Sandy does not love Kim?

A more promising approach is to represent love as the set of ordered pairs
〈A,B〉 such that A loves B. Of course nobody is under the illusion that a
set of ordered pairs is the answer Cole Porter had in mind when he wrote
What is this Thing Called Love? It is what a formal semanticist would call
the extension of the love relation. (The appropriate way to mathematically
represent the actual love relation, as opposed to its extension, is a question
we will turn to later when we consider how to represent linguistic meaning.)
To take a less vexing example, we can consider the relation ⊆ U of set
inclusion restricted to the subsets of a given set U to be the following set of
ordered pairs:1

1Please note that on the right-hand side of the following definition, we are making
use of a commonplace notational convention whereby {〈x, y〉 ∈ A × B | φ} abbreviates
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⊆ U =def {〈A,B〉 ∈ ℘(U)× ℘(U) | A ⊆ B}

More generally, we now define the notion of relation as follows: a re-
lation between A and B is a subset of A × B. Equivalently, it is a set of
ordered pairs whose first and second components are in A and B respec-
tively. Equivalently, it is a member of ℘(A× B). In the special case where
A = B, we speak of a relation on A. For example, ⊆ A is a relation on ℘(A).
But note: according to the way we have defined the notion of a relation,
there is no ⊆ relation! (Explaining why is left as an exercise.) As a matter
of notation, we usually write a R b to mean that the ordered pair 〈a, b〉 is in
the relation R; that is, a R b is just another way to say 〈a, b〉 ∈ R.

An important special case arises when A = B and the relation is

idA =def {〈x, y〉 ∈ A×A | x = y}

This relation is called the identity relation on A.
If R is a relation from A to B, the inverse of R is the relation from B

to A defined as follows:

R−1 =def {〈x, y〉 ∈ B ×A | y R x}

For example, suppose ≤ is the standard order on the natural numbers (to
be defined precisely later); its inverse is the relation ≥. And the inverse of
the (extension) of the love relation is the is-loved-by relation. It is easy to
see that for any set A,

idA
−1 = idA

and that for any relation R,

(R−1 )−1 = R

.
As we have seen, a relation is defined as a subset of a cartesian product

A × B. More precisely, this should have been called a binary relation.
Likewise, we can define a ternary relation among the sets A, B, and C
to be a subset of the threefold cartesian product A×B ×C; thus a ternary
relation is a set of ordered triples. For n > 3, n-fold cartesian products and
n-ary relations are defined in the obvious way.

{z ∈ A×B | ∃x∃y(φ ∧ z = 〈x, y〉)}.
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Recall that a cartesian power is a cartesian product all of whose factors
are the same, e.g. A(3 ) = A × A × A; that A(1 ) = A; and that A(0 ) = 1.
Correspondingly, a unary relation on A is just a subset of A, and a nullary
relation on A is a subset of 1, i.e. either 1 or 0.

Suppose R is a relation from A to B and S is a relation from B to C.
Then the composition of S and R is the relation from A to C defined by

S ◦R =def {〈x, z〉 ∈ A× C | ∃y ∈ B(x R y ∧ y S z)}

It is easy to see that if R is a relation from A to B, then

idB ◦R = R = R ◦ idA
Suppose R is a relation from A to B. Then the domain and range of

R are defined as follows:

dom(R) =def {x ∈ A | ∃y ∈ B(x R y)}

and

ran(R) =def {y ∈ B | ∃x ∈ A(x R y)}

respectively.

3.2 Functions

A relation F between A and B is called a (total) function from A to B
provided for every x ∈ A, there exists a unique y ∈ B such that x F y).
In that case we write F : A → B. This is often expressed by saying that F
takes members of A as arguments and returns members of B as values
(or, alternatively, takes its values in B). Obviously,

dom(F ) = A

For each a ∈ dom(F ), the unique b such that a F b is called the value of F
at a, written F (a). Equivalently, we say F maps a to b, written F : a 7→ b.

In formal semantics, linguistic meanings are often represented as func-
tions of certain kinds. For example, it is fairly standard to represent declar-
ative sentence meanings as functions from a set W of “possible worlds”
(which themselves are taken to be representations of different possible ways
the world might be) to the set 2 (i.e. {0, 1}); here 1 and 0 are identified,
respectively, with the intutitive notions of truth and falsity. Not quite so
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straightforward is the use of function terminology by syntacticians, for exam-
ple referring to the subjects and complements of a verb as its “grammatical
arguments”. If a verb were really a function, then what would its domain
and codomain be? In due course we’ll look into the motivation for talking
about verbs and other linguistic expressions as if they were functions.

Note that for any set A, the identity relation idA is the function from A
to A such that

idA(a) = a

for every a ∈ A. In some linguistic theories, identity functions serve as
the meanings of “referentially dependent” expressions such as pronouns and
gaps.

It is not hard to see (after some reflection) that a relation R from A to
B is a function from A to B iff

R ◦R−1 ⊆ idB

and

idA ⊆ R−1 ◦R
We note here a confusing though standard bit of terminology. Given

a function F : A → B, we often call B the codomain of F . What is
confusing is that if B is a proper subset of some other set B′, then clearly also
F : A→ B′; but then B′ must be the codomain of F ! Evidently the notion
of codomain of a function is not well-defined. Technically, we can clear up
this confusion by defining a (set theoretic) arrow from A to B to be an
ordered triple f = 〈A,B, F 〉, where F : A→ B. Now we can unambiguously
refer to A and B as the domain and codomain of f , respectively; F is called
the graph of f . The point is that two distinct arrows can have the same
domain and the same graph but different codomains. Thus when we speak
(loosely) of a function F : A → B having B as its codomain, we are really
talking about the arrow 〈A,B, F 〉. Having called attention to this abuse of
language, we will persist in it without further comment.

For any sets A and B, the exponential from A to B is the set of arrows
from A to B. This is written BA, read “B to the A”. An alternative notation
is A ⇒ B, read “A into B”. Note for any set A there is a unique function
♦A : ∅ → A (what is it?) and a unique function �A : A→ 1 (what is it?).

A relation F between A and B is called a partial function from A to
B provided there is a subset A′ ⊆ A such that F is a (total) function from
A′ to B.
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For n ≥ 0, an n-ary (total) operation on a set A is a function from
A(n) to A. So a unary operation on A is just a function from A to itself, and
a nullary operation on A is a function from 1 (i.e. {0}) to A. It is easy to
see that there is a one-to-one correspondence between A and A1 , with each
a ∈ A corresponding to the function from 1 to A that maps 0 to a.

Suppose F : A→ B. Then F is called:

injective, or one-to-one, or an injection, if it maps distinct members of
A to distinct members of B;

surjective, or onto, or a surjection, if ran(F ) = B; and

bijective, or one-to-one and onto, or a bijection, or a one-to-one
correspondence, if it is both injective and surjective.

An important special case of injective functions are defined as follows:
if A ⊆ B, then the function µA,B : A → B that maps each member of A to
itself is called the embedding of A into B. Note that µA,B has the same
graph as idA, but possibly a larger codomain.

Also injective are the functions ι1 and ι2 , called canonical injections,
from the cofactors A and B of a coproduct A+B into the coproduct, defined
by ι1 (a) = 〈0, a〉 and ι2 (b) = 〈1, b〉 for all a ∈ A and b ∈ B. Standard
examples of surjections are the projections π1 and π2 of a product A ×
B onto its factors A and B respectively, defined by π1 (〈a, b〉) = a and
π2 (〈a, b〉) = b for all a ∈ A and b ∈ B.

Suppose A ⊆ B. Then the function χA : B → 2 such that, for each b ∈ B,
χA(b) = 1 iff b ∈ A is called the characteristic function of A (relative to
B). It is easy to see that there is a bijection from ℘(B) to B ⇒ 2 that maps
each subset of B to its characteristic function.

Since functions are relations, the definition of composition for relations
makes sense when the two relations being composed are functions. Thus if
F : A→ B and G : B → C, then G ◦ F : A→ C, and for every x ∈ A,

G ◦ F (x) = G(F (x))

It is not hard to see that2

G ◦ F = {〈x, z〉 ∈ A× C | ∃y ∈ B(y = F (x) ∧ z = G(y))}

.

2Please note that in the set description on the right-hand side of the following equation,
we make use of a commonplace notational convention whereby ∃y ∈ Bφ abbreviates
∃y(φ ∧ y ∈ B).
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For example, taking it one faith for the moment that there is a set ω
whose members are precisely the natural numbers, and that the familiar
(binary) arithemetic operations (addition, multiplication, and exponentia-
tion) have been given satisfactory set-theoretic definitions (we will make this
precise in due course), let F and G be the functions from ω to ω such that

F (x) = x2

G(x) = x+ 2

for all x ∈ ω. Then G ◦ F is given by

G ◦ F (x) = x2 + 2

Suppose once again that F : A → B and G : B → C, and suppose
moreover that H : C → D. Then it is not hard to see that

H ◦ (G ◦ F ) = (H ◦G) ◦ F

Since functions are relations, the following hold for any function F : A→
B:

idB ◦ F = F = F ◦ idA
F ◦ F−1 ⊆ idB

idA ⊆ F−1 ◦ F

Additionally, it is easy to see that F is surjective iff

F ◦ F−1 = idB

and F is injective iff
idA = F−1 ◦ F

As a special case, if F is a unary operation on A, then

idA ◦ F = F ◦ idA = F

If in addition F is bijective, then the relation F−1 is also a unary operation
on A, and

F ◦ F−1 = F−1 ◦ F = idA

Suppose F : A → B, A′ ⊆ A, and B′ ⊆ B. Then the restriction of F
to A′ is the function from A′ to B given by

F � A′ = {〈u, v〉 ∈ F | u ∈ A′}
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Note that this is the same function as F ◦ µA′,A. The image of A′ by F is
the set

F [A′] =def {y ∈ B | ∃x ∈ A′(y = F (x))}

The preimage (or inverse image) of B′ by F is the set

F−1 [B′] =def {x ∈ A | ∃y ∈ B′(y = F (x))}

This is more simply described as

{x ∈ A | F (x) ∈ B′}

3.3 Special Kinds of Binary Relations

3.3.1 Properties of Relations

Here we collect some definitions for future reference. Throughout we assume
R is a binary relation on A.

Distinct a, b ∈ A, are (R-)comparable if either a R b or b R a; otherwise,
they are incomparable. R is connex iff a and b are comparable for all
distinct a, b ∈ A.

R is reflexive if a R a for all a ∈ A (i.e. idA ⊆ R). R is irreflexive if a 6R a
for all a ∈ A (i.e. idA ∩R = ∅).

R is symmetric if a R b implies b R a for all a, b ∈ A (i.e. R = R−1 ). R
is asymmetric if a R b implies b 6R a for all a, b ∈ A (i.e. R ∩ R−1 = ∅).
R is antisymmetric if a R b and b R a imply a = b for all a, b ∈ A
(i.e. R ∩ R−1 ⊆ idA). Thus asymmetry is a special case of antisymmetry;
more specifically, a relation is asymmetric iff it is both antisymmetric and
irreflexive.

A relation R is transitive if a R b and b R c imply a R c for all a, b, c ∈ A
(i.e. R ◦ R ⊆ R). R is intransitive if a R b and b R c imply a 6R c for all
a, b, c ∈ A (i.e. (R ◦R) ∩R = ∅).

3.3.2 Orders and Preorders

A preorder is a reflexive transitive relation; and an order is an antisym-
metric preorder. On of the most useful orders overall is the subset relation
⊆ A on ℘(A). In linguistic applications, as we will see later on, one of the
most widely used orders is the dominance order on the nodes of a tree, used
in many syntactic theories to represent the (putative) constituent structure



26 Relations and Functions

of a linguistic expression. (But not in all syntactic theories; for example, in
the family of syntactic theories known as categorial grammar, the notion of
constituent plays little or no role.)

In many approaches to formal semantics of natural languages, the rep-
resentations of declarative sentence meanings (usually called propositions)
are preordered by a relation called entailment. Without getting technical at
this point, if p and p′ are the propositions expressed by two natural-language
sentence utterances S and S’, p entails p′ just in case, no matter what the
world is like, if S is true with the world that way, then so is S’. In order to
have a formal theory of this, we will have to have a way of set-theoretically
representing sentence utterances, propositions, and possible ways the world
might be. Considerable care is needed here, since one and the same sentence
can express different propositions depending on the context of utterance, and
utterances of different sentences can express the same proposition. A contro-
versial issue here is whether or not the entailment relation is antisymmetric.
In other words: if two sentences always agree in truth value no matter what
the world is like, then must they express the same proposition? We will take
up these and related issues in due course.

Let R be a preorder on A, S ⊆ A, and a ∈ S. Then a is maximal in S
if a R b implies b R A for every b ∈ S; a is minimal in S if b R a implies
a R b for every b ∈ S. a is greatest in S if b R a for every b ∈ S; a is least
in S if a R b for every b ∈ S; and a is a top (respectively, bottom) if it is
greatest (respectively, least) in A. If there is a unique top, it is written >R.
If there is a unique bottom, it is written ⊥R. Clearly, if S has any greatest
(least) elements, then they (and only they) are maximal (minimal) elements
of S.

When the preorder in question is being used to represent the entailment
relation on the propositions in a model-theoretic semantics of a natural
language, then those propositions (if any) which are true independently of
how things are (such propositions are called necessary truths) must be tops;
and those propositions (if any) which are false no matter how things are
(such propositions are called necessary falsehoods) must be bottoms. (Why?)
Propositions which are neither necessary truths nor necessary falsehoods are
called contingent; their truth or falsity depends on how things are.

Now suppose the preorder R is also antisymmetric (i.e. it is an order).
Then S can have at most one greatest (or least) member; in particular, there
can be at most one top (or bottom). If a is greatest (or least) in S, then it
is the unique maximal (or minimal) element of a.

But it is possible (even if R is antisymmetric) for a to be the unique
maximal (or minimal) element of S without being the greatest (or least)
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element in S. For that matter, S can have more than one maximal (or
minimal) element without any of them being greatest (or least). It’s an
instructive exercise to try to verify the foregoing assertions by constructing
suitable examples.

In a connex preorder, for a to be maximal (minimal) in S is the same
thing as for a to be greatest (least) in S. A connex order is called a chain, a
total order, or a linear order. A chain is called a well-ordering provided
every non-empty subset of A has a least element. The standard example of
a well-ordering is the standard (≤) order on the natural numbers.

For linguists, the most familiar chains are the linear precedence (LP)
orders that arise in the representation of the consituent structure (within
linguistic theories that countenance such things) of a linguistic expression
by an ordered tree, namely (1) the LP order on the daughters (immediate
consituents) of a nonterminal node, and (2) the LP order on the pretermi-
nals. We will take a close look at the use of tree representations in syntax
in Chapters 7 and 8.

3.3.3 Equivalence Relations

An equivalence relation is a symmetric preorder. If R is an equivalence
relation, then for each a ∈ A the (R-)equivalence class of a is

[a]R =def {b ∈ A | a R b}

Usually the subscript is dropped when it is clear from context which equiva-
lence relation is in question. The members of an equivalence class are called
its representatives. Note that the set of equivalence classes (written A/R
and called the quotient of A by R) is a partition of A, i.e. it is pairwise
disjoint and its union is A. It’s easy to see that the function from A to A/R
that maps each member of A to its equivalence class is a surjection. More
generally, for any function F : A→ B, there is an equivalence relation ≡ F ,
with two members of A being equivalent just in case F maps them to the
same member of B.

If R is a preorder on A, the relation ≡ R defined by a ≡ Rb iff both a R b
and b R a is easily seen to be an equivalence relation. In the special case
where R is the entailment relation between propositions in a semantic the-
ory, this equivalence relation is called truth-conditional equivalence. Thus
truth-conditionally equivalent propositions are true under exactly the same
conditions. In semantic theories where entailment is taken to be antisym-
metric, truth-conditionally equivalent propositions are identical.



Chapter 4

The Natural Numbers,
Induction, and Recursive
Definition

4.1 The Natural Numbers

In Chapter 1, we introduced 0 (aka ∅), its successor 1 = s(0) = 0∪{0} = {0},
1’s successor 2 = s(1) = 1 ∪ {1} = {0, 1}, and 2’s successor 3 = s(2) =
2 ∪ {2} = {0, 1, 2}. This is how the first four natural numbers are usually
modelled within set theory; it’s intuitively obvious that we could go on in the
same way to model as many of the natural numbers as time would permit.
Note that 0 ∈ 1 ∈ 2 ∈ 3 ∈ · · · and 0 ⊆ 1 ⊆ 2 ⊆ 3 · · · . Is there a set consisting
of all the natural numbers? The assumptions we made in Chapter 1 do not
seem to enable us to draw this conclusion. It would be most useful to have
such a set, but we are not yet quite in a position to add the assumption that
there is a set whose members are precisely the natural numbers, since so far
we haven’t said what a natural number is! But we are about to.

A set s called inductive iff it has 0 as a member and has the successor
of each of its members as a member. We then define a natural number to
be a set which belongs to every inductive set. It is not hard to show that 0,
1, 2, and 3 are all natural numbers. But at this stage, for all we know, every
set might be a natural number. After all, even though we defined what it
means for a set to be inductive, at this point we don’t know that there are
any inductive sets! What if there weren’t any? In that case, it’s easy to see
that indeed every set would be a natural number. And then, since (as we
already know) there is no set of all sets, there could not be a set of all the
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natural numbers. So if we want there to be a set of all natural numbers,
there better be at least one inductive set.

We now add to our assumptions about sets the following:

Assumption 7 (Natural Numbers). There is a set whose members are the
natural numbers.

By Extensionality, there can only be one such set. We call it ω. With the
help of this assumption, it is now easy to prove the following two theorems:1

Theorem 4.1. ω is inductive.

Proof. Exercise.

Theorem 4.2. ω is a subset of every inductive set.

Proof. Exercise.

The relation < (read less than) on ω is defined by n < m iff n ∈ m, and the
relation ≤ (read less than or equal to) by n ≤ m iff n < m or n = m. (So
≤ is the reflexive closure of <.)2 The terminology “less than or equal to” is
justified, since in fact ≤ is an order, as we will show. In fact we will show
more, namely that ≤ is a well-ordering (and in particular a linear order).

4.2 Induction and Recursive Definition

The following theorem is a corollary of the preceding one:

Theorem 4.3 (Principle of Mathematical Induction). The only inductive
subset of ω is ω.

Proof. Exercise.

1A theorem is just something important that we can prove. More generally, something
that we can prove is usually called a proposition. (Note: this is a different use of the
term proposition than in linguistic semantics, where it refers to the intepretation of a
declarative sentence utterance.) So a theorem is an important proposition. A lemma is a
proposition which is not so important in and of itself, but which is used in order to prove
a theorem. And a corollary of a proposition is another proposition which is easily proved
from it.

2Later we will be able to prove that, for any two natural numbers n and m, n < m iff
n ( m, and n ≤ m iff n ⊆ m.
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The Principle of Mathematical Induction (PMI) is one of the mathemati-
cian’s most important resources for proving theorems. It is applicable any
time we want to prove that a condition φ[n] is true for every natural number
n. The trick is to consider the set {n ∈ ω | φ[n]} and show that it is induc-
tive. To put it another way, we first prove φ[0] (this is called the base case
of the proof) and then prove that, if we assume φ[k] for an arbitrary natural
number k (the so-called inductive hypothesis), then φ[s(k)] follows (the
so-called inductive step). By way of illustration, we prove the following:

Proposition 4.1. Let suc : ω → ω be the function that maps each natural
number to its successor. Then ran(suc) = ω \ {0}.

Proof. Obviously 0 /∈ ran(suc). Let T be the set of all natural numbers that
are either 0 or else the successor of some natural number. We must show
that T is inductive, that is that (1) 0 ∈ T and (2) for each n ∈ T, suc(n) ∈ T .
But both of these are immediate consequences of the definition of T .

Why do we persist in saying “suc(n)” instead of “1+n”? Answer: be-
cause the operation of addition for natural numbers has not been defined
yet. Yet it seems clear how addition works: for any natural number m, m+0
should be m; and if k is nonzero (so that it is the successor of some other
natural number n), then m + k should be the successor of m + n. That is,
for each m ∈ ω we would like to define addition by the equations

m+ 0 = m

and

m+ suc(n) = suc(m+ n)

Definitions of this kind are called recursive. But how do we know recursive
definitions make sense? The answer is provided by the Recursion Theorem,
henceforth abbreviated RT:

Theorem 4.4 (RT). Let X be a set, x ∈ X, and F : X → X. Then there
exists a unique function h : ω → X such that (1) h(0) = x, and (2) for every
n ∈ ω, h(suc(n)) = F (h(n)).

RT is not hard to prove, but the proof is a bit long. So we relegate it to an
appendix, and turn straightaway to some applications.
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4.3 Arithmetic

4.3.1 Addition

As our first application of RT, let’s show that the informal recursive defini-
tion of addition given above actually makes sense.

To get started, suppose m ∈ ω. We’ll use RT to show there is a function
Am such that Am(0) = m and Am(suc(n)) = suc(Am(n)). The trick, as
always when applying RT, is to find the right instantiations of X, x, and F .
In the present case the happy choices are X = ω, x = m, and F = suc; with
these choices, the function h whose unique existence is guaranteed by RT has
just the properties we want for Am . We then define the addition operation
+: ω(2 ) → ω such that, for all m,n ∈ ω, m+n =def Am(n). It follows from
this definition that m+ 0 = m for all m ∈ ω and m+ suc(n) = suc(m+ n)
for all m,n ∈ ω, as desired.

Theorem 4.5. For every natural number n, 1 + n = suc(n).

Proof. Exercise.

4.3.2 Multiplication

Turning next to multiplication, we first use RT to define multiplication by a
fixed natural number m. We want a function Mm such that (1) Mm(0) = 0,
and (2) for every n ∈ ω, Mm(suc(n)) = m+Mm(n). To this end, we apply
RT again, this time with X = ω, x = 0, and F = Am . We then define the
multiplication operation · : ω(2 ) → ω such that m · n = def Mm(n). So
m · 0 = 0 and m · (1 + n) = m+m · n, which is as it should be.

Theorem 4.6. For every n ∈ ω, 1 · n = n.

Proof. Exercise.

With more time and ambition, one can also prove the familiar Five Laws
of Arithmetic (hereafter we omit the “·” for multiplication):

1. Associativity of Addition: m+ (n+ p) = (m+ n) + p

2. Commutativity of Addition: m+ n = n+m

3. Distributivity of Multiplication Over Addition: m(n+ p) = mn+mp

4. Associativity of Multiplication: m(np) = (mn)p
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5. Commutavity of Multiplication: mn = nm

Yet another good exercise is to give a recursive definition of the exponenti-
ation operation m?n = mn and prove that the definition makes sense. Hint:
define m ? n to be Em(n) where Em(0) = 1 and Em(suc(n)) = m · Em(n).
This establishes the first two of the following three general properties of
exponentiation:

1. m0 = 1

2. m1+n = m(mn)

3. mn+p = (mn)(mp)

Note that the second is a special case of the third, which is usually called
the Law of Exponents.

4.3.3 The Infinitude of the Natural Numbers

Everyone knows that there is an infinite number of natural numbers, but
what exactly does that mean? A set is called finite if it is in one-to-one
correspondence with a natural number, and infinite otherwise. A set is
called Dedekind infinite if it is in one-to-one correspondence with a proper
subset of itself. On the basis of the assumptions we’ve made so far about
sets, it’s possible to prove (see Chapter 5) that any Dedekind-infinite set is
infinite.3 Since we already know that ran(suc) = ω \ {0}, we could then
show ω is infinite if we could show that suc : ω → ω is injective. This is of
course the case; a sketch of a proof follows.

First, we define a set A to be transitive iff every member of a member
of A is itself a member of A. It is easy to see that all three of the following
conditions on a set A are equivalent to transitivity:

1. (
⋃
A) ⊆ A;

2. every member of A is a subset of A; and

3. A ⊆ ℘(A).

3To prove the converse, however, we need an additional assumption, viz. the Assump-
tion of Choice (AC, Chapter 5). AC also enables us to prove that ω is the “smallest”
infinite set, in the sense of being in one-to-one correspondence with a subset of any other
infinite set.
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The proof that suc is injective requires a couple of preliminary results:

Lemma 4.1. If A is transitive, then
⋃
s(A) = A.

Proof. We use the (easily proved) general fact about union that⋃
(x ∪ y) =

(⋃
x
)
∪
(⋃

y
)

and reason as follows: ⋃
s(A) =

⋃
(A ∪ {A})

= (
⋃
A) ∪ (

⋃
{A})

= (
⋃
A) ∪A

= A

The last step follows from the fact that
⋃
A ⊆ A for transitive A.

Lemma 4.2. Every natural number is transitive.

Proof. Exercise.

Theorem 4.7. suc is injective.

Proof. Suppose suc(m) = suc(n). Then
⋃

suc(m) =
⋃

suc(n). But m and
n are transitive (by Lemma 4.2), so (by Lemma 4.1)

⋃
suc(m) = m and⋃

suc(n) = n. Therefore m = n.

As noted above, the infinitude of ω is a corollary of this.

4.3.4 The Well-Ordering of w

We now have the resources to establish that the relation ≤ on ω is an order,
indeed a well-ordering (i.e. a chain such that every nonempty subset of ω has
a least member). Given how obvious this seems, the argumentation required
is surprisingly intricate and too long to reproduce in full detail here, so we
content ourselves with an outline, including key lemmata and proof sketches.

Recall that by definition m < n iff m ∈ n, and m ≤ n iff m < n or
m = n.

Theorem 4.8. For all n ∈ ω, n = {m ∈ ω | m < n}.
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Proof. To show inclusion, suppose m ∈ n. Since ω is transitive, m ∈ ω.
Then m < n. To show the reverse inclusion, suppose m < n. Then by
definition, m ∈ n.

Lemma 4.3. For all m,n ∈ ω, m < suc(n) iff m ≤ n.

Proof. m < suc(n) iff m ∈ suc(n) iff m ∈ n ∪ {n} iff m ∈ n or m ∈ {n} iff
(m ∈ n or m = n) iff m ≤ n.

Lemma 4.4. For all m,n ∈ ω, m ∈ n iff suc(m) ∈ suc(n).

Proof. For the only-if direction , assume suc(m) ∈ suc(n). Then suc(m) <
suc(n), so by Lemma 4.3, suc(m) ≤ n, i.e. either suc(m) ∈ n or suc(m) =
n. If suc(m) ∈ n, thenm ∈ suc(m) ∈ n, som ∈ n by transitivity. Otherwise
suc(m) = n; but suc(m) = m∪{m}, from which it follows easily that m ∈ n.

For the if direction, we use PMI. Let

T = {n ∈ ω | ∀m ∈ n, suc(m) ∈ suc(n)}

It is sufficient to show that T is inductive. This is left as an exercise.

Lemma 4.5. For all n ∈ ω, n /∈ n.

Proof. This is another inductive proof. Let T = {n ∈ ω | n /∈ n} It suffices
to show T is inductive. The base case is trivial, and the inductive step is an
easy consequence of Lemma 4.4.

Theorem 4.9. < is transitive, irreflexive, and connex.

Proof. Transitivity follows readily from Lemma 4.2 and irreflexivity from
Lemma 4.5. Connexity is proved inductively, by showing that the set T =
{n ∈ ω | ∀m ∈ ω | m 6= n → (n ∈ m ∨m ∈ n)} is inductive; the inductive
step of the proof appeals to both Lemma 4.4 and Lemma 4.3.

As two easy consequences of this theorem, we have the following

Corollary 4.1. For all m,n ∈ ω, m ∈ n iff m ( n.

Corollary 4.2. ≤ is a chain.

And finally:

Theorem 4.10. ≤ is a well-ordering.
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Proof. Suppose A ⊆ ω has no least element, It suffices to show A = ∅. To
this end, let B be the set of all natural numbers n such that no natural
number less than n belongs to A. All that is required is to show B is
inductive. This is left as an exercise. (Hint: use Lemma 4.3 in the inductive
step.)

4.4 Transitive Closure and Reflexive Transitive Clo-
sure

Let R be a binary relation on A. Then informally, the transitive closure
of R, written R+, is usually “defined” as follows: For all n ∈ ω, recursively
define h(n) by h(0) = idA, h(1) = R, and h(n + 1) = h(n) ◦ R. Then
R+ = def

⋃
n>0h(n). We leave as an exercise the formal justification of

this definition using RT. Similarly, the reflexive transitive closure of R,
written R∗, is

⋃
n∈ωh(n). Note that R∗ = R+ ∪ idA.

Lemma 4.6. R+ is transitive.

Proof. Exercise.

Theorem 4.11. The transitive closure of R is the intersection of all the
transitive relations of which R is a subset, i.e.

R+ =
⋂
{S ⊆ A(2 ) | R ⊆ S and S is transitive}

Proof. Exercise.

4.5 Hasse Diagrams

A Hasse diagram is a kind of textual (paper or blackboard) diagrammatic
representation of a preorder v on a set A, made up of dots and straight
line segments directly connecting two dots (here “directly” means there are
no dots on the line segment other than the two being connected). The
line segments are of two kinds: (1) nonhorizontal (i.e. either slanting or
vertical) single line segments, and (2) horizontal double line segments. The
interpretation is as follows: the dots represent the members of A; if (the dots
representing) b and a are connected by a single nonhorizontal line segment
and b is higher (on the page or board) than a, then a � b; and if a and b
are connected by a horizontal double line segment, then a and b are ‘tied’,
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i.e. a v b and b v a. (So if v is an order, there will be no horizontal double
line segments.)

Any finite preorder can be represented by a Hasse diagram, but not
every infinite one can. (There can be infinite Hasse diagrams, but there
is not enough time to draw all of one! Sometimes the gist of an infinite
Hasse diagram can be conveyed with judicious use of ellipsis (“and so on”)
dots, though.) For antisymmetric preorders (i.e. orders) the property of
being representable by a Hasse diagram is easy to express precisely in set-
theoretic terms: it is the property of being the reflexive transitive closure
of its own covering relation. It can be shown (though the details are a bit
tedious) that any finite order has this property.



Chapter 5

Infinities

Two sets A and B are said to be equinumerous, written A ≈ B, iff there
is a bijection from A to B. It follows that a set is finite iff it is equinumerous
with a natural number.

It is easy to show that equinumerosity is an equivalence relation on the
powerset of any set. It is not hard to show that for any set A, ℘(A) ≈ 2A:
the bijection in question maps each subset of A to its characteristic function
(with respect to A).

Intuitively speaking, equinumerosity may seem to amount to “having the
same number of members”. As we soon will see, this intuition is essentially
on the mark in the case of finite sets. But when the sets involved are infinite,
intuition may fail us. For example, all the following sets can be shown to
be (pairwise) equinumerous: ω, ω × ω, the set Z of integers, and the set Q
of rational numbers.1

Not all infinite sets are equinumerous! To put it imprecisely but sug-
gestively, there are “different sizes of infinity”. For example, as Cantor
famously proved, ω 6≈ I, where I is the set of real numbers from 0 to 1.
It is beyond the scope of this book to consider how the real numbers are
modelled set-theoretically, but for our purposes it will suffice to think of I
as the set of “decimal expansions”, i.e. the set of functions from ω to 10 (=
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) excluding the ones which for some natural number
n assign 9 to every natural number greater than or equal to n.2 The proof
is surprisingly simple: suppose f is an injection from ω to I. Then f cannot

1Actually proving all these things would of course require us to model ‘the integers’
and ‘the rationals’ as sets. There are standard ways of doing that, but limitations of space
and time prevent us from spelling them out here.

2We can omit these because they have alternative decimal expansions, e.g. .7999. . .
represents the same real number as .8000. . ..
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be a surjection. To see why, let r be the member of I (i.e. the function from
ω to 10) which, for each n ∈ ω, maps n to 6 if f(n) = 5 and maps n to 5
otherwise. A moment’s thought shows that r cannot be in the range of f !

Theorem 5.1. For any set A, A 6≈ ℘(A).

Proof. Let g be a function from A to ℘(A). We will show g cannot be
surjective. To this end, let B = {x ∈ A | x /∈ g(x)}. Then obviously
B ∈ ℘(A). But B cannot be in the range of g. For suppose it were. In
that case there would exist a y ∈ A such that B = g(y). But then y ∈ B iff
y /∈ g(y) In other words, y ∈ B iff y /∈ B, a contradiction.

A set is said to be Dedekind infinite iff it is equinumerous with a proper
subset of itself. (Contrast this with the definition that a set is infinite if it
is not equinumerous with any natural number.)

Theorem 5.2. No natural number is Dedekind infinite.

Proof. Exercise. [Hint: show that the set whose members are the natural
numbers n such that every injective function from n to n is bijective is
inductive.]

Corollary 5.1. No finite set is Dedekind infinite..

Proof. Exercise.

Corollary 5.2. If A is Dedekind infinite, then it is infinite.

Proof. Exercise.

Is the converse of this corollary true? We will return to this question later
in this chapter.

Corollary 5.3. ω is infinite.

Proof. This follows from the preceding corollary together with the fact,
proved in Chapter 4, that the successor function is a bijection from ω to
ω \ {0}.

Corollary 5.4. No two distinct natural numbers are equinumerous.

Proof. Exercise. [Hint: use the fact (Chapter 4) that the ≤ order on ω is
connex, together with the theorem above.]
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Corollary 5.5. For Any finite set A, there is a unique natural number
equinumerous with A.

Proof. Exercise.

The unique natural number equinumerous with a finite set A is called the
cardinality of A, written |A|.

Lemma 5.1. If C ( n ∈ ω, then C ≈ m for some m < n.

Proof. Exercise. [Hint: show that the set whose members are those natural
numbers n such that any proper subset of n is equinumerous to a member
of n is inductive.]

Theorem 5.3. Any subset A of a finite set B is itself finite.

Proof. Let n = |B|, so there is a bijection f : B → n. Then f [A] ⊆ f [B] = n.
So either f [A] = n or f [A] ( n. If f [A] = n, then A ≈ B. If f [A] ( n, then
by the previous lemma f [A] ≈ m for some m < n.

We say a set A is dominated by a set B, written A � B, iff there is an
injection from A to B, or, equivalently, iff A is equinumerous with a subset
of B. If A � B and A 6≈ B, A is said to be strictly dominated by B,
written A � B or A ≺ B.

Some simple exercises are to show that for any sets A, B, and C, (a)
A � A; (b) if A � B and B � C then A � C; and (c) A � ℘(A).

Theorem 5.4 (Schröder-Bernstein). For any sets A and B, if A � B and
B � A, then A ≈ B.

We have the resources to prove this, but since the proof is rather involved,
we postpone it to the appendix.

Before continuing, we need to add to our list of assumptions about sets
again (remember our last new assumption was that there is a set whose
members are the natural numbers). To state the new assumption, we first
need a couple of definitions. First, if A is a set, then the nonempty power-
set of A, written ℘ne(A), is just ℘(A)\{∅}, i.e. the set of nonempty subsets
of A. And second, a choice function for A is a function c : ℘ne(A) → A
such that, for each nonempty subset B of A, c(B) ∈ B. The new assumption
is this:

Assumption 8 (Choice). There is a choice function for any set.
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It has been proved (by Paul Cohen, in 1963) that Choice is independent of
the other assumptions we have made, in the sense that, if in fact our other
assumptions are consistent, then either one of Choice or its denial (that
some set does not have a choice function) can be added without leading
to inconsistency. But as a practical matter, most working mathematicians
prefer to assume Choice, because there are so many useful theorems that
cannot be proved without it. One such theorem is the following:

Theorem 5.5. If A is infinite, then ω � A.

This proof is also deferred to the appendix.

Theorem 5.6 (Dedekind-Pierce). A set is infinite iff it is Dedekind infinite.

Proof. The only-if part was proven above. Now suppose A is infinite. Then
ω � A, that is, there is an injection f : ω → A. Now define a bijection
g : A → A \ {f(0)} as follows: if a ∈ A is not in the range of f , then
g(a) = a; and if a is in the range of f , so that a = f(n) for some n ∈ ω,
then g(a) = f(n + 1). It is easy to see that g is injective and its range is
A \ {f(0)}.

A set is said to be countable if it is dominated by ω. An infinite count-
able set is called denumerable, denumerably infinite, or countably
infinite. A set which is not countable is called uncountable, nondenu-
merable, or nondenumerably infinite.

Corollary 5.6. Any countably infinite set is equinumerous with ω.

Proof. Exercise.

Corollary 5.7. Any infinite subset of ω is equinumerous with ω.

Proof. Exercise.

Some standard examples of countably infinite sets are the following: ω,
ω × ω, the positive natural numbers, the even natural numbers, Z (the in-
tegers), and Q (the rationals). Some standard examples of nondenumerable
sets are R (the reals), the subset I of R consisting of the real numbers
between 0 and 1 (including 0 and 1), and ℘(ω).

Now consider the following statement:

Proposition 5.1 (Continuum Hypothesis). There is no set A such that
ω � A � ℘(ω).
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This hypothesis has the same status as the Assumption of Choice: it can be
proven to be independent of our other assumptions. The same is true of the
following generalized form of the Continuum Hypothesis:

Proposition 5.2 (Generalized Continuum Hypothesis). For any infinite set
B, there is no set A such that B � A � ℘(B).



Chapter 6

Introduction to Formal
Languages

It is a familiar and basic intuition that language somehow involves string-
ing things together. Examples include stringing phonemes together to form
syllables or (phonologies of) morphemes, stringing morphemes together to
form words, stringing words together to form phrases (including sentences),
and stringing sentences together to form discourses. Indeed, in the early
days of syntactic theory (early to mid 1950s), natural languages were mod-
elled as sets of strings, and the notion of a grammar was identified with a
mathematical device for listing the members of such sets. But what exactly
is a string?

6.1 Strings

As we saw in Chapter 4, for every natural number n,

n = {m ∈ ω | m < n}
Let us now consider, for some set A and some n ∈ ω, the set An , i.e. the set
of arrows (functions with specified codomains) from n to A. The members
of this set are called the A-strings of length n. In a linguistic application,
we would think of the members of A as linguistic entities of some kind
(phonemes, morphemes, words, etc.) that we would like to be able to string
together, and of a particular A-string of length n > 0, f , as one of the
possible results of stringing n such entities together, namely the one starting
with f(0), then f(1), then f(2), etc. If f(i) = ai for all i < n, then we usually
denote f by the string (in the informal sense) of symbols a0 . . . an−1 . (But in
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working with strings, it is important to remember that, technically, a string
is not really a bunch of symbols lined up from left to right on a page, but
rather a function whose domain is a natural number.) Also, it’s important
to note that there is exactly one A-string of length 0, denoted by εA (or just
ε when no confusion is possible).1 The set of all A-strings of length greater
than 0 is denoted by A+.

For strings of length 1, a mild notational confusion arises: if f : 1 → A
and f(0) = a, then the notation ‘a’ could refer to either a itself (a member
of A), or to the length-one A-string f . It should be clear from context which
is intended. Note also that an A-string of length one is the same thing as a
nullary operation on A.

The “infinite counterpart” of an A-string is called an infinite A-se-
quence; technically, an infinite A-sequence is a function from ω to A.

The set of all A-strings, i.e. the union of all the sets An , for all n ∈ ω, is
written A∗. Thus A∗ = A+ ∪ {εA}. When the identity of the set A is clear
from context, we usually speak simply of strings, rather than A-strings. It
should be obvious that there is a function from A∗ to ω that maps each string
to its length, and that the relation on strings of having the same length is
an equivalence relation. Of course the sets in the partition induced by that
equivalence relation are just the sets An . If A is a subset of another set B,
then clearly there is an injection η : A∗ → B∗ that maps each A-string to a
B-string just like it except that its codomain is B instead of A.

For each n ∈ ω, there is an obvious bijection from A(n) to An . For n ≥ 2,
the bijection maps each n-tuple 〈a0 , . . . , an−1 〉 to the string a0 . . . , an−1 .
For n = 1, it maps each a ∈ A to the length-one string that maps 0 to a;
and for n = 0, it is the (only) function from 1 to {εA}, i.e. the function that
maps 0 to εA.

The binary operation of concatenation on A∗, written _, can be de-
scribed intuitively as follows: if f and g are strings, then f _ g is the string
that “starts with f and ends with g.” More precisely, for each pair of natural
numbers 〈m,n〉, if f and g are strings of length m and n respectively, then
f _ g is the string of length m+ n such that

1. (f _ g)(i) = f(i) for all i < m; and

2. (f _ g)(m+ i) = g(i) for all i < n.

It can be proven inductively (though the details are quite tedious) that for

1In Chapter 3, we called this ♦A, but the name εA is more usual when we are thinking
of it as a string.
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any strings f , g, and h, the following equalities hold:2

1. (f _ g) _ h = f _ (g _ h)

2. f _ ε = f = ε _ f

Usually concatenation is expressed without the “_”, by mere juxtaposition;
e.g. fg for f _ g. And because concatenation is an associative operation,
we can write simply fgh instead of f(gh) or (fg)h.

6.2 Formal Languages

A formal (A-)language is defined to be a subset of A∗. But when it is clear
that we are talking about formal languages rather than natural languages,
we will usually just speak of an A-language, or simply a language if the
identity of A is clear from the context. In the most straightforward applica-
tion of formal languages to linguistics, we mathematically model a natural
language as a set of A-strings, where A is a set each of whose members is (a
representation of ) one of the words of the natural language in question. Of
course this is a very crude model, since it disregards any linguistic structure
a sentence has other than the temporal sequence of the words themselves.
Additionally, once one speaks of a sentence as a string of words, one is im-
mediately faced with the question of what counts as a word, or, to put it
another way, what criterion of identity one is using for words. Is it enough
to be homophonous (i.e. to sound the same), so that meat and meet count
as the same word? Or to be homographic (written the same), so that row
‘linear array’ and row ‘fight’ count as the same word? Or must two words
have the same sound, meaning, and ‘part of speech’ (whatever we think that
is), so that murder counts as two words (one a noun and one a verb)? We
will return to these and related questions in later chapters.

For the time being, we set such issues aside and assume we know what we
mean by a ‘word’. Assuming that, we can begin theorizing about questions
such as the following: How many sentences (qua word strings) does the
language have? Is there a way to list all its members? Is there a way to
decide whether a given word string is a sentence of the language? Can we
construct a plausible model of the process by which people who know the
language recognize that a given string is a sentence of the language? Can the

2As we will see later, the truth of these equations means that A∗ together with the
nullary operation ε and the binary operation _ is an instance of a kind of algebra called
a monoid; i.e. (1) _ is an associative operation, and (2) ε is a two-sided identity for _.
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processing model somehow be extended to a model of how language users
interpret utterances in context?

In order to address such questions, we need some techniques for defining
formal languages. Since natural languages uncontroversially have an infini-
tude of sentences (how do you know?), it will not do to just make a list of
A-strings. In due course we’ll consider various kinds of formal grammars—
mathematical systems for specifying formal languages—but we already have
a powerful tool for doing just that, namely the Recursion Theorem (RT).
One important way RT is used to specify an A-language L is roughly as
follows: we start with (1) a set L0 of A-strings which we know to be in the
A-language we wish to define, and (2) a general method for adding more
strings to any arbitrary set of strings, i.e. a function F from A-languages to
A-languages. We can think of L0 as the “dictionary” of the language we are
trying to define and F as its “rules”. We then define L as the union of the
infinite sequence of languages L0 , . . . , Ln , . . . where for each k ∈ ω, Lk+1 is
the result of appying F to Lk .

To make this precise, it will help to introduce a little notation. First,
suppose B is a set, n ∈ ω, and f : n→ B (in our applications, B will usually
be ℘(A∗).) Suppose also that for each i < n, f(i) = xi . Then

⋃
ran(f) is

written
⋃

i<nxi . If f is an infinite sequence in B, i.e. a function from ω
to B, and f(n) = xn for all n ∈ ω, then

⋃
ran(f) is written

⋃
n∈ωxn . For

example, it’s not hard to see that
⋃

n∈ωA
n = A∗.

We now give a simple example of a recursive definition for a language.
Intuitively, a mirror image string in A is one whose second half is the reverse
of its first half. Informally, we define the language Mir(A) as follows:

1. ε ∈ Mir(A);

2. If x ∈ Mir(A) and a ∈ A, then axa ∈ Mir(A);

3. Nothing else is in Mir(A).

Formally, this definition is justified by the RT as follows (here X, x, and F
are as in the statement of RT in Chapter 4) we take X to be ℘(A∗), x to be
{ε}, and F : ℘(A∗)→ ℘(A∗) to be the function such that for any A-language
S,

F (S) = {y ∈ A∗ | ∃a∃x[a ∈ A ∧ x ∈ S ∧ y = axa]}

.
RT then guarantees the existence of a function h : ω → ℘(A∗) such that
h(0) = {ε} and for every n ∈ ω, h(suc(n)) = F (h(n)). Finally, we define
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Mir(A) to be
⋃

n∈ωh(n). Intuitively, h(n) is the set of all mirror image
strings of length 2n.

6.3 Operations on Languages

Let A be a set, so that A∗ is the set of A-strings, ℘(A∗) is the set of A-
languages, and ℘(℘(A∗)) is the set whose members are sets of A-languages.

We introduce the following notations for certain particularly simple A-
languages:

a. For any a ∈ A, a is the singleton A-language whose only member is
the string of length one a (remember this is the function from 1 to A
that maps 0 to a).

b. ε is the singleton A-language whose only member is the null A-string
(i.e. the unique arrow from 0 to A). An alternative notation for this
language is IA.

c. ∅ as always is just the empty set, but for any A we can also think
of this as the A-language which contains no strings! An alternative
notation for this language is 0A.

Next, we define some operations on ℘(A∗). In these definitions L and
M range over A-languages.

a. The concatenation of L and M , written L•M , is the set of all strings
of the form u _ v where u ∈ L and v ∈M .

b. The right residual of L by M , written L/M , is the set of all strings
u such that u _ v ∈ L for every v ∈M .

c. The left residual of L by M , written M\L, is the set of all strings u
such that v _ u ∈ L for every v ∈M .

d. The Kleene closure of L, written kl(L), has the following informal
recursive definition (formalizing this definition will be an exercise):

i. (base clause) ε ∈ kl(L);

ii. (recursion clause) if u ∈ L and v ∈ kl(L), then uv ∈ kl(L); and

iii. nothing else is in kl(L).
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To put it even less formally but more intuitively: the Kleene closure
of L is the language whose members are those strings that result from
concatenating together zero or more strings drawn from L.

e. The positive Kleene closure of L, written kl+(L), has the following
informal recursive definition:

i. (base clause) If u ∈ L, then u ∈ kl+(L);

ii. (recursion clause) if u ∈ L and v ∈ kl+(L), then uv ∈ kl+(L); and

iii. nothing else is in kl+(L).

Intuitively: the positive Kleene closure of L is the language whose
members are those strings that result from concatenating together
one or more strings drawn from L.

6.4 Regular Languages

Linguists are often concerned not just with languages, but with sets of lan-
guages, e.g. the set of finite languages, the set of decidable languages (lan-
guages for which an algorithm exists that tells for any given string whether
it is in the language), the set of recursively enumerable languages (languages
for which an algorithm exists for listing all its strings while not listing any
strings not in the language), etc. In computational linguistics applications,
one of the most important sets of languages is (for a fixed alphabet A) the
set Reg(A) of regular A-languages. As with many other important sets of
languages, there are several different ways to define this set, all of which give
the same result. For our purposes, the simplest way is a recursive definition.
The informal version runs as follows:

1. For each a ∈ A, a ∈ Reg(A);

2. 0A ∈ Reg(A);

3. IA ∈ Reg(A);

4. for each L ∈ Reg(A), kl(L) ∈ Reg(A);

5. for each L,M ∈ Reg(A), L ∪M ∈ Reg(A);

6. for each L,M ∈ Reg(A), L •M ∈ Reg(A); and

7. nothing else is in Reg(A).
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Note that in this definition, the first three clauses are base clauses and
the next three are recursion clauses. The formalization of this definition
using RT is left as an exercise. (Hint: remember that we are defining not a
language, but rather a set of languages, and therefore the choice of X (as in
the statement of RT in Chapter 4) is not ℘(A∗) but rather ℘(℘(A∗)).

6.5 Context-Free Grammars

Context-free grammars (CFGs) are a particular way of defining languages
recursively that is very widely used in syntactic theory; in one form or an-
other, CFGs play a central role in a wide range of syntactic frameworks (here
‘framework’ means, roughly, a research paradigm or community), including,
to name just a few, all forms of transformational grammar (TG); many kinds
of categorial grammar (CG); lexical-functional grammar (LFG); generalized
phrase structure grammar (GPSG); and head-driven phrase structure gram-
mar (HPSG). In due course it will emerge that CFGs are a rather blunt
instrument for modelling natural languages, but they are a good point of
departure in the sense that they can be elaborated, refined, and adapted in
many ways (some of which we will examine closely) that make them more
suitable for this task.

The basic idea behind CFGs is to simultaneuously recursively define a
finite set of different languages, each of which consitutes a set of strings that
have the same “distribution” or “privileges of occurrence” or “combinatory
potential” in the whole language being defined, which is the union of that
set of languages. The languages in that family are called the syntactic
categories of the whole language.

Getting technical, a CFG consists of four things: (1) a finite set T whose
members are called terminals; (2) a finite set N whose members are called
nonterminals; (3) a finite set D of ordered pairs called lexical entries,
each of which has a nonterminal as its left component and a terminal as
its right component3; and (4) a finite set P of ordered pairs called phrase
structure rules (or simply PSRs), each of which has a nonterminal as its
left component and a non-null string of nonterminals as its right component4.

Intuitively, the terminals are the words (or word phonologies, or word
orthographies – see above) of the language under investigation. The non-

3Formal language theorists usually allow any T -string as the right component of a
lexical entry, but we will not need this generality for our applications.

4Formal language theorists usually allow any (N ∪ T )-string containing at least one
nonterminal as the right component of a PSR, but again this generality goes beyond the
needs of our linguistic applications.
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terminals are names of the syntactic categories. The lexical entries make
up the dictionary (or lexicon) of the language. And the PSRs provide a
mechanism for telling which strings (other than length-one strings of words)
are in the language and what syntactic categories they belong to. Once all
this is made more precise, the CFG will specify, for each nonterminal A, a
T -language CA, and the language defined by the CFG will be the union over
all A ∈ N of the CA.

We’ll make all this precise in two stages, first using an informal recursive
definition (the usual kind), and then a more informal or ‘official’ definition
employing the Recursion Theorem (RT).

First, the informal version. As with all recursive definitions, a CFG has
a base part and a recursion part. The base part makes use of the lexicon D
and the recursion part uses the set P of PSRs. Starting with the lexicon,
remember that formally a lexical entry is an ordered pair 〈A, t〉 ∈ D ⊆ N×T ;
but formal language theorists usually write entries in the form

A→ t

to express that 〈A, t〉 ∈ D. In the informal recursive definition, the signifi-
cance of a lexical entry expressed as follows:

If A→ t, then t ∈ CA.

That is: for any terminal a which the dictionary pairs with the nonterminal
A, the string a of length one will be in the category which that nonterminal
names.

Note that it is conventional to abbreviate sets of lexical entries with the
same left-hand side using curly brackets on the right-hand side, e.g.

A→ {t1 , t2}

abbreviates

A→ t1

A→ t2

As mentioned above, the recursive part of the (informal) recursive def-
inition draws on the set P of PSRs. Technically, a PSR is an ordered pair
〈A,A0 . . . An−1 〉 ∈ P ⊆ N × N+, but formal language theorists usually
write form
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A→ A0 . . . An−1

to express that 〈A,A0 . . . An−1 〉 ∈ P . In the informal recursive definition,
the significance of a PSR is expressed this way:

If A→ A0 . . . An−1 and for each i < n, si ∈ CAi , then s0 . . . sn−1 ∈ CA.

That is: if, for each nonterminal on the right-hand-side of some rule, we
have a string belonging to the category named by that nonterminal, then
the result of concatenating together all those strings (in the same order in
which the corresponding nonterminals appear in the rule) is a member of
the category named by the nonterminal on the left-hand side of the rule.

As with lexical entries, sets of rules with the same left-hand side can be
abbreviated using curly brackets on the right-hand side.

Before going on to the formal, RT-based formulation of CFGs, we illus-
trate the informal version with a ‘toy’ (i.e. ridiculously simplified) linguistic
example.

T = {Fido,Felix,Mary, barked, bit, gave, believed, the, cat, dog, yesterday}

N = {S,NP,VP,TV,DTV,SV,Det,N}

D consist of the following lexical entries:

NP→ {Fido,Felix,Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ believed

Det→ the

N→ {cat, dog}
Adv→ yesterday

P consists of the following PSRs:

S→ NP VP

VP→ {TV NP,DTV NP NP,SV S,VP Adv}
NP→ Det N
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In this grammar, the nonterminals are names for the syntactic categories of
noun phrases, verb phrases, transitive verbs, sentential-complement verbs,
ditransitive verbs, determiners, and common noun phrases.5 The lexical
entries tell us, for example, that Felix (the length-one word string, not the
word itself) is a member of the syntactic category CNP, and the PSRs tell us,
for example, that the string that results from concatenating two strings, one
belonging to the syntactic category CNP (e.g. Felix) and the other belonging
to the syntactic category CVP (e.g. barked), in that order (in this case, the
length-two string Felix barked), belongs to the syntactic category CS.

Finally, we show how to formalize the simultaneous recursive definition
of the syntactic categories associated with a CFG, using the RT. As always
when applying the RT, the key is making the right choice for the three
pieces of data X, x, and F . Since we are defining not a language but rather
a function from nonterminals to languages, the right choice for X is not
℘(T ∗) but rather ℘(T ∗)N ; x will be a member of this set, and F will be a
function from this set to itself.

So what is x? Intuitively, it should tell us, for each nonterminal A,
which strings are in the syntactic category CA by virtue of the lexicon alone,
i.e. without appealing to the recursive part of the defnition (the PSRs). That
is, x is the function that maps each nonterminal A to the set of strings t (all
of which will have length one) such that A→ t is one of the lexical entries.

What about F? What should be the result of applying F to an arbitrary
function L : N → ℘(T ∗)? Well, for each A ∈ N , we will want F (L)(A) to
contain all the strings that were in L(A), together with any strings that
can be obtained by applying a rule of the form A→ A0 . . . An−1 to strings
s0 , . . . , sn−1 , where, for each i < n, si belongs to the language that L
assigned to Ai . Another way to say this is that F maps each L to the
function that maps each nonterminal A to the language which is the union
of the following two languages: (1) L(A), and (2) the union, over all rules
of the form A→ A0 . . . An−1 , of the languages L(A0 ) • . . . • L(An−1 ).

Given these values of X, x, and F , the RT guarantees us a unique func-
tion h from ω to functions from N to ℘(T ∗). Finally, for each nonterminal
A, we define the corresponding syntactic category to be

CA =def

⋃
n∈ωh(n)(A)

A suggested exercise here is to calculate, for as many values of n as you have

5The category names are a bit confusing, since the categories of noun phrases, verb
phrases, and common noun phrases are allowed to contain length-one strings (intuitively,
words).
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patience for, and for each nonterminal A, the value of h(n+ 1)(A) \h(n)(A)
(that is, the set of strings that are added to CA at the nth recursive step).



Chapter 7

(Pre)Semilattices and Trees

7.1 Informal Motivation

As we will illustrate presently, given a CFG 〈T,N,D, P 〉, a nonterminal A ∈
N , and a T -string s ∈ CA, we can use the CFG to guide us in constructing
a proof that s ∈ CA. In fact, as anyone who has taken a course in formal
language theory or computational linguistics will already realize, there are
general procedures for deciding, given any CFG 〈T,N,D, P 〉, any T -string s
and any nonterminal A, whether or not s ∈ CA. Such a procedure is called
a recognizer because it tells, in effect, whether the CFG recognizes a given
string as a member of a given syntactic category. In order to decide correctly
that s ∈ CA, the recognizer essentially must construct a proof that this is
the case. What about making the correct decision when s /∈ Ca? For that
to be possible, the recognizer must in some sense ‘know’ when it has gotten
to the point where, had there been a proof that s ∈ CA, it would have found
one; at that point it would render a negative decision. A parser, roughly
speaking, is just a recognizer which renders not merely a decision but also
(symbolic representations of) the proofs (if any) upon which the decision
was based.

The construction of recognizers and parsers for CFGs and other kinds
of formal grammars, one of the central concerns of both formal language
theorists and of computational linguists, is a very highly evolved and subtle
discipline, which unfortunately is beyond the scope of this book. However,
the fundamental distinction between a parser and a (mere) recognizer has an
analog that is relevant even for empirical/theoretical linguists (as opposed to
formal language theorists and computational linguists), namely the intuition
that a sentence is not just a string of words that belongs to CS but rather a
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way that the string in question belongs to CS. To take a very simple example,
let’s consider a slightly expanded version of the toy English grammar in
Chapter 6, as follows:

T = {Fido, Felix, Mary, barked, bit, gave, believed, heard, the, cat, dog,
yesterday}

N = {S, NP, VP, TV, DTV, SV, Det, N, Adv}

D consist of the following lexical entries:

NP→ {Fido, Felix, Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ {believed, heard}
Det→ the

N→ {cat, dog}
Adv→ yesterday

P consists of the following PSRs:

S→ NP VP

VP→ {TV NP, DTV NP NP, SV S, VP Adv}
NP→ Det N

The only additions are (1) the nonterminal Adv (adverb); (2) the terminals
heard and yesterday; (3) the lexical entries for yesterday as an adverb and for
heard as a sentential-complement verb; and (4) the PSR VP→ VP Adv.

Now consider the string s = Mary heard Fido bit Felix yesterday.
According to our grammar, s ∈ CS (the syntactic category of sentences), but
few (if any) syntacticians would say that s is an English sentence! Rather,
they would say that the word string s corresponds to two different sentences,
one roughly paraphrasable as Mary heard yesterday that Fido bit Felix and
another roughly paraphrasable as Mary heard that yesterday, Fido bit Felix.
Of course, these two sentences mean different things; but more relevant for
our present purposes is that we can also characterize the difference between
the two sentences purely in terms of two distinct ways of proving that s ∈ CS.
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To understand this point, remember from Chapter 6 that the set of syn-
tactic categories is (informally) defined by simultaneous recursive definition
as follows:

1. (Base Clause) If A→ t, then t ∈ CA.

2. (Recursion Clause) If A→ A0 . . . An−1 and for each i < n, si ∈ CAi ,
then s0 . . . sn−1 ∈ CA.

Then the two proofs run as follows:

Proof 1. From the lexicon and the base clause, we know that Mary, Fido,
Felix ∈ CNP, heard ∈ CSV, bit ∈ CTV, and yesterday ∈ CAdv. Then,
by repeated applications of the recursion clause, it follows that:

a. since bit ∈ CTV and Felix ∈ CNP, bit Felix ∈ CVP;

b. since bit Felix ∈ CVP and yesterday ∈ CAdv, bit Felix yesterday
∈ CVP;

c. since Fido ∈ CNP and bit Felix yesterday ∈ CVP, Fido bit Felix
yesterday ∈ CS;

d. since heard ∈ CSV and Fido bit Felix yesterday ∈ CS, heard
Fido bit Felix yesterday ∈ CPVP; and finally,

e. since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP,
Mary heard Fido bit Felix yesterday ∈ CS.

Proof 2. The same as Proof 1, up through step a. From there, we proceed
as follows:

a. since Fido ∈ CNP and bit Felix ∈ CVP, Fido bit Felix ∈ CS;

b. since heard ∈ CSV and Fido bit Felix ∈ CS, heard Fido bit
Felix ∈ CVP;

c. since heard Fido bit Felix ∈ CVP and yesterday ∈ CAdv, heard
Fido bit Felix yesterday ∈ CVP; and finally,

d. since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP,
Mary heard Fido bit Felix yesterday ∈ CS.
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There is nothing complicated about any of this, but this is not how a syntac-
tician would usually describe the difference between the two homophonous
sentences. Instead, s/he would draw two different tree diagrams as in Figures
7.1 and 7.2.

S

VP

S

VP

Adv

yesterday

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Figure 7.1: Tree diagram with ‘low’ adverb attachment.

But what exactly are tree diagrams, and what is supposed to be their re-
lationship to the linguistic phenomena being theorized about? Well, roughly
speaking (we will get more precise in the following two sections), the dia-
grams are elaborated Hasse diagrams of mathematical objects called labelled
trees. And what are labelled trees? Well, trees are partially ordered sets of
a certain kind, and a labelled tree is a tree together with a function that
assigns things called labels to the members (called nodes) of the partially
ordered set. When syntacticians use labelled trees, the labels assigned to
the minimal nodes are drawn from the set T of terminals and the labels
assigned to the other nodes are drawn from the set N of nonterminals.

Intuitively, it is pretty clear that these two tree diagrams are closely
related to, or in some sense correspond to, the two proofs given earlier
(though the precise relationship remains quite obscure at this stage). But
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Figure 7.2: Tree diagram with ‘high’ adverb attachment.

when we begin to construct a linguistic theory, which should we use? Should
we use labelled trees or elaborations of them as set-theoretic idealizations
of sentences, as is done in syntactic frameworks such as HPSG (head-driven
phrase structure grammar) and LFG (lexical-functional grammar)? Or is
it better to think of a sentence as a proof that a certain string belongs to
a certain syntactic category, as is done in CG (categorial grammar)? Or
is it perhaps best to use a hybrid approach with both set-theoretic and
proof-theoretic aspects, such as most forms of transformational grammar
(TG), which include MP (the Minimalist Program) and its predecessor GB
(Government-Binding)? We will not be able to answer these questions until
we start to formalize logic and look at how formal logic is applied to linguistic
theory. But because tree representations are so widely used by syntacticians
(not to mention semanticists, computational linguists, and logicians), it is
important for us to get clear early on precisely what trees are and how
syntacticans use them. To that end, it will be convenient to first consider
some somewhat more general notions, (pre-)semilattiices, of which trees are
a special case. These will turn out to have a wide range of other special
cases, such as residuated lattices, heyting algbras, and boolean algebras,
with importnat linguistic applications of their own.
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7.2 LUBs, GLBs, and (Pre-)Semilattices

7.2.1 Least Upper Bounds and Greatest Lower Bounds

Throughout this section, v is a preorder on a set A, and ≡ (=≡ v) is the
equivalence relation induced by the preorder.

Suppose a ∈ A and S ⊆ A. Recall (Chapter 3, subsection 3.3.2) that a
is a greatest (respectively, least) member of S provided, for every b ∈ S,
b v a (respectively, a v b). Greatest (least) members of A are called tops
(bottoms). All greatest (least) members of S are equivalent. So if v is
an order, than S can have at most one greatest (least) member (because
the equivalence relation induced by an order is the identity relation). In
particular, in an order, there can be at most one top and at most one
bottom.

Continuing to suppose a ∈ A and S ⊆ A, recall also that a is a maximal
(respectively, minimal) member of S iff, for every b ∈ S, a v b (respectively,
b v a) implies that a ≡ b. We observed that if v is an order, then if a is the
greatest (least) member of S, then it is also the unique maximal (minimal)
member of S.

If S ⊆ A and a ∈ A, we call a an upper (lower) bound of S provided,
for every b ∈ S, b v a (respectively, a v b). Thus by definition a greatest
(least) member of S is an upper (lower) bound of S; but the upper (lower)
bounds of S need not be members of S. In case S = A, the notions of
upper bound and greatest member (top) (lower bound and least member
(bottom)) coincide.

The set of upper (lower) bounds of S is denoted by UB(S) (LB(S)). In
case S is a singleton {a}, UB(S) (LB(S)) is written ↑ a (↓ a), read up of a
(down of a).

A least member of UB(S) is called a least upper bound (lub) of S,
and a greatest member of LB(S) is called a greatest lower bound (glb)
of S. In case S = A, the notions of lub and top (glb and bottom) coincide.
(A good exercise here is to find an example where a lub of S does not belong
to S.) If S has a unique glb (lub), it is written

d
S (
⊔
S). If A has a unique

top (bottom), it is written > (⊥). (A good exercises here is to show that
if there are any bottoms, they are the least upper bounds of ∅, and if there
are any tops, they are the greatest lower bounds of ∅.)

If v is an order on A and S ⊆ A, then S can have at most one glb (lub).
(Why?) For the case S = A, this means there can be at most one top and
at most one bottom. In the special case S = {a, b}, if S has a glb (lub), it is
written au b (at b). It is an easy but tedious exercise to show the following,
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for all a, b, c ∈ A:

Facts about u and t when v is an order:

1. (Idempotence) a u a exists and equals a;

2. (Commutativity) if a u b exists, so does b u a, and they are equal;

3. (Associativity) if (a u b) u c and a u (b u c) exist, they are equal; and

4. (Interdefinability) a v b iff a u b exists and equals a.

Given these facts, one can immediately establish corresponding facts with all
instances of u replaced by t, by considering A with the opposite (or dual)
order v −1 , usually called v op. This is an example of a widely used proof
technique called duality whereby a result about a preorder is reinterpreted
as a result about the dual (pre-)order.

Now suppose we have two sets A and B preordered by v and ≤ respec-
tively. A function f : A → B is called monotonic or order-preserving
with respect to the given preorders provided, for all a, a′ ∈ A, if a v a′, then
f(a) ≤ f(a′); and f is called antitonic or order-reversing with respect to
the given preorders provided for all a, a′ ∈ A, if a v a′ then f(a′) ≤ f(a). A
monotonic (respectively, antitonic) bijection is called a preorder isomor-
phism (respectively, preorder anti-isomorphism) provided its inverse is
also monotonic (respectively, antitonic). Two preordered sets are said to
be preorder-isomorphic provided there is a preorder isomorphism from
one to the other. Intuitively speaking, preorder-isomorphic preorders are
“copies of each other”, differing only in which members they contain.

It is possible to consider to different preorders on the same set. For
example, besides the usual order ≤ on the nonzero natural numbers, we
could also the consider the order v that holds between a pair of nonzero
natural numbers if the first is a factor of (i.e. divides evenly into) the second.

If v and ≤ are two preorders on the same set A, we can ask whether the
identity function on A is monotonic from the first to the second. Interest-
ingly, many (all?) languages have a special grammatical construction, called
the correlative comparative construction, to describe situations of this
kind. A typical English example is a sentence such as The more expensive an
SUV is, the more cupholders it has, which asserts that the identity function
on the set of SUVs is monotonic from v to ≤, where, for two SUVs a and
b, a v b means b costs at least as much as a, and a ≤ b means that b has at
least as many cupholders as a.
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7.2.2 (Pre-)semilattices

Now let A be a set with a preorder v and a binary operation u (t) such that,
for all a, b ∈ A, a u b (a t b) is a glb (lub) of {a, b} (not necessarily the only
one). Such an operation is called a meet (join) operation, and a preorder
equipped with such an operation is called a lower (upper) presemilattice;
one with both is called a prelattice. If the preorder is an order, the pre-
prefix is dropped: thus, an order with a meet (join) is a lower (upper)
semilattice, and an order with both is simply a lattice. Then we have, for
all a, b, c, d ∈ A:

Facts about u in a lower presemilattice:

1. (Idempotence up to Equivalence) a u a ≡ a;

2. (Commutativity up to Equivalence) a u b ≡ b u a;

3. (Associativity up to Equivalence) (a u b) u c ≡ a u (b u c);

4. (Interdefinability) a v b iff a u b ≡ a;

5. (Monotonicity on Both Sides) For each a ∈ A, the function that maps
each b ∈ A to a u b (b u a) is monotonic.

6. (Substititivity up to Equivalence) If a ≡ c and b ≡ d then aub ≡ cud.

Duality gives corresponding facts for join in an upper presemilattice. We
also have the following:

Facts about u and t in a prelattice:

1. (Absorption up to Equivalence) (a t b) u b ≡ b ≡ (a u b) t b;

2. (Semidistributivity) (a u b) t (a u c) v a u (b t c).

A prelattice is called distributive if the inequality reverse to Semidistribu-
tivity holds:

a u (b t c) v (a u b) t (a u c)

holds. Thus in a distributive prelattice, we have the following (Distributivity
up to Equivalence):

a u (b t c) ≡ (a u b) t (a u c)
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It can be shown (though it is a fair amount of work) that this equivalence
holds in a prelattice just in case the dual one (formed by interchanging meets
and joins) does.

Of course all the equivalences stated in this section become equalities if
the preorder in question is an order.

7.3 Trees

7.3.1 Technical Preminaries

Here we gather together some facts that will simplify the discussion of trees.

Theorem 7.1. Any nonempty finite order has a minimal (and so, by dual-
ity, a maximal) member.

Proof sketch. Let T be the set of natural numbers n such that every ordered
set of cardinality n+1 has a minimal member, and show that T is inductive.
The main idea of the proof is to show that T is an inductive set.

Corollary 7.1. Any nonempty finite chain has a least (and so, by duality,
a greatest) member.

Proof. This follows from the fact (itself a simple consequence of connexity)
that in a chain, a member is least (greatest) iff it is minimal (maximal).

Theorem 7.2. For any natural number n, any chain of cardinality n is
order-isomorphic to the usual order on n (i.e. the restriction to n of the
usual ≤ order on ω).

Proof sketch. By induction on n. The case n = 0 is trivial. By inductive
hypothesis, assume the statement of the theorem holds for the case n = k
and let A of cardinality k + 1 be a chain with order v. By the Corollary,
A has a greatest member a, so there is an order isomorphism f from k to
A \ {a}. The rest of the proof consists of showing that f ∪ {〈k, a〉} is an
order isomorphism.

Theorem 7.3. Suppose v is an order on a finite set A. Then v= �∗.
That is: a finite order is the reflexive transitive closure of its own covering
relation.
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Proof. That �∗ ⊆v follows easily from the definition of reflexive transitive
closure and the the transitivity of v. To prove the reverse inclusion, suppose
a v b and let X be the (nonempty, finite) set of all subsets of A which, when
ordered by v, are chains with b as greatest member and a as least member.
(X is nonempty since one of its members is {a, b}.) Then X itself is ordered
by ⊆ X , and so by Theorem 7.1 has a maximal member C. Let n + 1 be
|C|; by Theorem 7.2, there is an order-isomorphism f : n+ 1→ C. Clearly
n > 0, f(0) = a, and f(n) = b. Also, for each m < n, f(m) � f(m + 1),
because otherwise, there would be a c properly between f(m) and f(m+1),
contradicfting the maximality of C.

7.3.2 Trees

We now define a tree is to be a finite set A with an order v and a top >,
such that the covering relation � is a function with domain A \ {>}. In the
linguistic community, the following terminology for trees is standard:

1. The members of A are called the nodes of the tree.

2. > is called the root.

3. If x v y, y is said to dominate x; and if additionally x 6= y, then y is
said to properly dominate x.

4. If x � y, then y is said to immediately dominate x. In that case
y = �(x) is called the mother of x, and x is said to be a daughter of
y.

5. Distinct nodes with the same mother are called sisters.

6. A minimal node (i.e. one with no daughters) is called a a terminal
node.

7. A node which is the mother of a terminal node is called a preterminal
node.

We state here some important facts about trees, sketching some of the
proofs and leaving others as exercises.

Theorem 7.4. No node can dominate one of its sisters.

Proof. Exercise.

Theorem 7.5. For any node a, ↑ a is a chain.
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Proof sketch. Use the RT to define a function h : ω → A, with X = A,
x = a, and F the function which maps non-root nodes to their mothers and
the root to itself. Now let Y = ran(h); it is easy to see that Y is a chain,
and that Y ⊆ ↑ a. It remains to show that ↑ a ⊆ Y . So assume b ∈ ↑ a; we
have to show b ∈ Y .

By definition of ↑ a, a v b, and so by Theorem 7.3 of section 7.3, a � ∗b.
From this and the definition (Chapter 4, section 4.4) of reflexive transitive
closure, it follows that there is a natural number n such that a � nb, where
�n is the n-fold composition of � with itself. In other words, there is an
A-string a0 . . . an such that a0 = a, an = b, and for each k < n, ak � ak+1 .
But then b = h(n), so b ∈ Y .

Corollary 7.2. Two distinct nodes have a meet iff they are comparable.

Proof. Exercise.

Theorem 7.6. Any two nodes have a lub (and so a tree is a join semilattice).

Proof. Exercise.

7.3.3 Ordered Trees

An ordered tree is a set A with two orders v and ≤, such that the following
three conditions are satisfied:

1. A is a tree with respect to v.

2. Two distinct nodes are ≤-comparable iff they are not v comparable.

3. (No-tangling condition) If a, b, c, d are nodes such that a < b, c � a,
and d � b, then c < d.

In an ordered tree, if a < b, then a is said to linearly precede b.

Theorem 7.7. If a is a node in an ordered tree, then the set of daughters
of a ordered by ≤ is a chain.

Proof. Exercise.

Theorem 7.8. In an ordered tree, the set of terminal nodes ordered by ≤
is a chain.

Proof. Exercise.
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7.4 Trees in Syntax

In many syntactic frameworks, ordered trees (often elaborated with some
additional structure) are employed in the modelling of linguistic expressions
(words and phrases). In such contexts, the trees are variously called phrase
structures, phrase structure trees, or phrase markers. Typically (though the
details differ from framework to framework, as discussed below), the gram-
mar (in the sense of the total theory of the particular natural language being
analyzed) will include a CFG 〈T,N,D, P 〉, and the phrase structure trees
will be ordered trees equipped with a labelling function that assigns termi-
nal symbols to terminal nodes and nonterminals to nonterminal nodes. We
then speak of the set of phrase structure trees generated by, or licensed
by, or admitted by the CFG, which is defined as follows:

The Set of Phrase Structure Trees Admitted by a CFG

A phrase structure tree is generated by the CFG 〈T,N,D, P 〉 iff

1. for each preterminal node with label A and (terminal) daughter with
label t, A→ t ∈ D; and

2. for each nonterminal nonpreterminal node with label A and linearly
ordered (as per Theorem 7.7) daughters with labels A0 , . . . , An−1 re-
spectively, (n > 0), A→ A0 . . . An−1 ∈ P .

Additionally, for a phrase structure tree with linearly ordered (as per The-
orem 7.8) set of terminal nodes a0 , . . . , an−1 with labels t0 , . . . , tn−1 re-
spectively, the string t0 . . . tn−1 is called the terminal yield of the phrase
structure tree.



Appendix A

Deferred Proofs

From Chapter 4

Theorem 4.4 (Recursion Theorem (RT)). Let X be a set, x ∈ X, and
F : X → X. Then there exists a unique function h : ω → X such that

h(0) = x, and (A.1)

for every n ∈ ω, h(suc(n)) = F (h(n)) (A.2)

In the following proof sketch, the key idea is to define

A ={v : ω ⇀ X |
v(0) = x↔ 0 ∈ dom(v) (a)

∧ ∀n ∈ ω(suc(n) ∈ dom(v)→ (n ∈ dom(v) ∧ v(suc(n)) = F (v(n))))
(b)

}

and then define h =
⋃
A.

The proof can be broken into four parts:

1. Show that h is (at least) a partial function.

2. Show that the two clauses in the definition of A hold when h = v.

3. Show that dom(h) is inductive.

4. Show that h is the only function from ω to X that satisfies the RT
conditions.

65
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Sketch of part 1. Let S = {n ∈ ω | for at most one y ∈ X, 〈n, y〉 ∈ h}. The
trick is to show S is inductive and that therefor S = ω by PMI.

Sketch of part 2. We already know that h : ω ⇀ X. For (a), suppose 0 ∈
dom(h). Then by definition of h, there is a v : ω ⇀ X such that v(0) = h(0).
But v(0) = x. For (b), suppose suc(n) ∈ dom(h). By definition of h again,
there is a v : ω ⇀ X such that v(suc(n)) = h(suc(n)). But v satisfies
(b), so n ∈ dom(v) and v(suc(n)) = F (v(n)). But by definition of h again,
h(n) = v(n). So h(suc(n)) = v(suc(n)) = F (v(n)) = F (h(n)).

Sketch of part 3. We need to show that dom(h) is inductive. Then dom(h) =
ω by PMI.

Sketch of part 4. Suppose two functions h and h′ from ω to X satisfy (A.1)
and (A.2). Then we need to show that

T =
{
n ∈ ω | h(n) = h′(n)

}
is inductive, and therefore T = ω by PMI.

From Chapter 5

Theorem 5.4 (Schröder-Bernstein). For any sets A and B, if A � B and
B � A, then A ≈ B.

Proof. By definition of �, there are injections f : A → B and g : B → A.
Let C be the unique function from ω to ℘(A) such that C(0) = A \ ran(g)
and C(n + 1) = g[f [C(n)]] for all n ∈ ω; henceforth we write Cn for C(n).
Now we define h : A → B such that h(x) = f(x) if x ∈

⋃
n∈ωCn and

h(x) = g−1 (x) otherwise; this makes sense since ran(g) = A \ C0 . We will
show h is bijective.

To show h is injective, suppose x and x′ are distinct members of A; it
suffices to show that h(x) 6= h(x′). Since f and g−1 are one-to-one, we need
only consider the case where x ∈ Cm and x′ /∈

⋃
n∈ωCn . Now we define

Dn = def f [Cn ] for all n ∈ ω, so that Cn+1 = g[Dn ]. Then h(x) = f(x),
which is in Dm ; but h(x′) = g−1 (x′), which is not in Dm (since otherwise
we would have x′ ∈ Cm+1 ). So h(x) 6= h(x′), as desired.

To show h is surjective, let y ∈ B; we will show that y ∈ ran(h). Clearly,
for each n, Dn ⊆ ran(()h). So we can assume y ∈ B \

⋃
n∈ωDn . Next, we

note that, for all n, g(y) /∈ Cn (the proof, which is inductive, is left as an
exercise). Therefore g(y) /∈

⋃
n∈ωCn . So h(g(y)) = g−1 (g(y)) = y. So

y ∈ ran(h).
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Theorem 5.5. If A is infinite, then ω � A.

Proof. Let c be a choice function for A, and let h be the unique function
from ω to ℘(A) such that h(0) = ∅ and h(n + 1) = h(n) ∪ {c(A \ h(n))}
for all n ∈ ω. Note for future reference that for any m,n ∈ ω with m < n,
h(m+1) ⊆ h(n). Also define g : ω → A by g(n) =def c(A\h(n)), so that, for
each n ∈ ω, h(n+1) = h(n)∪{g(n)}, and consequently also g(n) ∈ h(n+1).
Clearly, for all n ∈ ω, g(n) /∈ h(n), since g(n) = c(A \ h(n)) ∈ A \ h(n).

To complete the proof, we will show g is injective. So let m and n be
distinct natural numbers; without loss of generality we can assume that
m < n. Then g(m) ∈ h(m+1), and so g(m) ∈ h(n). But we already showed
that g(n) /∈ h(n), so g(m) 6= g(n); this shows g is injective as required.
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