Calculating minimum edit cost

Adapted from chapter 8 of English Spelling and the Computer by Roger Mitton

1 Directed networks

To calculate minimum edit distance, we set up a directed network, a set of nodes
(circles) and arcs (arrows).

For instance, let’s say the user types in plog, and we want to calculate how far away peg
is (i.e. we want to calculate the minimum edit distance, or the minimum edit cost)

We set up the following directed graph:

First off, what do these arcs mean? As shown below, horizontal arcs correspond to
insertions, vertical arcs correspond to deletions, and diagonal arcs correspond to substi-
tutions (and a letter can be “substituted” for itself). [Note: we are not dealing here with

transpositions.|

Inserty

Omit x Substitute y for x

So, the route A-I-J-O-T corresponds to substituting p for p (A-I), inserting [(I-J),
substituting o for e (J-O), and substituting g for g.

Questions:
1. What does A-B-M-R-S-T correspond to?

2. What route corresponds to deleting everything followed by inserting everything?

2 Graph properties
Note two things about this graph:

e It is acyclic = for any given node (circle), it is impossible to return to that node
by following the arcs (arrows)

e It is topologically ordered = it can be ordered in some way. Here, it is alpha-
betically ordered.

So, e.g. node I comes after nodes A, B, and F, so order is maintained. If D was
there instead, order would not be maintained because D cannot follow E.

Because of these properties, we can calculate the minimum edit distance. We assign a
cost, or weight, of zero (0) for every time we see a letter substituted as itself; otherwise,
we give an arc a cost of one (1).

Question:

1. Draw a directed graph for the following situation:

The user types in hon and you want to compare it with hint.

3

Now,

3.1

3.2

Calculating minimum edit distance

we want to find the path from the start (A) to the end (T) with the least cost.

The slow way

Follow every path from start (A) to finish (T) and see how many changes we have
to make.

But this is very inefficient! There are 131 different paths to check.

The faster, better way (dynamic programming)

We follow the topological ordering, i.e. we go in alphabetical order.

As we go in order, we calculate the least cost for that node.

That is, of all the arcs coming in to the node, we take the least-cost one.

We store every result, so that we know the cost of all incoming arcs already.

= This is the key point: we are storing partial results along the way, instead of
recalculating every time we encounter a new path.

So, for example, we have the following;:

Node A: cost =0

Node B: cost = 1 (cost of the arc from A to B)
Node C: cost =1 + cost of B =2

Node D: cost =1 + cost of C = 3

Node E: cost = 1 (cost of the arc from A to E)
Node F: cost =1 + cost of E = 2

Node G: cost =1 + cost of F = 3

Node H: cost =1 + cost of G = 4

Node I: cost = lowest cost of the following:

1. cost =0 + cost of A =0
2. cost =1 + cost of B = 2
3. cost =1+ cost of E = 2

So, the cost of I =0

Node J: cost = lowest cost of the following:

1. cost =1+ cost of E = 2

2. cost =1+ cost of F =3
3. cost =1+ costof I =1
So, the cost of J =1

e And when you get to node T (the end), you'll find that the least cost there is 2.
(from either of two routes [A-I-J-O-T and A-I-N-O-T], but it doesn’t really matter
which, since our goal is to compare costs).

So, now we only have 20 calculations to make.
Questions:

1. What would happen if we didn’t go in order?

2. What is the pattern used here for ordering nodes?

3. Work through the graph you drew for hon/hint and find the least-cost path.

4 Adding weights

But there might be lots of words which are 2 units away from plog. How do we know
which is the best choice?

= Assign weights based on previously-seen data (perhaps a confusion matrix).
e.g., substituting o for e (J-O) is probably a better substitution than I for e (I-N).
The following graph reflects that fact by assigning weights up to 5:

Now, A-I-J-O-T will be the best path. We call this the minimum edit cost instead of
the minimum edit distance because two words might be the same “distance” away from
a typed-in string, but might have different costs.

