(1902)

still felt today the logicians' world, and the rumbles are hitherto unpublished, he communicates the paradox to Frege. The paradox shook came known as the Russell paradox in June 1901 (see 1944, p. 13). In the letter below, written more than a year later and Bertrand Russell discovered what be-

few years earlier, involves the notion of ordinal number; it seemed to be intisquarely in the field of logic. The paradox was first published by Russell in The theory, hence to be the mathematicians' concern rather than the logicians'. Rusbare notions of set and element, falls sell's paradox, which makes use of the The Burali-Forti paradox, discovered a connected of mathematics (1903) and is there in great detail (see with Cantor's set

> it to Hilbert, among others, prior to its especially pp. 101–107). After various attempts, Russell considered the paradox solved by the theory of types (1908a). Zermelo (below, p. 191, footnote 9) states. pendently of Russell and communicated that he had discovered the paradox inde-

Many Payre Street

paradox, the letter offers a vivid picture his work at the time. of Russell's attitude toward Frege and In addition to the statement of the

Peano 1898a, p. VII (or 1897, p. 15). Russell wrote the letter in German, end of the letter can be read more easily f one compares it with formula 450 in The formula in Peano's notation at the

and gave permission to print it here. and it was translated by Beverly Woodward. Lord Russell read the translation

Friday's Hill, Haslemere, 16 June 1902

but it is only now that I have been able to find the time for the thorough study i on my own to views that are the same even in the details. There is just one point essentials, particularly when you reject any psychological element [[Moment]] in logic intended to make of your work. I find myself in complete agreement with you in all where I have encountered a difficulty. You state (p. 17 [p. 23 above]]) that a function Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led distinctions, and definitions that one seeks in vain in the works of other logicians tinguished. With regard to many particular questions, I find in your work discussions, tions of mathematics and of formal logic, which, incidentally, can hardly be disand when you place a high value upon an ideography [Begriffsschrift]] for the founda-For a year and a half I have been acquainted with your Grundgesetze der Arithmetik

5-**加加。特别的基础**的

seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? circumstances a definable collection [[Menge]] does not form a totality. as a totality, do not belong to themselves. From this I conclude that under certain predicate. Likewise there is no class (as a totality) of those classes which, each taken From each answer its opposite follows. Therefore we must conclude that w is not a too, can act as the indeterminate element. This I formerly believed, but now this view

buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library. should like to discuss your work very thoroughly.¹ I already have your books or shall I am on the point of finishing a book on the principles of mathematics and in it I

therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your Grandgesetze; I hope that this will still be done. remained very much behind; in your works I find the best I know of our time, and The exact treatment of logic in fundamental questions, where symbols fail, has

Very respectfully yours,

Bertrand Russell

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x_2(x \sim ex). \supset : w \cdot ew . = : w \sim ew.$

I have written to Peano about this, but he still owes me an answer

I[This was dono in Russell 1903, Appendix A, "The logical and arithmetical dectrines of Frege".]

Paris is a second

GOTTLOB FREGE

Russell's letter published above. Frege first calls Russell's attention to an error a function is something incomplete, "unsaturated". When it is written f(x), x is to look for the source of the predicament. He incriminates the "transformation of p. 15, footnote 12). He then describes his that is needed; we might just as well the generalization of an equality into an reaction to the paradox that Russell has without any consequence (see above, function $g(x)^{n}$, and we can write modern notation) in some respect, as objects Frege intro-duces their Werthverlauf. The Werthverand g(), are something incomplete, we equivalent.) Since f and g, or rather f()not Frege's notation, but its modern that, for the same argument, always have write f(). Consider now two functions to indicate the kind of supplementation something extraneous that merely serves equality of courses-of-values". For Frege just communicated to him, and he begins f(x) always has the same value as "for the same argument the function as the function g(x)" is taken to mean function f(x) has the same Werthverlauf write $df(\alpha), \ldots$). The expression "the $\xi f(\varepsilon)$ (where ε is a dummy; we can also lauf of a function f(x) is denoted by not objects, and in order to treat them, cannot simply write f=g. Functions are the same value: (x)(f(x) = g(x)). (This is Begriffsschrift; it is a mere oversight, This is Frege's prompt answer to

(*) $(x)(f(x) = g(x)) \equiv (\partial f(e) = \partial g(\alpha)).$

equality of courses-of-values". Whereas generalization of an equality into an This is the lar so far as substitution is concerned complete in itself", an object, in particuobject, its Werthverlauf is "something the function is unsaturated and is not an There Frege sees the origin of the para-"transformation of the

tion from right to left) allows the derivaabove (or rather half of it, the implicain which he shows how the schema (*) barely had the time to add an appendix second volume of his Grundgesetze der fic. He received Russell's letter while the appendix in which he endorsed Frege's Frege's volume, added to his book an was at the printshop when tion of the paradox; he also proposed a Arithmetik was at the printshop, and he out various other solutions (1905a); he Russell, whose Principles of mathematics restriction in the schema to prevent that emendation. But soon thereafter he tried Frege soon made his point more speciproposed his theory of he received types

modern logic, and countless works have dealt with it. For a late and thorough study of Frege's "way out", see Quine Russell's paradox has been leaven in

the following letter, in which the reader will find a stirring tribute to Frege. his letter to Frege (1902), he replied with he would consent to the publication of When Lord Russell was asked whether

Penrhyndeudraeth, 23 November 1962

Dear Professor van Heijenoort,

he responded with intellectual pleasure be published, and upon finding that his fundamental assumption was in error, the benefit of men infinitely less capclearly submerging any feelings work was on the verge of completion, dedication to truth. His entire life's realise that there is nothing in my knowledge to compare with Frege's about acts of integrity and grace, I you for suggesting this. As I think Frege and myself, and I am grateful to publish the correspondence much of his work had been ignored to able, his second volume was about to I should be most pleased if you would hetween

> dominate and be known. knowledge instead of cruder efforts to dedication is to creative work that of which men are capable if their personal disappointment. It was almost superhuman and a telling indication of and

Yours sincerely,

Bertrand Russell

will include the German text of the letter Beverly Woodward, and it is printed here with the kind permission of Verlag Felix Meiner and the Institut für mathemahitherto unpublished writings; this edition of Frege's scientific correspondence and Münster, who are preparing an edition bische Logik und Grundlagenforschung in The translation of Frege's letter is by

Dear colleague,

Jena, 22 June 1902

with me on many points and that you intend to discuss my work thoroughly. In response to your request I am sending you the following publications: Many thanks for your interesting letter of 16 June. I am pleased that you agree

- "Kritische Beleuchtung" [[1895]]
- 2. "Ueber die Begriffsschrift des Herrn Peano" [[1896]]
- 3. "Ueber Begriff und Gegenstand" [[1892]], "Über Sinn und Bedeutung" [[1892a]],
- 5. "Ueber formale Theorien der Arithmetik" [[1885]].

I received an empty envelope that seems to be addressed by your hand. I surmise

incidentally, this had no detrimental effects on the rest of the booklet's contents. I ask you to delete the paragraph beginning "Nicht minder erkennt man" on page 7 of my Begriffsschrift [["'It is no less easy to see", p. 15 above]], since it is incorrect; many points, as you will see if you compare it with my Grundgesetze der Arithmetik. that you meant to send me something that has been lost by accident. If this is the case, I thank you for your kind intention. I am enclosing the front of the envelope. When I now read my Begriffsschrift again, I find that I have changed my views on

in eine Werthverlaufsgleichheit]] (§ 9 of my Grundgesetze) is not always permitted further on the matter. It is all the more serious since, with the loss of my Rule V, not that my Rule V (§ 20, p. 36) is false, and that my explanations in § 31 are not sufficient to ensure that my combinations of signs have a meaning in all cases. I must reflect an equality of courses-of-values [[die Umwandlung der Allgemeinheit einer Gleichheit arithmetic. It seems, then, that transforming the generalization of an equality into almost say, consternation, since it has shaken the basis on which I intended to build Your discovery of the contradiction caused me the greatest surprise and, I would

only the foundations of my arithmetic, but also the sole possible foundations of arithmetic, seem to vanish. Yet, I should think, it must be possible to set up conditions for the transformation of the generalization of an equality into an equality of courses-of-values such that the essentials of my proofs remain intact. In any case your discovery is very remarkable and will perhaps result in a great advance in logic, unwelcome as it may seem at first glance.

Incidentally, it seems to me that the expression "a predicate is predicated of itself" is not exact. A predicate is as a rule a first-level function, and this function requires an object as argument and cannot have itself as argument (subject). Therefore I would prefer to say "a notion is predicated of its own extension". If the function $\Phi(\xi)$ is a concept, I denote its extension (or the corresponding class) by " $\partial \Phi(\xi)$ " (to be sure, the justification for this has now become questionable to me). In " $\Phi(\partial \Phi(\epsilon))$ " or " $\partial \Phi(\epsilon)$ " we then have a case in which the concept $\Phi(\xi)$ is predicated of its own extension.

The second volume of my Grundgestze is to appear shortly. I shall no doubt have to add an appendix in which your discovery is taken into account. If only I already had the right point of view for that!

Very respectfully yours, G. Friege

 $1[\!["\cap"]'$ is a sign used by Frege for reducing second-level functions to first-level functions. See Frege 1893, § 34.]]

On the foundations of logic and arithmetic

DAVID HILBERT (1904)

This is the text of an address delivered by Hilbert on 12 August 1904 at the Third International Congress of Mathematicians, held in Heidelberg on 8–13 August 1904.

sented a fundamental difficulty. system. At the Paris International Contency proof seemed out of the question simply stressing that a relative consissystem on a list of problems challenging placed the consistency of the real-number gress of Mathematicians in 1900, as a comes down to that of the real-number question of the consistency of geometry the real numbers and indicated that the axiomatization of geometry (1899). He then (1900) offered a set of axioms for century Hilbert provided a satisfactory 266). He did not outline any approach, he mathematical world (1900a, pp. 264natural continuation of this work, he In the last years of the nineteenth that, therefore, the problem pre-

Meanwhile the Russell paradox became known, and the question of consistency became more pressing. In 1904, in the paper below, Hilbert presents a first attempt at proving the consistency of arithmetic. In fact, his plan—to show that all the formulas of a certain class passess a certain property (that of being "homogeneous") by showing that the initial formulas have it and the rules transmit it—is the prototype of a device now current in investigations of that nature. Besides the sareth for a consistency proof the paper offers a critique of

the various points of view held at that time on the foundations of arithmetic and introduces the themes that Hilbert is going to develop, modify, or make more precise in his further work in the foundations of mathematics: the reduction of mathematics to a collection of formulas, the extralogical existence of basic objects, like 1, and their combinations, and the construction of logic in parallel with the study of these combinations.

The presentation remains tentative and sketchy. Only many years later (1917) will Hilbert come back to the problems of the foundations of mathematics and then present the mature and enriched papers of the twenties (1922, 1922, 1923, 1927). The 1904 paper provides a helpful landmark in the development of Hilbert's conceptions.

The paper was commented upon by Poincaré (1905, pp. 17–27; 1908, pp. 179–191) and Pieri (1906). Later commentaries can be found in Bernays (1935, pp. 193–200) and Biumenthal (1935, pp. 193–200) and Biumenthal (1935, pp. 192). The paper greatly influenced Julius König's book (1914), which in turn inspired von Neumann in his search for a consistency proof of arithmetic (1927, footmote 8, p. 22).

An English translation of Hilbert's paper was published (1995) in The monist, but we have not found it possible to use it. The present translation is by Beverly Woodward, and it is printed here with the kind permission of B. G. Teubner Verlagsgesellschaft, Stuttgart.