Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions Grep: An example for using regular expressions Text corpora and searching them

Linguistics 384: Language and Computers Topic 2: Searching

Scott Martin*

Dept. of Linguistics, OSU Spring 2008

* The course was created by Chris Brew, Markus Dickinson and Detmar Meurers.

Introduction

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions Grep: An example for using regular expressions Text corpora and searching them

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

Searching in a Library Catalogue

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Introduction

Searching in a Library Catalogue

Searching the web

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Introduction

Searching in a Library Catalogue

Searching the web

Advanced searches with regular expressions

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Searching

- An astounding number of information resources are available: books, databases, the web, newspapers, ...
- To locate relevant information, we need to be able to search these resources, which often are written texts:
 - Searching in a library catalogue (e.g., using OSCAR)
 - Searching the web (e.g., using Google)
 - Advanced searching in text corpora (e.g., using regular expressions in Opus)

Language and Computers

Topic 2: Searching

Introduction

Text

Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Searching in speech

- One might also want to search for speech, e.g., to find a particular sentence spoken in an interview one only has a recording (audio file) of.
- With current technology, this is only possible if the interview is transcribed, using the IPA or another writing system.
- It is, however, already possible to
 - detect the language of a spoken conversation, e.g., when listening in to a telephone conversation
 - detect a new topic being started in a conversation
- In the following, we focus on searching in text.

Topic 2: Searching

Introduction

Text

Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Searching in a library catalogue

- To find articles, books, and other library holdings, a library generally provides a **database** containing information on its holdings.
- OSCAR is the database frontend providing access to the library database at OSU.
- OSCAR makes it possible to search for the occurrence of literal strings occurring in the author, title, keywords, call number, etc. associated with an item held by the library.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

oarohing

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Basic searching in OSCAR

- Literal strings are composed of characters which naturally must be in the same character encoding system (e.g. ASCII, ISO8859-1, UTF-8) as the strings encoded in the database.
- For literal strings, OSCAR does not distinguish between upper and lower-case letters (i.e. they aren't so literal after all)
- Adjacent words are searched as a phrase.
 - art therapy
 - vitamin c
- In addition to querying literal strings, the query language of OSCAR also supports the use of
 - special characters to abbreviate multiple options
 - special operators for combining two query strings (boolean operators) or modifying the meaning of a single string (unary operators)

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

OSCAR: Special characters

- ► Use * for 1–5 characters at end or within a word.
 - art* finds arts, artists, artistic
 - gentle*n
- Use ** for any number of characters at end of word. art** finds artificial, artillery
- Use ? for a single character at end or within a word. gentlem?n
- The special * and ? characters must have at least 2 characters to their left. (→ for efficiency reasons)

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters

Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

OSCAR: Literal Strings and Operators (I)

- Use and or or to specify multiple words in any field, any order.
 - art and therapy
 - art or therapy
- Use and not to exclude words.
 - art and not therapy

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters

Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

OSCAR: Operators (II)

- Use parentheses to group words together when using more than one operator.
 art therapy and not ((music or dance) therapy)
- Use near to specify words within 10 words of each other, in any order.
 - art near therapy
- Use within n to specify words within n words of each other. The value of n has no limit.
 - art within 12 therapy

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters

Operators

Searching the web

Operators

Improving searching

Ranking of results

Evaluating search results

Advanced searches with regular expressions

Searching the web

A computer user

- wants to find something on "the web", i.e., in files accessible via the hypertext transfer protocol (http) protocol on the internet
- goes to a search engine = program that matches documents to a user's search requests
- enters a query = request for information
- gets a list of websites that might be relevant to the query
- evaluates the results: either picks a website with the information looked for or reformulates the query

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

The nature of the web

- Web pages are generally less structured than a record in a library database (with title, author, subject, and other fields).
- One generally searches for words found anywhere in the document.
- It is, however, possible to include meta data in a web page.
- Meta data is additional, structured information that is not shown in the web page itself: e.g., the language a web page is in, its character encoding, author, keywords, etc.
- Example for a meta tag: <META name="keywords" lang="en-us" content="vacation, Greece">

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Search engines

- Search engines (e.g., Google)
 - store a copy of all web pages
 - create an index to provide efficient access to this large number of pages (e.g., Google currently searches over 4 billion pages)
 - compute a rank for each web page to be able to rank the query results
- Search engines differ in various ways:
 - stemming: treat bird and birds as the same or not
 - capitalization: treat trip and Trip the same or not
 - use of operators
 - special interface for advanced searching
 - how search results are ranked
 - clustering: group similar results or not

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Google: Operators (I)

- +: Require a word to occur in the result e.g., To find a restaurant that serves both tofu and BBQ one could try
 - +tofu +BBQ
- -: Disallow a word from occurring in the result e.g., If you're a *potatos* purist, you might search for
 - potatos -potatoes
- ~: Include synonyms of the word
- Quotation Marks (phrases)
 e.g., looking for sites on What Cheer, lowa with
 - "What Cheer"

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators

Improving searching Ranking of results

Evaluating search results

Advanced searches with regular expressions

Google: Operators (II)

- intitle: Find words used in a title
 - e.g., intitle:Buckeye finds only web pages which has this word in the title
- inurl: Find words used in the url
 - e.g., inurl:ling returns more linguistics webpages than ling does
- link: Find pages that link to a certain page
 - e.g., link:www.osu.edu to show pages linking to the main osu web page
- site: Find pages that are part of a single domain
 - e.g., I want to find strange attractions involving fish. Knowing one site which has such stuff, one can try fish site:www.roadsideamerica.com.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators

Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Google: Advanced searching

More elaborate **web forms** are provided as alternative to using operators:

- match all: matches all terms in your query
- match any: matches as many terms in your query as it can find

e.g., I'm looking for a restaurant that has *bbq* or *bb-que* or *barbeque* in the title

 \Rightarrow most search engines return "match all" followed by "match any" results

exclude: eliminate documents which contain certain words

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators

Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Improving searching (I)

How can I make my searches better?

Be on the watch for **ambiguity** = one word has multiple meanings

e.g., bed: flower bed, sleeping bed, truck bed

- Use synonyms and other related words
 e.g., *plant*: building, complex, works, power (distinguish from flora)
- Be aware of stop words = words that some search engines ignore because they are "uninformative," such as the, of, and so on

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators

Improving searching

Ranking of results

Evaluating search results

Advanced searches with regular expressions

Improving searches (II)

- Exclude problematic words
 e.g., "jefferson airplane -starship" (if you don't want info on the Starship years)
- Be aware of parts of speech and what other guises they come in.

e.g., *plant*: planting, planter, planted (distinguish from *power plant*)

- Continually narrow your focus (using the feedback)
 e.g., Want to find information on the game *Hearts*
 - hearts: too vague, too many non-card game sites → add a related word
 - hearts cards: better, but still greeting cards listed → I see trick listed on one site's description and realize this makes for a good keyword
 - hearts cards trick: good, but now we get card tricks → time for boolean expressions

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators

Improving searching

Ranking of results Evaluating search results

Advanced searches with regular expressions

Ranking of results

- Ideally, the webpages matching a query are returned as an ordered list based on a page's relevance.
- How can a search engine, which does not understand language, determine the relevance of a particular page?

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators

Improving searching

Ranking of results

Evaluating search results

Advanced searches with regular expressions

Information used to rank results

- Counting the number of links to and from a page, to determine how popular a page is. (As a result, unpopular or new pages require a more specific query to be found.)
- Keeping track of the nature of links to a page; linked pages might be thematically related.
 e.g., Even if I never mention Sinclair Lewis on a page describing his book *Babbit*, it can be identified if many Sinclair Lewis sites link to my page.
- bonuses/penalties for sites known to be of high/low quality
- looking for keywords in metadata
- counting how often a web result was clicked on by a user (click-through measurement)
- various secret ingredients

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators

Improving searching

Ranking of results

Evaluating search results

Advanced searches with regular expressions

Evaluating search results

What measures can one use to evaluate how successful a query is?

precision: How many of the pages returned are the ones we want?

e.g., Google gives me 400 hits for a query, 200 of which are related to the topic I want; precision = 50%.

recall: How many pages on the topic we wanted were actually given? (hard to calculate for web searching) e.g., Google gave me 200 pages I wanted, but there were actually 1000 pages on that topic out there somewhere on the internet; recall = 20%.

We saw earlier how to use our initial results to refine our query and improve precision Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Motivating regular expressions

If one wants to be able to describe more complex patterns of words and text, sometimes boolean expressions aren't enough:

- In a large document I want to find addresses with a zip code starting with 911 (around Pasadena, CA); but clearly we would not want to report back all occurrences of emergency phone numbers in the document.
- I want to find all osu email addresses which occur in a long text.
- I'm writing an online fill-in-the-blank quiz, and I ask you to name the Jackson 5: for Jermaine, I want to accept *Germaine, Germane, Jermain, and so on.* ⇒ It would be nice to have a compact way of representing all of these options.
- Anything where you have to match a complex pattern so-called regular expressions are useful.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Regular expressions: What they are

- A regular expression is a compact description of a set of strings, i.e., a language (in formal language theory).
- They can be used to search for occurrences of these strings
- Regular expressions can only describe so-called regular languages.
- This means that some patterns cannot be specified using regular expressions, e.g., finding a string containing matching left and right parentheses.
- Note that just like any other formalism, regular expressions as such have no linguistic contents, but they can be used to refer to strings encoding a **natural language** text.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Regular expressions: Tools that use them

- A variety of unix tools (grep, sed, ...), editors (emacs, jEdit, ...), and programming languages (perl, python, Java, ...) incorporate regular expressions.
- Implementations are very efficient so that large text files can be searched quickly; but not efficient enough for web searching → no web search engine offers them (yet).
- The various tools and languages differ w.r.t. the exact syntax of the regular expressions they allow.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

The syntax of regular expressions (I)

Regular expressions consist of

- strings of literal characters: c, A100, natural language, 30 years!
- disjunction:
 - ordinary disjunction: devoured|ate, famil(y|ies)
 - character classes: [Tt]he, bec[oa]me
 - ranges: [A-Z] (any capital letter)
- negation:

[^a] (any symbol but a)

[^A-Z0-9] (not an uppercase letter or number)

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators Improving searching Ranking of results

Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions Text corpora and searching them

The syntax of regular expressions (II)

counters

- optionality: ? colou?r
- any number of occurrences: * (Kleene star)
 [0-9]* years
- at least one occurrence: + [0-9]+ dollars
- wildcard for any character: .

beg.n for any character in between beg and n

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators

Improving searching Ranking of results

Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions Text corpora and searching them

The syntax of regular expressions (III)

Escaped characters: to specify a character with a special meaning (*, +, ?, (,), |, [,]) it is preceded by a backslash (\) e.g., a period is expressed as \.

Operator precedence, from highest to lowest:

parentheses () counters * + ? character sequences disjunction | Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions Text corpora and searching them

Grep

- grep is a powerful and efficient program for searching in text files using regular expressions.
- It is standard on Unix, Linux, and Mac OSX, and there also are various ports to Windows (e.g.,

http://gnuwin32.sourceforge.net/packages/grep.htm,

http://www.interlog.com/~tcharron/grep.html or http://www.wingrep.com/).

The version of grep that supports the full set of operators mentioned above is generally called egrep (for extended grep).

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions

Grep: Examples for using regular expressions (I)

In the following, we assume a text file f.txt containing, among others, the strings that we mention as matching.

- Strings of literal characters: egrep 'and' f.txt matches <u>and</u>, Ayn R<u>and</u>, C<u>andy</u> and so on
- Character classes: egrep 'the year [0-9][0-9][0-9][0-9]' f.txt matches the year 1776, the year 1812, the year 2001, and so on
- Escaped characters: egrep 'why\?' f.txt matches why?, whereas egrep 'why?' f.txt matches why and wh

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions

Grep: Examples for using regular expressions (II)

- disjunction (|): egrep 'couch|sofa' f.txt matches couch or sofa
- grouping with parentheses: egrep 'un(interest|excit)ing' f.txt matches uninteresting or unexciting.
- Any character (.): egrep 'o.e' f.txt matches ore, one, ole

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions

Grep: Examples for using regular expressions (III)

- Kleene star (*): egrep 'a*rgh' f.txt matches argh, aargh, aaargh egrep 'sha(la)*' f.txt matches sha, shala, shalala, or if you're Van Morrison shalalalalalalala
- One or more (+): egrep 'john+y' f.txt matches johny, johnny, ..., but not johy
- Optionality (?): egrep 'joh?n' f.txt matches jon and john

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters

Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions

Grep: An example for using regular expressions

```
Text corpora and searching them
```

Corpora

- A corpus is a collection of text.
- Corpora with the works of various writers, newspaper texts, etc. have been collected and electronically encoded.
- Corpora can be quite large
- The British National Corpus is a 100 million word collection representing a wide cross-section of current written and spoken British English.
- Another example is the European Parliament Proceedings Parallel Corpus 1996–2003.

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue

Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions Grep: An example for using regular expressions

How corpora can be searched

- Both the BNC and the European Parliament corpus can be searched using on-line web-forms.
- Both of the web forms allow regular expressions for advanced searching.
- To provide efficient searching in large corpora, in these search engines regular expressions over characters are limited to single tokens (i.e. generally words).
- BNC:
 - web form: http://sara.natcorp.ox.ac.uk/lookup.html
 - regular expressions are enclosed in { }
- European Parliament Corpus:
 - web form: http://logos.uio.no/cgi-bin/opus/opuscqp.pl? corpus=EUROPARL;lang=en
 - in the simplest case, regular expressions are encosed in " "

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions Grep: An example for using regular expressions

Exploring regular expressions

Language and Computers

Topic 2: Searching

Introduction

Text Speech

Searching in a Library Catalogue Special characters Operators

Searching the web

Operators Improving searching Ranking of results Evaluating search results

Advanced searches with regular expressions

Syntax of regular expressions Grep: An example for using regular expressions

Text corpora and searching them

To explore the use of regular expressions, check out http://www.lexmasterclass.com/exercises/regex/index.html which offers exercises with immediate feedback (by showing the matched characters in red).