
Putting The Conversation
in Conversational AI

Scott Martin 4/6/17

How to approach this?

Teach it to read lips?Make it be your friend?

Some conversational design principles

● Allow the user to interact as freely as possible, while still maintaining an
understanding of how to respond

● Give up some system initiative (think automated phone tree) in favor of
more user initiative:
○ Underspecification: not providing enough information
○ Overanswering: providing more information than was requested
○ Overspecification: creating an ambiguous situation

● Mimic natural human interaction by allowing the user to change the
subject, but come back to what we were talking about without
forgetting anything

How I got pulled into this

● Trying to build a
domain-general dialog system
on my first computer was
humbling

● Dialog is hard! Many complex,
interacting parts that are
mostly invisible

● Lesson learned: start with the
simplest parts, and try to get
those right

A simple task decomposition scheme

Tasks may have
● Slots that may be

parameterized in advance
● Dependencies on other tasks

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

Intents are mapped to tasks by rank

User: fried chicken

• This utterance yields two competing,
 highly ranked task decompositions

Highly ranking tasks matched

findRestaurant [dish=fried chicken] 0.99

findRecipes [dish=fried chicken] 0.924747

Dialog

Task ranking allows cross-domain ambiguity

Alternative taskHighest ranking task

Task execution

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

E [z]

D [x, y]

C [v, w]

B [u]

A [s, t]

Execution stackSpecification

Runtime inheritance of slot values

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

D [x, y]

C [v, w, z]

B [u]

A [s, t]

Execution stackSpecification

Runtime inheritance of slot values

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

C [v, w, x, y, z]

B [u]

A [s, t]

Execution stackSpecification

Runtime inheritance of slot values

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

B [u]

A [s, t, v, w, x, y, z]

Execution stackSpecification

Runtime inheritance of slot values

A [s, t, u, v, w, x, y, z]

Execution stackSpecification

A [s, t]

B [u] C [v, w]

D [x, y] E [z]

A meal reservation task decomposition

makeReservation [diners]

findPlace [restaurant] findTime [time]

findTime [time=?]

findPlace [restaurant=?]

makeReservation [diners=?]

Execution stackSpecification

Underspecification triggers a dialog

Dialog Execution stack

findPlace [restaurant=?]

makeReservation [diners=?, time=Friday 8 PM]

User: Make a reservation on Friday at 8
Ozlo: Where would you like to eat?

● Underspecification is handled by running
subtasks until we reach one that has an
unfilled slot

Underspecification triggers a dialog

Dialog Execution stack

makeReservation [diners=?, time=Friday 8 PM,
restaurant=Evvia]

User: Make a reservation on Friday at 8
Ozlo: Where would you like to eat?
User: at Evvia
Ozlo: How many people will be eating?

● Execution continues until all of the root
task’s slots are properly filled

Dialog Execution stack

User: Make a reservation on Friday at 8
Ozlo: Where would you like to eat?
User: at Evvia
Ozlo: How many people will be eating?
User: two people
Ozlo: Ok, I’ll make a reservation for two at Evvia
on Friday at 8

Underspecification triggers a dialog

makeReservation [diners=2, time=Friday 8 PM,
restaurant=Evvia]

A one-shot query is a special case of a dialog

Dialog Initial execution stack

findTime [time=Friday 8 PM]

findPlace [restaurant=Evvia]

makeReservation [diners=2]

User: make a reservation for 2 at Evvia on
Friday at 8

● We can gather all the parameters at
once, essentially a complete dialog in
a single turn

● Execution proceeds just as it would
with a multi-turn dialog Final execution stack

makeReservation [diners=2, time=Friday 8 PM,
restaurant=Evvia]

Overanswering gives more flexibility

Dialog Execution stack

findTime [time=?]

findPlace [restaurant=?]

makeReservation [diners=?]

User: I want to make a reservation for dinner

● We don’t want to require a rigid order for
the user’s answers

● Slot values may be specified in any order,
because all tasks on the stack get to
inspect the input

Overanswering gives more flexibility

Dialog Execution stack

findPlace [restaurant=?]

makeReservation [diners=2, time=Friday 8 PM]

User: I want to make a reservation for dinner
Ozlo: Ok, what time should I make the
reservation for?
User: It’s for two people on Friday at 8.

● Each task on the stack is allowed to inspect
the input on every turn in case its values
were provided

Overanswering gives more flexibility

Dialog Execution stack

makeReservation [diners=2, time=Friday 8 PM,
restaurant=Evvia]

User: I want to make a reservation for dinner
Ozlo: Ok, what time should I make the
reservation for?
User: It’s for two people on Friday at 8.
Ozlo: Where would you like to eat?
User: At Evvia.
Ozlo: Ok, I’ll make a reservation for two at Evvia
on Friday at 8

Overspecification triggers disambiguation

Dialog Execution stack

makeReservation [diners=?, time=Friday 8 PM,
restaurant={Evvia, Rangoon Ruby}]

User: Make a reservation at Evvia
Ozlo: What time should I make the reservation?
User: On Friday at 8 at Rangoon Ruby.
Ozlo: Where do you want to eat? At Evvia or at
Rangoon Ruby?

● If too many values are provided for a slot,
we pause to clarify what the user meant

Overspecification triggers disambiguation

Dialog Execution stack

makeReservation [diners=?, time=Friday 8 PM,
restaurant=Evvia]

User: Make a reservation at Evvia
Ozlo: What time should I make the reservation?
User: On Friday at 8 at Rangoon Ruby.
Ozlo: Where do you want to eat? At Evvia or at
Rangoon Ruby?
User: Actually, at Evvia.
Ozlo: How many people will be eating?

● Once the ambiguity is resolved, we
proceed with the execution

Dialogs can be induced from data

● We can create tasks from Ozlo’s data schemas
to handle dialogs about a certain domain

● These tasks use the same execution
mechanism as hand-coded tasks, but are
automatically generated

Example schemas

poi

address
coordinates
...

poi.food extends poi

name
cuisines
dishes
dietary constraints
eatery types
...

Dialogs can be induced from data

Generated specification for dishes field

inspect:poi.food:dishes [poi]

find:poi.food [dish, eatery, ...]

findLocation [location]

Example schemas

poi

address
coordinates
...

poi.food extends poi

name
cuisines
dishes
dietary constraints
eatery types
...

Dialogs can be induced from data

Dialog Execution stack

findLocation [location=University Ave]

find:poi.food [dish=croissant, eatery=cafe]

inspect:poi.food:dishes [poi=?]

User: Does that cafe on University have
croissants?

● We first find the embedded location, then
look for cafes at that location

Dialogs can be induced from data

Dialog Execution stack

inspect:poi.food:dishes [poi={Blue Bottle
Coffee, Cafe Venetia, Cafe Epi},
location=University Ave, dish=croissant,
eatery=cafe]

User: Does that cafe on University have
croissants?
Ozlo: Which coffeeshop did you mean? Blue
Bottle Coffee, Cafe Venetia, or Cafe Epi?

● Finding more than one result triggers
disambiguation

Dialogs can be induced from data

Dialog Execution stack

inspect:poi.food:dishes [poi=Cafe Epi,
location=University Ave, dish=croissant,
eatery=cafe]

User: Does that cafe on University have
croissants?
Ozlo: Which coffeeshop did you mean? Blue
Bottle Coffee, Cafe Venetia, or Cafe Epi?
User: Cafe Epi
Ozlo: Cafe Epi, a coffee shop on University Ave,
serves several varieties of croissant.

● Once the ambiguity is resolved, we can
generate a useful response

Other attributes work automatically too

Generated decomposition for cuisines field

poi

address
coordinates
...

poi.food extends poi

name
cuisines
dishes
dietary constraints
eatery types
...

Schemas

inspect:poi.food:cuisines [poi]

find:poi.food [cuisine, eatery, ...]

findLocation [location]

Other attributes work automatically too

Dialog Execution stack

User: Which of those restaurants on Emerson
serve Greek food?
Ozlo: Evvia Estiatorio is a restaurant on Emerson
Street that serves Greek food.

inspect:poi.food:cuisines [poi=Evvia,
location=Emerson St, cuisine=Greek,
eatery=restaurant]

Taking stock

A more natural, freely flowing conversation

● User has more initiative, and is less constrained to interact how the system prefers
● Allows for underspecification, overanswering, overspecification
● Ambiguity resolution both between and within domains

Ergonomic software design and development

● Simple task decomposition and execution model allows for modularity and reuse
● Straightforward to add support for more domains and more functionality
● Task decompositions for a wide range of domains can be automatically derived from properly

structured data

Coming soon to a computer near you

● Release as Ozlo’s Converse API, likely later this year

Parts are visible in the Ozlo testing app now

● In certain domains, we already
enable dialogs using this
technology

● One example is the ability to
request an Uber ride after
searching for a restaurant

Parts are visible in the Ozlo testing app now

● After trying to disambiguate a
few times, we give the user
the chance to give up

Parts are visible in the Ozlo testing app now

● We carry on limited dialogs in
order to set reminders, asking
what and when

Parts are visible in the Ozlo testing app now

● The task execution model can
be seen by not specifying
what you want to be
reminded of

Coming attraction: meta-conversations

Dialog Execution stack

User: Make a reservation on Friday at 8
Ozlo: Where would you like to eat?
User: at Evvia
Ozlo: How many people will be eating?
User: Actually, will it be raining then?
Ozlo: Rain is not forecast for Friday evening in
Palo Alto.

● This model allows the user to change the
subject while in the middle of a task

weather [time=Friday 8 PM, condition=rain]

makeReservation [diners=?, time=Friday 8 PM,
restaurant=Evvia]

Coming attraction: meta-conversations

Dialog Execution stack

User: Make a reservation on Friday at 8
Ozlo: Where would you like to eat?
User: at Evvia
Ozlo: How many people will be eating?
User: Actually, will it be raining then?
Ozlo: Rain is not forecast for Friday evening in
Palo Alto.
Ozlo: Would you like to continue making a
reservation at Evvia for Friday?

● Since we know when a task from outside
the selected task decomposition was run,
we can make conversation about the
conversation

makeReservation [diners=?, time=Friday 8 PM,
restaurant=Evvia]

Caveat: Converse probably won’t work on this

Thanks for listening!

Shout outs

• Dialog induction is joint work with Todd Agulnick and Mike Hanson
• The task that makes reminders was written by Felix Yuan
• Heather Tompkins helped make these slides look fantastic

Questions?

