The Dynamics of Sense and Implicature: Anaphora, "Presupposition," and CIs

Scott Martin

scott@ling.ohio-state.edu http://www.ling.ohio-state.edu/~scott/

Natural Language Understanding Laboratory Nuance Communications

> Construction of Meaning Workshop Stanford Linguistics Department October 25, 2013

A Bit about Me

- I finished up my Ph.D. thesis at Ohio State this past summer, advised by Carl Pollard and Craige Roberts
- I'm interested in logical/mathematical approaches to language, especially semantics and pragmatics, and applications to natural language processing (paraphrase alignment, generation)
- Currently I'm a research scientist at Nuance's recently established natural language understanding laboratory in Sunnyvale
- I also have a background in languages, philosophy, and software engineering

What's Happening at Nuance?

We're trying to go from this ...

What's Happening at Nuance?

To this:

What's Really Happening at Nuance?

- We're building conversational user agents that are intelligent
- This of course means using big data and machine learning techniques
- But we're also trying to leverage (what I'll call) *smart data*: morphology, syntax, semantics, discourse analysis, parsing, reasoning, AI techniques, ...

My Thesis in a Nutshell

- My dissertation work is about a new approach to semantics and pragmatics based on a novel way of characterizing meaning that has some old roots
- This new characterization leads to a generalized account of contextual felicity

My Thesis in a Nutshell

- My dissertation work is about a new approach to semantics and pragmatics based on a novel way of characterizing meaning that has some old roots
- This new characterization leads to a generalized account of contextual felicity
- I also give an explicit formal account of some English data based on this new taxonomy, encoded in a discourse semantics that captures both anaphora and Potts's (2005) "CIs"
- Its central feature is that foreground and background meaning are computed in parallel, and it is designed with computational applications in mind

Outline

Characterizing Sense and Implicature What's the Difference? A Gricean Taxonomy Felicity, Accommodation, and Variability A More Fully Fleshed-out Picture

Formalizing these Ideas

Technical Background Going Dynamic

Accounting for some Implicature Data

Anaphora Supplements

Conclusions

Characterizing Sense and Implicature

Outline

Characterizing Sense and Implicature

What's the Difference? A Gricean Taxonomy Felicity, Accommodation, and Variability A More Fully Fleshed-out Picture

Formalizing these Ideas

Technical Background Going Dynamic

Accounting for some Implicature Data

Anaphora Supplements

Conclusions

Sense and Implicature

 Partly following Simons et al. (2010), the meanings of natural language utterances can be separated into

> Sense Literal meaning; what is asserted or proffered; the "main point"

Implicature Background implication; not central to main point; sometimes not even stated

Sense and Implicature

 Partly following Simons et al. (2010), the meanings of natural language utterances can be separated into

> Sense Literal meaning; what is asserted or proffered; the "main point"

Implicature Background implication; not central to main point; sometimes not even stated

- Senses are targeted by the semantic *operators* negation (*not*), modals (*might, maybe*), question words (*who/what/when/where/how, Did ...*), conditionals (*If ..., then ...*)
- But implicatures are not targeted by these operators: they are persistent

Spotting Implicatures I

One test for implicatures is embedding in the scope of an operator.

(1) Maybe the woman bought a ticket. (anaphora)
a. ≁ The woman bought a ticket.
b. ~ *The woman* has a retrievable antecedent.
(similarly for other definites: pronouns, proper names, etc.)

Spotting Implicatures I

One test for implicatures is embedding in the scope of an operator.

- Maybe the woman bought a ticket. (anaphora)

 A. Arrow The woman bought a ticket.
 Arrow The woman has a retrievable antecedent.
 (similarly for other definites: pronouns, proper names, etc.)

 It's not true that Lance, who's a cyclist, is from Texas. (supplement)
 - a. $\not\rightarrow$ Lance is from Texas.
 - b. \rightsquigarrow Lance is a cyclist.

(similarly for parentheticals, non-restrictive relatives)

Spotting Implicatures I

One test for implicatures is embedding in the scope of an operator.

- Maybe the woman bought a ticket. (anaphora)

 A. Arrow The woman bought a ticket.
 Arrow The woman has a retrievable antecedent.
 (similarly for other definites: pronouns, proper names, etc.)

 It's not true that Lance, who's a cyclist, is from Texas. (supplement)
 - a. $\not\rightarrow$ Lance is from Texas.
 - b. \rightsquigarrow Lance is a cyclist.

(similarly for parentheticals, non-restrictive relatives)

(3) Did Kim quit smoking?

(aspectual)

a. $\not\rightsquigarrow$ Kim used to smoke.

(similarly for *continue*, *start*, *stop*, *switch to*; achievements (*graduate*, *win*); "factives" (*know*, *realize*, *regret*))

Spotting Implicatures II

Another test for implicatures is direct acceptance/denial.

- (4) The woman bought a ticket.
 - a. No she didn't. $\not\sim$ The woman bought a ticket.
 - b. Yes/No. ~> *The woman* has a retrievable antecedent.

Spotting Implicatures II

Another test for implicatures is direct acceptance/denial.

- (4) The woman bought a ticket.
 a. No she didn't. ≁ The woman bought a ticket.
 b. Yes/No. ~ *The woman* has a retrievable antecedent.
- (5) Is Lance, who's a cyclist, from Texas?
 a. No. ≁ Lance is from Texas.
 b. Yes/No. ~ Lance is a cyclist.

Spotting Implicatures II

Another test for implicatures is direct acceptance/denial.

- (4) The woman bought a ticket.
 a. No she didn't. ≁ The woman bought a ticket.
 b. Yes/No. ~ *The woman* has a retrievable antecedent.
- (5) Is Lance, who's a cyclist, from Texas?
 a. No. ≁ Lance is from Texas.
 b. Yes/No. ~ Lance is a cyclist.
- (6) Kim quit smoking.
 - a. Yes, that's true. \rightsquigarrow Kim used to smoke.
 - b. No. \rightsquigarrow Kim did not quit smoking.
 - c. No, she's never smoked in her life. $\not\leadsto$ Kim used to smoke.

"Gricean Implicature" I

 The term (*Gricean*) implicature is often used as shorthand for conversational implicature in the sense of Grice (1975) in the semantics/pragmatics literature

"Gricean Implicature" I

 The term (*Gricean*) *implicature* is often used as shorthand for conversational implicature in the sense of Grice (1975) in the semantics/pragmatics literature

Web Images More	
0 1	
Google	grice logic and conversation 👻 🔍
0	
Scholar	About 24,700 results (0.04 sec)
Articles	Logic and conversation
Case law	It is a commonplace of philosophical logic that there are, or appear to be, divergences in meaning between, on the one hand, at least some of what I shall call the formal devices-
Any time	Cited by 21258 Related articles All 34 versions Cite More →
Since 2013	restations Some further notes on logic and conversation
Since 2012	HP Grice - 1978 - citeulike.org
Since 2009	Tags. Some further notes on logic and conversation. by: Herbert P. Grice. edited by: P. Cole.
Custom range	RIS, Export as RIS which can be imported into most citation managers. BibTeX, Export as BibTeX which can be imported into most citation/bibliography managers
Sort by relevance	Cited by 980 Related articles Cite More -
Sort by date	[PDF] Cognition and communication: Judgmental biases, research methods, and the logic of conversation

"Gricean Implicature" II

But what about the others? Grice didn't say too much about those ...

"Gricean Implicature" II

But what about the others? Grice didn't say too much about those ...

I'll argue that implicatures can be characterized based on two criteria:

- 1. Whether their persistence is conventionally signaled, and
- 2. Whether they must be *speaker commitments*, a cross-cutting distinction

Conventional Implicature: Anaphora and "CIs"

The retrievability implication associated with anaphora has to be a speaker commitment:

(7) Kim doesn't know that there's a donkey_i over there. She doesn't hear it_i braying.

Conventional Implicature: Anaphora and "CIs"

The retrievability implication associated with anaphora has to be a speaker commitment:

(7) Kim doesn't know that there's a donkey_i over there. She doesn't hear it_i braying.

But the non-anaphoric conventional implicatures do not:

(8) I'm a big Obama supporter. But my tea party neighbor thinks that Obama, who's totally a Kenyan pinko in charge of secret terrorist camp in the ravine behind his house, will destroy the country. (cf. Amaral et al., 2007; Harris and Potts, 2009)

Nonconventional Implicatures I: Achievements

Nonconventional implicatures can sometimes persist. A case in point is the preparatory phase associated with *achievements*.

- In (9), the speaker is committed to Lance's having participated in the Tour:
 - (9) Lance won the Tour de France.

Nonconventional Implicatures I: Achievements

Nonconventional implicatures can sometimes persist. A case in point is the preparatory phase associated with *achievements*.

- In (9), the speaker is committed to Lance's having participated in the Tour:
 - (9) Lance won the Tour de France.
- But in (10), it can't be the speaker's commitment:
 - (10) Lance didn't enter last year's Tour de France, but Kim is convinced that he won it.

And the implication that Lance participated does not persist.

Nonconventional Implicatures II: Aspectuals

A second case is the *aspectuals*.

- As for the achievements, (11) entails that Kim used to drink caffeinated coffee:
 - (11) Kim switched to decaf.

Nonconventional Implicatures II: Aspectuals

A second case is the *aspectuals*.

- As for the achievements, (11) entails that Kim used to drink caffeinated coffee:
 - (11) Kim switched to decaf.
- But again, depending on context, the entailment may not persist:
 - (12) I wonder why Kim is so sluggish lately. Maybe she switched to decaf, or something.

Nonconventional Implicatures II: Aspectuals

A second case is the *aspectuals*.

- As for the achievements, (11) entails that Kim used to drink caffeinated coffee:
 - (11) Kim switched to decaf.
- But again, depending on context, the entailment may not persist:
 - (12) I wonder why Kim is so sluggish lately. Maybe she switched to decaf, or something.
- And just as for the achievements, aspectuals do not have to be speaker commitments:
 - (13) Kim never drank caffeinated coffee, but Robin believes that Kim switched to decaf.

Nonconventional Implicatures III: "Factives"

So-called "factives" also exhibit similar behavior.

- Several authors have commented that factives aren't presuppositional when embedded beneath certain operators:
 - (14) Perhaps she just discovered that he's having an affair. (Simons, 2001)

Nonconventional Implicatures III: "Factives"

So-called "factives" also exhibit similar behavior.

- Several authors have commented that factives aren't presuppositional when embedded beneath certain operators:
 - (14) Perhaps she just discovered that he's having an affair. (Simons, 2001)
- But even in unembedded contexts, factives don't presuppose their complements:
 - (15) (*Driver to hitchhiker s/he just picked up*) Do you realize there's a gum wrapper in your hair?

Nonconventional Implicatures III: "Factives"

So-called "factives" also exhibit similar behavior.

- Several authors have commented that factives aren't presuppositional when embedded beneath certain operators:
 - (14) Perhaps she just discovered that he's having an affair. (Simons, 2001)
- But even in unembedded contexts, factives don't presuppose their complements:
 - (15) (*Driver to hitchhiker s/he just picked up*) Do you realize there's a gum wrapper in your hair?
- They can also be non-speaker commitments:
 - (16) The Riemann hypothesis remains a mysterious, unsolved conjecture in mathematics, but Louie just knows it is true.

 All implicatures are (in)felicitous based on the same criterion: whether or not they are *consistent with the discourse context*

- All implicatures are (in)felicitous based on the same criterion: whether or not they are *consistent with the discourse context*
- For the anaphoric retrievability implication, it is infelicitous when no antecedent is present:
 - (17) (*Out of the blue*) # It brayed.

- All implicatures are (in)felicitous based on the same criterion: whether or not they are *consistent with the discourse context*
- For the anaphoric retrievability implication, it is infelicitous when no antecedent is present:
 - (17) (*Out of the blue*) # It brayed.
- In the case of supplements, they are infelicitous when their content conflicts with prior discourse (Potts's *nondeniability*):
 - (18) Lance, a cyclist, is from Texas. # Lance is not a cyclist.

- All implicatures are (in)felicitous based on the same criterion: whether or not they are *consistent with the discourse context*
- For the anaphoric retrievability implication, it is infelicitous when no antecedent is present:
 - (17) (*Out of the blue*) # It brayed.
- In the case of supplements, they are infelicitous when their content conflicts with prior discourse (Potts's *nondeniability*):
 - (18) Lance, a cyclist, is from Texas. # Lance is not a cyclist.
- And similarly for the nonconventional implicatures:
 - (19) # Kim never smoked in her life, and then she stopped smoking.

What About Accommodating those "Presuppositions"?

- Members of the class of nonconventional implicatures (achievements, aspectuals, factives) are characterized as potentially, but not necessarily, giving rise to entailments
- As a result, there is no place in this taxonomy for a notion of presupposition separate from anaphora—i.e., presupposition and anaphora are synonyms
What About Accommodating those "Presuppositions"?

- Members of the class of nonconventional implicatures (achievements, aspectuals, factives) are characterized as potentially, but not necessarily, giving rise to entailments
- As a result, there is no place in this taxonomy for a notion of presupposition separate from anaphora—i.e., presupposition and anaphora are synonyms
- This taxonomy is at odds with theories that construe achievements, aspectuals, and factives as presuppositions that require accommodation when they contain new information
- In my proposal, accommodation really is a repair strategy, triggered e.g. when a definite is used without a retrievable antecedent

- (The threat of) infelicity is a factor in determining speaker vs. non-speaker commitment, as in (10), repeated from above:
 - (10) Lance didn't enter last year's Tour de France, but Kim is convinced that he won it.

- (The threat of) infelicity is a factor in determining speaker vs. non-speaker commitment, as in (10), repeated from above:
 - (10) Lance didn't enter last year's Tour de France, but Kim is convinced that he won it.
- ► Compare (10) with
 - (20) # Lance didn't enter last year's Tour de France, but he won it.

- (The threat of) infelicity is a factor in determining speaker vs. non-speaker commitment, as in (10), repeated from above:
 - (10) Lance didn't enter last year's Tour de France, but Kim is convinced that he won it.
- ► Compare (10) with
 - (20) # Lance didn't enter last year's Tour de France, but he won it.
- Similarly for supplements (from Amaral et al., 2007):
 - (21) Joan is crazy. She's hallucinating that some geniuses in Silicon Valley have invented a new brain chip that's been installed in her left temporal lobe and permits her to speak any of a number of languages she's never studied.

- (The threat of) infelicity is a factor in determining speaker vs. non-speaker commitment, as in (10), repeated from above:
 - (10) Lance didn't enter last year's Tour de France, but Kim is convinced that he won it.
- ► Compare (10) with
 - (20) # Lance didn't enter last year's Tour de France, but he won it.
- Similarly for supplements (from Amaral et al., 2007):
 - (21) Joan is crazy. She's hallucinating that some geniuses in Silicon Valley have invented a new brain chip that's been installed in her left temporal lobe and permits her to speak any of a number of languages she's never studied. Joan believes that her chip, which she had installed last month, has a twelve year guarantee.

Taxonomy of Nonconversational Implicatures

A Grice-inspired taxonomy of implicature, leaving out the conversational implicatures (which are nonconventional):

(Here, implicatures with variable commitment status are highlighted.)

Outline

Characterizing Sense and Implicature What's the Difference? A Gricean Taxonomy Felicity, Accommodation, and Variability A More Fully Fleshed-out Picture

Formalizing these Ideas

Technical Background Going Dynamic

Accounting for some Implicature Data

Anaphora Supplements

Conclusions

Formalizing these Ideas

Introducing Dynamic Categorial Grammar (DyCG)

- DyCG is a grammar formalism for modeling language use in context
- It is both *compositional* and *dynamic*: utterances both update the context and depend on it for their own interpretation

Formalizing these Ideas

Introducing Dynamic Categorial Grammar (DyCG)

- DyCG is a grammar formalism for modeling language use in context
- It is both *compositional* and *dynamic*: utterances both update the context and depend on it for their own interpretation
- The goal of most dynamic theories is to model anaphora; DyCG aims at implicatures more generally

Formalizing these Ideas

Introducing Dynamic Categorial Grammar (DyCG)

- DyCG is a grammar formalism for modeling language use in context
- It is both *compositional* and *dynamic*: utterances both update the context and depend on it for their own interpretation
- The goal of most dynamic theories is to model anaphora; DyCG aims at implicatures more generally
- It is most similar to the compositional dynamic theories advanced by Beaver (2001) and de Groote (2006)

- Adopting Curry's (1961) distinction between abstract and concrete syntax, DyCG is built upon three logics:
 - Concrete syntax models word order: An instantiation of (simple) type theory with a single nonlogical type s, of strings, that has a concatenation operator with a two-sided identity (the empty string)

 Adopting Curry's (1961) distinction between abstract and concrete syntax, DyCG is built upon three logics:

Concrete syntax models word order: An instantiation of (simple) type theory with a single nonlogical type s, of strings, that has a concatenation operator with a two-sided identity (the empty string) Abstract syntax models combinatorics: An instance of the

Abstract syntax models combinatorics: An instance of the tensor-implication (\otimes , 1, $-\infty$) fragment of linear logic, with some atomic formulas (NP, N, S, ...)

 Adopting Curry's (1961) distinction between abstract and concrete syntax, DyCG is built upon three logics:

Concrete syntax models word order: An instantiation of (simple) type theory with a single nonlogical type s, of strings, that has a concatenation operator with a two-sided identity (the empty string)

Abstract syntax models combinatorics: An instance of the tensor-implication (\otimes , 1, $-\infty$) fragment of linear logic, with some atomic formulas (NP, N, S, ...)

Semantics models meaning in context: A dependent type theory with the nonlogical types e (entities), p (propositions), ω (natural numbers)

Adopting Curry's (1961) distinction between abstract and concrete syntax, DyCG is built upon three logics:

Concrete syntax models word order: An instantiation of (simple) type theory with a single nonlogical type s, of strings, that has a concatenation operator with a two-sided identity (the empty string)

- Abstract syntax models combinatorics: An instance of the tensor-implication (⊗, 1, –∘) fragment of linear logic, with some atomic formulas (NP, N, S, ...)
 - Semantics models meaning in context: A dependent type theory with the nonlogical types e (entities), p (propositions), ω (natural numbers)
- It shares the abstract/concrete strategy with de Groote's (2001) Abstract Categorial Grammars and Muskens's (2007) Lambda Grammars

DyCG Grammar Rules

The grammar is a system for deriving *signs*, which, ignoring concrete syntax, are pairs of the form

 $A \; ; b : B \; ,$

where *A* is a formula of abstract syntax, *b* a term of the semantics, and *B* a semantic type.

DyCG Grammar Rules

The grammar is a system for deriving *signs*, which, ignoring concrete syntax, are pairs of the form

where *A* is a formula of abstract syntax, *b* a term of the semantics, and *B* a semantic type. There are only four rules:

$$\vdash A ; b : B \quad (Entry)$$

$$A ; x : B \vdash A ; x : B \quad (Trace)$$

$$\frac{\Gamma, A ; x : B \vdash C ; d : D}{\Gamma \vdash A \multimap C ; (\lambda_x d) : B \to D} \quad (Extract)$$

$$\frac{\Gamma \vdash A \multimap B ; f : C \to D \quad \Delta \vdash A ; c : C}{\Gamma, \Delta \vdash B ; (f c) : D} \quad (Combine)$$

The Underlying Static Semantics I

The underlying static semantics assumes that:

- 1. There is a type w of worlds, and
- 2. For every meaning type *A*, there is some function $@_A : A \to w \to Ext(A)$, that takes each inhabitant of *A* to its extension Ext(A) at a given world

The Underlying Static Semantics I

- The underlying static semantics assumes that:
 - 1. There is a type w of worlds, and
 - 2. For every meaning type *A*, there is some function $@_A : A \to w \to Ext(A)$, that takes each inhabitant of *A* to its extension Ext(A) at a given world
- But it is *agnostic* about how @p is defined, following Plummer and Pollard (2012)

The Underlying Static Semantics I

- The underlying static semantics assumes that:
 - 1. There is a type w of worlds, and
 - 2. For every meaning type *A*, there is some function $@_A : A \to w \to Ext(A)$, that takes each inhabitant of *A* to its extension Ext(A) at a given world
- But it is *agnostic* about how @p is defined, following Plummer and Pollard (2012)
- In particular, this means there is no need to define an extensional fragment

The Underlying Static Semantics II

The static semantics also axiomatizes these connectives and quantifiers to behave as expected:

> entails : $p \rightarrow p \rightarrow t$ (entailment) true : p (a necessary truth) false : p (a necessary falsehood) $\mathsf{not}: \mathsf{p} \to \mathsf{p}$ (negation) and : $p \rightarrow p \rightarrow p$ (conjunction) implies : $p \rightarrow p \rightarrow p$ (implication) (disjunction) or : $p \rightarrow p \rightarrow p$ forall : $(A \rightarrow p) \rightarrow p$ (universal quantifier) exists : $(A \rightarrow p) \rightarrow p$ (existential quantifier)

Contexts

- A DyCG context is a function from an *n*-ary vector of entities to a proposition.
- The type of *n*-contexts is

$$\mathbf{c}_n =_{\mathrm{def}} \mathbf{e}^n \to \mathbf{p} \; ,$$

where the type e^n is the type of vectors of *n* entities

Contexts

- A DyCG context is a function from an *n*-ary vector of entities to a proposition.
- The type of *n*-contexts is

$$\mathbf{c}_n =_{\mathrm{def}} \mathbf{e}^n \to \mathbf{p} \,,$$

where the type e^n is the type of vectors of *n* entities

► For example, the following is a 2-context:

 $\vdash \lambda_{x,y}$.(cyclist x) and (bike y) and (ride y x) : c₂

The type c_n shows how dependent types are used in DyCG: an n-context requires n entities to produce a proposition

Contents

- Meanings of declarative utterances are modeled as contents, functions from contexts to pairs of contexts
- ► The type k_n is the type of contents that introduce *n* discourse referents:

 $\mathbf{k}_n =_{\mathrm{def}} \mathbf{c}_m \to (\mathbf{c}_{m+n} \times \mathbf{c}_{m+n})$

 Inspired by Karttunen and Peters (1979), the first component represents the sense of the expression, and the second its implicature

Contents

- Meanings of declarative utterances are modeled as contents, functions from contexts to pairs of contexts
- ► The type k_n is the type of contents that introduce *n* discourse referents:

 $\mathbf{k}_n =_{\mathrm{def}} \mathbf{c}_m \to (\mathbf{c}_{m+n} \times \mathbf{c}_{m+n})$

- Inspired by Karttunen and Peters (1979), the first component represents the sense of the expression, and the second its implicature
- For example, It's raining would get the content

 $\vdash \lambda_{c}. \langle \lambda_{\mathbf{x}^{|c|}}. \mathsf{rain}, \lambda_{\mathbf{x}^{|c|}}. \mathsf{true} \rangle : k_{0}$

Dynamic Properties

- Static properties are made dynamic by replacing their entity arguments with vector coordinates
- For example, the unary property cyclist : $e \rightarrow p$ and binary relation ride : $e \rightarrow e \rightarrow p$ are dynamicized as

$$\mathsf{CYCLIST} = \lambda_n \lambda_c. \left\langle \lambda_{\mathbf{x}^{|c|}}.(\mathsf{cyclist}\,\mathbf{x}_n), \lambda_{\mathbf{x}^{|c|}}.\mathsf{true} \right\rangle : \omega \to k_0 \,,$$

and

$$\texttt{RIDE} = \lambda_{mn} \lambda_c \left\langle \lambda_{\mathbf{x}^{|c|}}.(\texttt{ride} \, \mathbf{x}_m \, \mathbf{x}_n), \lambda_{\mathbf{x}^{|c|}}.\texttt{true} \right\rangle : \omega \to \omega \to k_0$$

Updates

 A content modifies the discourse context by being promoted to update, of type

 $u_n =_{\operatorname{def}} c_m \to c_n$

Updates

 A content modifies the discourse context by being promoted to update, of type

$$u_n =_{\mathrm{def}} c_m \to c_n$$

► The *context change* function CC : k_n → u_n does the promotion by collapsing the sense and implicature content together:

$$cc =_{def} \lambda_{kc} \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|k|}} (c \mathbf{x}) and (k c)^{s} \mathbf{x}, \mathbf{y} and (k c)^{i} \mathbf{x}, \mathbf{y},$$

where $(kc)^{s}$ is the sense of *k*, and $(kc)^{i}$ its implicature

Updates

 A content modifies the discourse context by being promoted to update, of type

$$u_n =_{\operatorname{def}} c_m \to c_n$$

► The *context change* function CC : k_n → u_n does the promotion by collapsing the sense and implicature content together:

$$\mathbf{cc} =_{\mathrm{def}} \lambda_{kc} \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|k|}} (c \mathbf{x}) \text{ and } (k c)^{\mathrm{s}} \mathbf{x}, \mathbf{y} \text{ and } (k c)^{\mathrm{i}} \mathbf{x}, \mathbf{y},$$

where $(kc)^{s}$ is the sense of *k*, and $(kc)^{i}$ its implicature

• For example, for some $n : \omega$,

 $\vdash cc(CYCLIST n) = \lambda_c \lambda_{\mathbf{x}^{|c|}} . (c \mathbf{x}) and (cyclist \mathbf{x}_n) and true : \mathbf{u}_0$

Dynamic Connectives I: Conjunction

► The dynamic conjunction of two contents AND : k_m → k_n → k_{m+n} passes to the second conjunct the context updated by the first conjunct:

AND =_{def}
$$\lambda_{hkc} \left\langle \lambda_{\mathbf{x}^{[c]}, \mathbf{y}^{[h]}, \mathbf{z}^{[k]}} \cdot (h c)^{s} \mathbf{x}, \mathbf{y} \text{ and } (k (\operatorname{cc} h c))^{s} \mathbf{x}, \mathbf{y}, \mathbf{z} \right.$$

 $\lambda_{\mathbf{x}^{[c]}, \mathbf{y}^{[h]}, \mathbf{z}^{[k]}} \cdot (h c)^{i} \mathbf{x}, \mathbf{y} \text{ and } (k (\operatorname{cc} h c))^{i} \mathbf{x}, \mathbf{y}, \mathbf{z} \left. \right\rangle$

 This seems pretty involved, but it just conjoins the two contents in a way that keeps sense and implicature separate

Dynamic Connectives I: Conjunction

► The dynamic conjunction of two contents AND : k_m → k_n → k_{m+n} passes to the second conjunct the context updated by the first conjunct:

AND =_{def}
$$\lambda_{hkc} \left\langle \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|h|}, \mathbf{z}^{|k|}} . (h c)^{s} \mathbf{x}, \mathbf{y} \text{ and } (k (\operatorname{cc} h c))^{s} \mathbf{x}, \mathbf{y}, \mathbf{z} \right.$$

 $\lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|h|}, \mathbf{z}^{|k|}} . (h c)^{i} \mathbf{x}, \mathbf{y} \text{ and } (k (\operatorname{cc} h c))^{i} \mathbf{x}, \mathbf{y}, \mathbf{z} \left. \right\rangle$

- This seems pretty involved, but it just conjoins the two contents in a way that keeps sense and implicature separate
- Example: for natural numbers *m* and *n*,

 $\vdash (\operatorname{CYCLIST} m) \operatorname{AND} (\operatorname{RIDE} n m) \\ \equiv \lambda_c. \langle \lambda_{\mathbf{x}^{|c|}}. (\operatorname{cyclist} \mathbf{x}_m) \text{ and } (\operatorname{ride} \mathbf{x}_n \mathbf{x}_m), \lambda_{\mathbf{x}^{|c|}}. \operatorname{true} \rangle : \mathbf{k}_0$

Dynamic Connectives II: Existential "Quantifier"

► The dynamic existential "quantifier" EXISTS : (ω → k_n) → k_{n+1} doesn't really do any quantifying:

EXISTS =
$$_{def} \lambda_{Dc} . D |c| c^+$$

Here, c^+ is the context just like *c* but with an extra vector coordinate.

Dynamic Connectives II: Existential "Quantifier"

► The dynamic existential "quantifier" EXISTS : (ω → k_n) → k_{n+1} doesn't really do any quantifying:

EXISTS =
$$_{def} \lambda_{Dc} . D |c| c^+$$

Here, c^+ is the context just like c but with an extra vector coordinate.

• Example:

$$\vdash \text{EXISTS CYCLIST} = \lambda_c. \left\langle \lambda_{\mathbf{x}^{|c|}, y}.(\mathsf{cyclist}\, y), \lambda_{\mathbf{x}^{|c|}, y}.\mathsf{true} \right\rangle$$

Dynamic Connectives III: Negation

► Dynamic negation NOT : k_n → k₀ not only negates, it also 'traps' any discourse referents introduced in its scope:

NOT =_{def}
$$\lambda_{kc}$$
. $\langle \lambda_{\mathbf{x}^{|c|}}$.not exists $_{\mathbf{y}^{|k|}} . (kc)^{s} \mathbf{x}, \mathbf{y}, \lambda_{\mathbf{x}^{|c|}} . exists_{\mathbf{y}^{|k|}} . (kc)^{i} \mathbf{x}, \mathbf{y} \rangle$

Dynamic Connectives III: Negation

► Dynamic negation NOT : k_n → k₀ not only negates, it also 'traps' any discourse referents introduced in its scope:

NOT =_{def}
$$\lambda_{kc}$$
. $\langle \lambda_{\mathbf{x}^{|c|}}$.not exists $_{\mathbf{y}^{|k|}} . (kc)^{s} \mathbf{x}, \mathbf{y}, \lambda_{\mathbf{x}^{|c|}} . exists_{\mathbf{y}^{|k|}} . (kc)^{i} \mathbf{x}, \mathbf{y} \rangle$

Example:

$$\begin{split} & \vdash \operatorname{NOT}\left(\operatorname{EXISTS}\operatorname{CYCLIST}\right) \\ & = \lambda_c \left< \lambda_{\mathbf{x}^{|c|}}. \text{not} \operatorname{exists}_y. (\operatorname{cyclist} y), \lambda_{\mathbf{x}^{|c|}}. \operatorname{exists}_y. \operatorname{true} \right> \\ & \equiv \lambda_c \left< \lambda_{\mathbf{x}^{|c|}}. \text{not} \operatorname{exists} \operatorname{cyclist}, \lambda_{\mathbf{x}^{|c|}}. \operatorname{true} \right> : \mathbf{k}_0 \end{split}$$

Defining a Dynamic Semantics

With conjunction, the existential, and negation defined, the other connectives can be defined in terms of them:

IMPLIES =_{def}
$$\lambda_{hk}$$
.NOT (h AND (NOT k)) : $\mathbf{k}_m \to \mathbf{k}_n \to \mathbf{k}_0$
OR =_{def} λ_{hk} .NOT ((NOT h) AND (NOT k)) : $\mathbf{k}_m \to \mathbf{k}_n \to \mathbf{k}_0$
FORALL =_{def} λ_D .NOT EXISTS n .NOT ($D n$) : ($\omega \to \mathbf{k}_n$) $\to \mathbf{k}_0$

Defining a Dynamic Semantics

With conjunction, the existential, and negation defined, the other connectives can be defined in terms of them:

$$\begin{aligned} \text{IMPLIES} =_{\text{def}} \lambda_{hk}.\text{NOT} \left(h \text{ and } (\text{NOT} k) \right) &: \mathbf{k}_m \to \mathbf{k}_n \to \mathbf{k}_0 \\ \text{OR} =_{\text{def}} \lambda_{hk}.\text{NOT} \left((\text{NOT} h) \text{ and } (\text{NOT} k) \right) &: \mathbf{k}_m \to \mathbf{k}_n \to \mathbf{k}_0 \\ \text{FORALL} =_{\text{def}} \lambda_D.\text{NOT} \text{ EXISTS}_n.\text{NOT} \left(D n \right) &: (\omega \to \mathbf{k}_n) \to \mathbf{k}_0 \end{aligned}$$

Then the dynamic generalized determiners are in turn defined in terms of these:

$$A =_{def} \lambda_{DE}.EXISTS_{n}.((D n) AND (E n))$$

EVERY =_{def} \lambda_{DE}.FORALL_{n}.((D n) IMPLIES (E n))
Accounting for some Implicature Data

Outline

Characterizing Sense and Implicature What's the Difference? A Gricean Taxonomy Felicity, Accommodation, and Variabilit A More Fully Fleshed-out Picture

Formalizing these Ideas

Technical Background Going Dynamic

Accounting for some Implicature Data

Anaphora Supplements

Conclusions

Anaphora uses the dynamic generalized determiner

THE =_{def} λ_{DEc} . $\langle (E(\text{the } Dc)c)^{s}, \lambda_{\mathbf{x}^{|c|}}.(((D \text{ THAT } E)(\text{the } Dc)c)^{i}\mathbf{x}) \text{ and } \rangle$ exists! $_{n:\omega_{|c|}}.(c \text{ k-entails } (D n))$

For example, The cyclist rides is modeled by

⊢ THE CYCLIST RIDE $\equiv \lambda_c. \langle \lambda_{\mathbf{x}^{[c]}}.(\mathsf{ride}\,\mathbf{x}_{(\mathsf{the}\,\mathsf{CYCLIST}\,c)}),$ $\lambda_{\mathbf{x}^{|c|}}$.exists! $_{n:\omega_{|c|}}$.(c k-entails (CYCLIST n)) : \mathbf{k}_0

Anaphora uses the dynamic generalized determiner

THE =_{def} λ_{DEc} . $\langle (E (\text{the } D c) c)^{s}, \lambda_{\mathbf{x}^{|c|}}.(((D \text{ THAT } E) (\text{the } D c) c)^{i} \mathbf{x}) \text{ and}$ exists!_{*n*: $\omega_{|c|}$.(*c* k-entails (*D n*)) \rangle}

► For example, *The cyclist rides* is modeled by

 $\vdash \text{THE CYCLIST RIDE} \\ \equiv \lambda_c. \left\langle \lambda_{\mathbf{x}^{|c|}}.(\text{ride } \mathbf{x}_{(\text{the CYCLIST } c)}), \\ \lambda_{\mathbf{x}^{|c|}}.\text{exists!}_{n:\omega_{|c|}}.(c \text{ k-entails } (\text{CYCLIST } n)) \right\rangle : \mathbf{k}_0$

Pronouns and other definites can be defined in terms of THE:

IT $=_{def}$ THE NONHUMAN LANCE $=_{def}$ THE NAMED-LANCE

Donkey Anaphora

Instances of 'donkey anaphora' are captured, for example

(22) Every cyclist that owns a bike_i rides it_i

is modeled as

 $\vdash \text{EVERY}(\text{CYCLIST THAT } \lambda_n.\text{A BIKE}_m.(\text{OWN } m n)) \lambda_n.\text{IT}_m.(\text{RIDE } m n)$ = FORALL_n.(((CYCLIST n) AND EXISTS_m.(BIKE m) AND (OWN m n)) IMPLIES IT_m.(RIDE m n))

This has the sense

 $\lambda_{\mathbf{x}^{|c|}}$.not exists_{y,z}.(cyclist y) and (bike z) and (own z y) and not (ride z y)

Donkey Anaphora

Instances of 'donkey anaphora' are captured, for example

(22) Every cyclist that owns a bike_i rides it_i

is modeled as

 $\vdash \text{EVERY}(\text{CYCLIST THAT } \lambda_n.\text{A BIKE}_m.(\text{OWN } m n)) \lambda_n.\text{IT}_m.(\text{RIDE } m n)$ = FORALL_n.(((CYCLIST n) AND EXISTS_m.(BIKE m) AND (OWN m n)) IMPLIES IT_m.(RIDE m n))

This has the sense

 $\lambda_{\mathbf{x}^{|c|}}$.not exists_{y,z}.(cyclist y) and (bike z) and (own z y) and not (ride z y)

But note that the scope has the implicature

 $\lambda_{\mathbf{x}^{|c|}}.\mathsf{exists}_{m:\omega_{|c|}}.(c \text{ k-entails } (\text{NONHUMAN } m))$

The *merge* function ↑ : (ω → k_n) → (ω → k_n) turns sense content into implicature content

$$\Uparrow =_{\operatorname{def}} \lambda_{Dnc} \cdot \left\langle \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}} \operatorname{true}, \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}} \cdot (Dn)^{\operatorname{s}} \mathbf{x}, \mathbf{y} \operatorname{and} (Dn)^{\operatorname{i}} \mathbf{x}, \mathbf{y} \right\rangle$$

• The *merge* function \uparrow : $(\omega \rightarrow k_n) \rightarrow (\omega \rightarrow k_n)$ turns sense content into implicature content

$$\Uparrow =_{\text{def}} \lambda_{Dnc}. \left\langle \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}}. \text{true}, \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}}. (Dn)^{s} \mathbf{x}, \mathbf{y} \text{ and } (Dn)^{i} \mathbf{x}, \mathbf{y} \right\rangle$$

For example, merging a predicativized version of *a cyclist* gives $\vdash \Uparrow(\text{PRED}(\text{A CYCLIST}))$ $\equiv \lambda_{nc}. \langle \lambda_{\mathbf{x}^{[c]}}. \text{true}, \lambda_{\mathbf{x}^{[c]}}. \text{exists}_{y}. (\text{cyclist } y) \text{ and } (y \text{ equals } \mathbf{x}_{n}) \rangle$

The *merge* function ↑ : (ω → k_n) → (ω → k_n) turns sense content into implicature content

$$\Uparrow =_{\text{def}} \lambda_{Dnc}. \left\langle \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}}. \text{true}, \lambda_{\mathbf{x}^{|c|}, \mathbf{y}^{|Dn|}}. (Dn)^{s} \mathbf{x}, \mathbf{y} \text{ and } (Dn)^{i} \mathbf{x}, \mathbf{y} \right\rangle$$

► For example, merging a predicativized version of *a cyclist* gives $\vdash \Uparrow(\text{PRED}(\text{A CYCLIST}))$ $\equiv \lambda_{nc}. \langle \lambda_{\mathbf{x}^{[c]}}.\text{true}, \lambda_{\mathbf{x}^{[c]}}.\text{exists}_{y}.(\text{cyclist } y) \text{ and } (y \text{ equals } \mathbf{x}_{n}) \rangle$

► Then the comma intonation is defined in terms of ↑, as

$$\text{COMMA} =_{\text{def}} \lambda_{DQE}.Q\left((\Uparrow D) \text{ that } E\right)$$

Basic Example with a Nominal Appositive

- As a basic example,
 - (23) Lance, a cyclist, is from Texas.

gets modeled as

- $\vdash (\text{COMMA} (\text{PRED A CYCLIST}) \text{ LANCE}) \text{ FROM-TEXAS}$
- = LANCE ((\Uparrow PRED A CYCLIST) THAT FROM-TEXAS)
- = The named-lance ((\Uparrow pred a cyclist) that from-texas)

Basic Example with a Nominal Appositive

- ► As a basic example,
 - (23) Lance, a cyclist, is from Texas.

gets modeled as

- $\vdash (\text{COMMA}(\text{PRED A CYCLIST}) \text{LANCE}) \text{FROM-TEXAS}$
- = LANCE ((\Uparrow PRED A CYCLIST) THAT FROM-TEXAS)
- = The named-lance ((\Uparrow pred a cyclist) that from-texas)
- The sense is that Lance is from Texas:

 $\lambda_{\mathbf{x}^{|c|}}.(\text{from-texas } \mathbf{x}_{(\text{the NAMED-LANCE } c)})$

and the implicature contains the information that he is a cyclist:

 $\lambda_{\mathbf{x}^{|c|}}.exists_y.(cyclist y) \text{ and } (y \text{ equals } \mathbf{x}_{(\text{the NAMED-LANCE } c)})$

Negated Nominal Appositive

- A negated version of (23),
 - (24) It's not true that Lance, a cyclist, is from Texas. is given the semantics

 \vdash NOT ((COMMA (PRED A CYCLIST) LANCE) FROM-TEXAS)

Negated Nominal Appositive

• A negated version of (23),

(24) It's not true that Lance, a cyclist, is from Texas. is given the semantics

 \vdash NOT ((COMMA (PRED A CYCLIST) LANCE) FROM-TEXAS)

• Here, the implicature is the same as before:

 $\lambda_{\mathbf{x}^{|c|}}$.exists_y.(cyclist y) and (y equals $\mathbf{x}_{(\text{the NAMED-LANCE }c)})$

but the sense is negated:

 $\lambda_{\mathbf{x}^{|c|}}$.not (from-texas $\mathbf{x}_{(\text{the NAMED-LANCE }c)})$

Supplements

Treatment of Supplements

- This approach can account for non-restrictive relatives, as-parentheticals, 'stacked' appositives, and utterance-final appositives:
 - Lance, who's a cyclist, is from Texas. (25)
 - (26)Lance, as a cyclist, rides every day.
 - (27)Lance, a cyclist, a real go-getter, rides every day.
 - (28)Kim met Lance, a cyclist.
- A similar treatment is given to expressives, like
 - (29)Lance entered the Tour de France, and the damn doper won it.

Treatment of Supplements

- This approach can account for non-restrictive relatives, as-parentheticals, 'stacked' appositives, and utterance-final appositives:
 - Lance, who's a cyclist, is from Texas. (25)
 - (26)Lance, as a cyclist, rides every day.
 - (27)Lance, a cyclist, a real go-getter, rides every day.
 - (28)Kim met Lance, a cyclist.
- A similar treatment is given to expressives, like
 - (29)Lance entered the Tour de France, and the damn doper won it.
- It also allows implicature content to interact with the sense content

Sense/Implicature Interaction

- Sometimes sense and implicature interact, as in
 - (30) Lance, a cyclist that has a bike_{*i*}, rides it_{*i*}.

Sense/Implicature Interaction

- Sometimes sense and implicature interact, as in
 - (30) Lance, a cyclist that has a bike_{*i*}, rides it_{*i*}.
- This gets the semantics
 - $\vdash (\text{COMMA}(\text{PRED A}(\text{CYCLIST THAT }\lambda_n.\text{A BIKE}_m.\text{HAVE }mn)) \text{ LANCE})$ $\lambda_n.\text{IT}_m.\text{RIDE}\,mn$

and so rides it_i is passed a context containing

 $\begin{array}{l} \lambda_{\mathbf{x}^{|c|}}.\mathsf{exists}_{y,z}.(\mathsf{cyclist}\,y) \text{ and } (\mathsf{bike}\,z) \text{ and } (\mathsf{have}\,z\,y) \text{ and } \\ (y \text{ equals } \mathbf{x}_{(\mathsf{the}\,\mathsf{NAMED-LANCE}\,c)}) \end{array}$

Sense/Implicature Interaction

- Sometimes sense and implicature interact, as in
 - (30) Lance, a cyclist that has a bike_{*i*}, rides it_{*i*}.
- This gets the semantics
 - $\vdash (\text{COMMA}(\text{PRED A}(\text{CYCLIST THAT }\lambda_n.\text{A BIKE}_m.\text{HAVE }mn)) \text{ LANCE})$ $\lambda_n.\text{IT}_m.\text{RIDE}\,mn$

and so rides it_i is passed a context containing

 $\lambda_{\mathbf{x}^{[c]}}$.exists_{*y*,*z*}.(cyclist *y*) and (bike *z*) and (have *z y*) and (*y* equals $\mathbf{x}_{(\text{the NAMED-LANCE } c)}$)

 The anaphora works out, but we have to resort to implementing Roberts's (2003) *weak familiarity*

A Problem: Quantified Supplements

- DyCG does fine with examples like
 - (31) Some cyclist, a doper, won the Tour de France.

A Problem: Quantified Supplements

- DyCG does fine with examples like
 - (31) Some cyclist, a doper, won the Tour de France.
- But for supplements in the scope of quantifiers like
 (32) # No cyclist, a doper, won the Tour de France.
 - It still gives the implicature

 $\lambda_{\mathbf{x}^{|c|}}.\mathsf{exists}_{y,z}.(\mathsf{doper}\,y) \text{ and } (y \text{ equals } z)$

A Solution?

- Nouwen (2007) tries to solve this by requiring quantifiers to introduce plural antecedents, since examples like
 - (33) Every climber, all experienced adventurers, made it to the summit

are fine

- But this approach doesn't seem to extend to
 - (34) No Tibetan Buddhist_i believes that the Dalai Lama, his_i spiritual mentor, would ever bow to Chinese pressure tactics.

Conclusions

Outline

Characterizing Sense and Implicature What's the Difference? A Gricean Taxonomy Felicity, Accommodation, and Variability A More Fully Fleshed-out Picture

Formalizing these Ideas

Technical Background Going Dynamic

Accounting for some Implicature Data Anaphora Supplements

Conclusions

Taking Stock

Some positives:

- A re-examination of the Gricean picture of implicatures leads to a unified account of anaphora and other implicatures
- The formal theory is both compositional and dynamic, extending some ideas originally due to Heim (1982) and Karttunen and Peters (1979)
- ► The account allows sense and implicature content to interact

Taking Stock

Some positives:

- A re-examination of the Gricean picture of implicatures leads to a unified account of anaphora and other implicatures
- The formal theory is both compositional and dynamic, extending some ideas originally due to Heim (1982) and Karttunen and Peters (1979)
- ► The account allows sense and implicature content to interact

Some negatives:

- The problem of quantified appositives seems tough to crack
- Weak familiarity is hard to formalize
- I haven't said anything about how to model speaker vs. non-speaker commitments

Taking Stock

Some positives:

- A re-examination of the Gricean picture of implicatures leads to a unified account of anaphora and other implicatures
- The formal theory is both compositional and dynamic, extending some ideas originally due to Heim (1982) and Karttunen and Peters (1979)
- ► The account allows sense and implicature content to interact

Some negatives:

- The problem of quantified appositives seems tough to crack
- Weak familiarity is hard to formalize
- I haven't said anything about how to model speaker vs. non-speaker commitments

Any ideas?

Bibliography

References I

- P. Amaral, C. Roberts, and E. A. Smith. Review of *The Logic of Conventional Implicatures* by Chris Potts. *Linguistics and Philosophy*, 30 (6):707–749, 2007. doi:10.1007/s10988-008-9025-2.
- D. I. Beaver. *Presupposition and Assertion in Dynamic Semantics*. CSLI Publications, 2001.
- H. Curry. Some logical aspects of grammatical structure. In R. Jakobson, editor, *Structure of Language and its Mathematical Aspects*, number 12 in Proceedings of Symposia in Applied Mathematics. American Mathematical Society, Providence, Rhode Island, 1961. doi:10.1090/psapm/012/9981.
- P. de Groote. Towards abstract categorial grammars. In *Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference,* 2001. doi:10.3115/1073012.1073045.

Bibliography

References II

- P. de Groote. Towards a Montagovian account of dynamics. In *Proceedings of the 16th Conference on Semantics and Linguistic Theory*, 2006.
- H. P. Grice. Logic and conversation. In P. Cole and J. Morgan, editors, *Speech Acts*, volume 3 of *Syntax and Semantics*, pages 43–58. Academic Press, New York, 1975. Reprinted in Martinich 2001, pages 165–175.
- J. A. Harris and C. Potts. Perspective-shifting with appositives and expressives. *Linguistics and Philosophy*, 32(6):532–552, 2009. doi:10.1007/s10988-010-9070-5.
- I. Heim. *The Semantics of Definite and Indefinite Noun Phrases*. PhD thesis, University of Massachusetts, Amherst, 1982.
- L. Karttunen and S. Peters. Conventional implicature. In C.-K. Oh and D. A. Dineen, editors, *Presupposition*, volume 11 of *Syntax and Semantics*, pages 1–56. Academic Press, New York, 1979.

Bibliography

References III

- A. P. Martinich, editor. *The Philosophy of Language*. Oxford University Press, 2001.
- R. Muskens. Separating syntax and combinatorics in categorial grammar. *Research on Language and Computation*, 5(3):267–285, 2007. doi:10.1007/s11168-007-9035-1.
- R. Nouwen. On appositives and dynamic binding. *Research on Language and Computation*, 5(1):87–102, 2007. doi:10.1007/s11168-006-9019-6.
- A. Plummer and C. Pollard. Agnostic possible worlds semantics. In *Logical Aspects of Computational Linguistics,* number 7351 in Lecture Notes in Computer Science, pages 201–212. Springer, 2012. doi:10.1007/978-3-642-31262-5_14.
- C. Potts. *The Logic of Conventional Implicatures*. Oxford University Press, 2005.
- C. Roberts. Uniqueness in definite noun phrases. *Linguistics and Philosophy*, 26(3):287–350, 2003.

References IV

- M. Simons. On the conversational basis of some presuppositions. In *Proceedings of the 11th Conference on Semantics and Linguistic Theory*, 2001.
- M. Simons, C. Roberts, D. Beaver, and J. Tonhauser. What projects and why. In *Proceedings of the 20th Conference on Semantics and Linguistic Theory*, 2010.

Axioms for the Static Semantics I

The *extension type* of a meaning type A is denoted Ext(A).

$$Ext(1) =_{def} 1$$

$$Ext(e) =_{def} e$$

$$Ext(p) =_{def} t$$

$$Ext(A \rightarrow B) =_{def} A \rightarrow Ext(B)$$

$$Ext(A \times B) =_{def} Ext(A) \times Ext(B)$$

The extension functions @ are written infix, similarly to phenogrammatical concatenation, and are subject to the following axioms.

$$\vdash \forall_{w:w}.(* @_1 w) = *$$

$$\vdash \forall_{x:e} \forall_{w:w}.(x @_e w) = x$$

$$\vdash \forall_{f:A \to B} \forall_{w:w}.(f @_{A \to B} w) = \lambda_{x:A}.(f x) @_{A \to B} w$$

$$\vdash \forall_{c:A \times B} \forall_{w:w}.(c @_{A \times B} w) = \langle (\pi_1 c) @_A w, (\pi_2 c) @_B w \rangle$$

Axioms for the Static Semantics II

 $\vdash \forall_{p:p} \forall_{q:p} . (p \text{ entails } q) \Leftrightarrow \forall_{w:w} . ((p @ w) \Rightarrow (q @ w))$ $\vdash \forall_{w \cdot w}$.true @ w $\vdash \forall_{w:w}.\neg(\mathsf{false} @ w)$ $\vdash \forall_{p:p} \forall_{w:w}.((\operatorname{\mathsf{not}} p) @ w) \Leftrightarrow \neg(p @ w)$ $\vdash \forall_{p:p} \forall_{q:p} \forall_{w:w}. ((p \text{ and } q) @ w) \Leftrightarrow ((p @ w) \land (q @ w))$ $\vdash \forall_{p:p} \forall_{q:p} \forall_{w:w}. ((p \text{ implies } q) @ w) \Leftrightarrow ((p @ w) \Rightarrow (q @ w))$ $\vdash \forall_{p:p} \forall_{q:p} \forall_{w:w} . ((p \text{ or } q) @ w) \Leftrightarrow ((p @ w) \lor (q @ w))$ $\vdash \forall_{P:A \to p} \forall_{w:w}. ((\text{forall } P) @ w) \Leftrightarrow \forall_{x:A}. ((Px) @ w)$ $\vdash \forall_{P:A \to p} \forall_{w:w}. ((\mathsf{exists} P) @ w) \Leftrightarrow \exists_{x:A}. ((Px) @ w)$

Contextual Entailment

$$\begin{split} & \vdash \forall_{p:\mathbf{p}} \forall_{q:\mathbf{p}} \forall_{w:\mathbf{w}}.(p \text{ Entails } q) @ w \Leftrightarrow (p \text{ entails } q) \\ & \mathsf{c}\text{-entails} =_{\mathrm{def}} \lambda_{c:\mathbf{c}} \lambda_{d:\mathbf{c}_{\geq |c|}}. \text{forall}_{\mathbf{x}^{|c|}}.(c \mathbf{x}) \text{ Entails exists}_{\mathbf{y}^{|d|-|c|}}.(d \mathbf{x}, \mathbf{y}) \\ & \mathsf{k}\text{-entails} =_{\mathrm{def}} \lambda_{c:\mathbf{c}} \lambda_{k:\mathbf{k}}.c \text{ c-entails} (\operatorname{cc} k c) \end{split}$$

Definitions for Anaphora

the =_{def}
$$\lambda_{D:\omega \to k_m} \lambda_{c:c} \eta_{n:\omega_{|c|}} . c$$
 k-entails $(D n)$
pro =_{def} $\lambda_{D:\omega \to k_m} \lambda_{c:c} \eta_{n:\omega_{|c|}} . c$ k-cons $(D n)$

Additional Dynamic Definitions

THAT =_{def} λ_{DEn} .(Dn) and (En) PRED =_{def} λ_{On} .NOT (NOT ($Q_m.m$ EQUALS n))