
PROBLEM SET EIGHT: LAMBEK CALCULUS

Background

Traditionally, logic was concerned with establishing principles of valid argu-
mentation, or, to put it another way, with determining under what con-
ditions a proposition (the conclusion) can be said to follow from other
propositions (the premisses). More specifically, classical propositional logic
sought to establish such principles solely on the basis of how the expressions
which express propositions—declarative sentences—are combined, leaving
aside how simple sentences themselves are constructed from smaller expres-
sions (such as nouns, verbs, adjectives, determiners, etc.).

In this course, so far we have taken a semantic approach, focusing not
on sentences but rather on the propositions that they express. We modelled
propositions as elements of a pre-boolean algebra, entailment as the pre-
order on that algebra, and the meanings of the various ways of combining
sentences as the algebra operations. But in the traditional, proof-theoretic
(i.e. symbol-manipulating) approaches usually taken in introductory logic
courses, one never talks about the propositions themselves but rather the
sentences that express them, or more precisely, formulas in some logical lan-
guage (usually classical propositional logic or classical first-order predicate
logic) that serve as (extremely) idealized stand-ins for the sentences. Rather
than directly analyzing the entailment relation between propositions, instead
one works with a provability relation denoted by the ‘turnstile’ symbol ⊢)
between formulas, or between finite sets of formulas and formulas, and asks
which statements of the form Γ ⊢ A can we prove (where Γ is a finite set of
formulas and A is a formula).

In one standard approach of this kind, called sequent-style natural
deduction, one starts with certain sequents (statements of the form Γ ⊢ A)
called axioms and then proves more sequents (called theorems) from the
axioms, using inference rules. The inference rules in turn are general rea-
soning principles of the form ‘if such-and-such sequents have been proved,
then one can take such-and-such sequent as proven.’ To be more specific,
for classical propositional logic, the most usual axioms are ones of the forms
A ⊢ A (which corresponds to the reflexivity of entailment in the semantics),
and F ⊢ A (which corresponds to necessary falsehoods being bottoms in the
semantics). And with one exception, the inference rules are introduction
and elimination rules for the connectives, corresponding in the semantics
to the algebraic properties of the operations which these connectives have

1



as their meanings. For example, the introduction and elimination rules for
conjunction are the proof-theoretic counterparts of the semantic fact that
the propositional operation corresponding to conjunction is a glb opera-
tion, and those for implication are the proof-theoretic counterparts of the
semantic fact that the propositional operation corresponding to implication
is the residual of the glb operation. (The exceptional inference rule, called
weakening, says that if Γ ⊢ A, then also Γ B ⊢ A, i.e. if one can prove
something from certain hypotheses, then one can still prove it from more

hypotheses. Many systems of logic (such as relevant logic, linear logic, and
Lambek calculus) do not allow Weakening!)

But more generally, we can have different kinds of propositional logics,
each of which is suited to semantic interpretation in a certain class of pre-
ordered algebras, e.g. intuitionistic logic to pre-heyting algebras, bilinear

logic (aka Lambek calculus) to residuated pre-semigroups, etc. Once we
generalize in this way, we are no longer committed to thinking of the ele-
ments of the preordered algebra as sentence meanings and the preorder as
entailment, but different interpretations might be available (depending on
the kind of logic).

Thus, in classical propositional logic, the meaning of a sequent Γ ⊢ A
is that the meet of the propositions denoted by the formulas in Γ entails
the proposition denoted by A. But in Lambek calculus, Γ ⊢ A means this:
linguistic expressions belonging to the syntactic types listed in Γ can be
strung together in the given order to form an expression of syntactic type
A. (Note also that, whereas in classical logic, Γ is a set of formulas, in
Lambek calculus, it is a string of formulas, because order and repetitions
make a difference.)

1 The (Product-Free) Lambek Calculus

We begin by fixing a set of atomic formulas (say, {NP,N,S}), and then
recursively defining the set of formulas as follows:

a. An atomic formula is a formula.

b. If A and B are formulas, then so are A\B and A/B.

We then define a sequent to be an ordered pair 〈Γ, A〉 where Γ is a non-
null string of formulas and A is a formula. Γ is called the context of the
sequent, the formula occurences in the context are called the hypotheses,
and A is called the statement.

2



Next, we recursively define a set of sequents called the provable se-
quents. That is, we recursively define a relation, called provability (writ-
ten ‘⊢’), between nonempty strings of formulas and formulas. Usually we
read Γ ⊢ A as ‘Γ proves A’ rather than ‘〈Γ, A〉 is a provable sequent’. An
assertion of this form is called a (provability) judgment.

Here’s the definition of the provability relation (throughout, italic capital
roman letters are metavariables that range over formulas, and capital Greek
letters are metavariables that range over non-null strings of formulas):

Base clause: Axioms

A ⊢ A

Recursion Clauses (Inference Rules)

\ Elimination:

Γ ⊢ A ∆ ⊢ A\B
—————————

Γ∆ ⊢ B

\ Introduction:

AΓ ⊢ B
—————-

Γ ⊢ A\B

3



/ Elimination:

Γ ⊢ B/A ∆ ⊢ A
—————————

Γ∆ ⊢ B

/ Introduction:

ΓA ⊢ B
—————-

Γ ⊢ B/A

In an inference rule, the judgments above the horizontal line are called the
premisses and the judgment below the line is called the conclusion. The
whole rule is to be understood as a conditional, with the conjunction of the
premisses as antecdent and the conclusion as the consequent: if all premisses
are true, then so is the conclusion. (An axiom can be understood as an
inference rule with no premisses, in other words just a direct assertion, in
this case that (no matter what A is), A proves A.) Also, in an Introduction
rule, the hypothesis A which appears in the context of the premiss but not
in the context of the conclusion is called the withdrawn hypothesis.

Note that the Elimnation rules play a role in Lambek calculus analogous
to that played by Implication Elimination (aka Modus Ponens) in ordinary
intuitionisitc or classical logic, while the Introduction rules are analogous to
Implication Elimination (aka Hypothetical Proof or Conditionalization).

And finally, we define a (formal) proof of a judgment Σ to be a tree
with each node labelled by a judgment, such that the following three condi-
tions hold:

1. The root is labelled by Σ.

2. Each leaf is labelled by an axiom.

3. For each nonleaf x, the label of x is the conclusion of a rule whose
premisses are the labels of x’s daughters.

It should be intuitively obvious (though we omit the informal metalan-
guage proof) that a judgment Γ ⊢ A is true (i.e. Γ does indeed prove A) iff
there is a formal proof of it. In that case we call the judgment a theorem
(of the Lambek calculus).

4



2 Linguistic Application: Lambek Grammars

A Lambek grammar uses a Lambek calculus to recursively assign word
strings to syntactic types as follows. First, we have a lexicon that assigns
words (more precisely, word strings of length one) to one or more syntactic
types, e.g. Chiquita : NP, brays : NP\S, etc. This is the base of the recursion.

Next, the recursion clause is this: if the strings s0, . . . , sn are assigned
to types A0, . . . , An respectively (for some n ∈ ω), and A0 . . . An ⊢ A, then
the string s0 . . . sn is assigned to type A. For example, Chiqita brays is a
sentence because NP NP\S ⊢ S is a Lambek theorem (the formal proof uses
two axioms and one instance of \E):

NP,NP\S ⊢ S

NP ⊢ NP

Chiquita

NP\S ⊢ NP\S

brays

(Notes: (1) in proof trees, hypotheses are separated by commas, since other-
wise the tree-drawing program jams them together; and (2) as a mnemonic,
we write words below the corresponding axiom instances, even though tech-
nically they are not part of the formal proof.)

Problem 1

Give a formal proof of the Lambek theorem NP TV NP ⊢ S that uses only
Elimination rules. (Note: ‘TV’ (transitive verb) abbreviates (NP\S)/NP.)

The presence of the Introduction rules changes the nature of the game.
For one thing, proofs become available which don’t comport well with the
traditional notion of syntactic constituency (as discussed in introductory
syntax courses).

Problem 2

Give a different formal proof of NP TV NP ⊢ S in which the topmost rule
(the one that licenses the root S of the proof tree) is /E. (Hint: the proof
tree will have FOUR leaves, not three, with the third one corresponding to
a ‘hypothetical’ NP—analogous to what syntacticans call a ‘trace’.)

In the application to linguistics, the way that the Introduction rules are
used is as follows. Instead of every leaf in the proof tree corresponding to
a word, as before, we now allow some leaves to correspond to ‘hypothetical’
expressions which are inaudible (that is, they are associated with the null

5



string). And when an Introduction rule is used higher in the proof tree,
a hypothesis can be withdrawn only if it originated from a leaf associated
with a hypothetical (inaudible) expression. Additionally, a hypothesis can
be withdrawn using \E (/E) only if the corresponding leaf is the leftmost
(rightmost) leaf of the proof tree.

Problem 3

Prove the Lambek theorem A/B B/C ⊢ A/C. (This is known as Right
Composition. There’s also a left-handed version.)

Problem 4

Prove the Lambek theorem A ⊢ B/(A\B). (This is known as Type Raising
on the Left. There’s also a right-handed version.)

Categorial grammarians often assume that conjunctions (such as and, or,
and but) each have an infinite number of syntactic types, each of the form
(A\A)/A, which is abbreviated K(A) (here A is a metavariable rsanging over
syntactic types). This allows a conjunction to combine first with an A on
the right, and then with an A on the left, to produce an A.

Problem 5

Use the preceding idea to give an analysis of the sentence Juan liked, but

Maria hated, Chiquita. (Examples of this kind exemplify the phenomenon
known as ‘right node raising’) [Hints: (1) The proof tree will have two
‘traces’ in it. (2) The traces in the proof tree should look like this:

NP ⊢ NP

e

where e is the null string.]

6


