
Dynamic Semantics in Direct Style

Scott Martin

April 29, 2010

1 Call-by-value λµ-calculus

The call-by-value λµ-calculus (λµV , de Groote, 2008) is an extension of typed λ-calculus, adapted
from the λµ-calculus of Parigot (1992). λµV differs from Parigot’s calculus in that:

• The notion of a class of terms called values is introduced (see Definition 2). These terms are
treated specially with respect to certain reduction rules.

• A “symmetric” reduction rule (µV) is added that is similar to rule R4 of Parigot’s (2000)
symmetric λµ-calculus. A reduction rule for µ-variables (Rename) is also added.

• A new reset operator is introduced, with typing and reduction rules that govern its use.

Like the λµ-calculus of Parigot (1992), λµV allows a term to be “named” and used (via µ-application
and µ-abstraction) so that its name is preserved under reduction. We mildly extend de Groote’s
λµV by adding product for both terms and types.

Definition 1 (Terms). Terms are generated from two disjoint sets of variables, λ-variables (repre-
sented by x) and µ-variables (represented by a), according to the following rules:

M ::= c | x | λxM | (M M) | 〈M,M〉 | µaM | (aM) | dMc

where c is a constant. We adopt the convention that applications and pairings associate to the left
and abstractions associate to the right. Parentheses are sometimes abbreviated using . in the usual
way (e.g., λxµa .M).

Definition 2 (Values). The set of values is the subset of the set M of terms defined as:

V ::= x | λxM | (c V . . . V) | 〈V, V 〉

where c, x, and M are as defined in Definition 1.

Definition 3 (Typing). The set of types T is generated according to the following rules:

T ::= A | ¬T | T → T | T × T

where A is atomic. Typing judgments take the form

Γ; ∆ `M : T

1

x : A; ` x : A (Hyp)

Γ, x : A; ∆ `M : B
(Absλ)

Γ; ∆ ` λxM : A→ B

Γ; ∆ `M : A→ B Γ; ∆ ` N : A
(Appλ)

Γ; ∆ ` (M N) : B

Γ; ∆ `M : A Γ; ∆ ` N : B
(Prod)

Γ; ∆ ` 〈M,N〉 : A×B

Γ; ∆ `M : T 0 × T 1 (Proji (i ∈ {0, 1}))
Γ; ∆ ` (πi M) : T i

Figure 1: Typing rules of typed λ-calculus.

and are interpreted as saying that the term M is of type T in the context Γ (of λ-variables) and
co-context ∆ (of µ-variables).

The typing rules for introducing hypothetical λ-variables, λ-abstraction, λ-application, and
product are preserved from typed λ-calculus (see Figure 1). Extended rules for abstraction and
application with respect to µ-variables and a special reset rule are added to these rules (Figure
2), where the type R is special but not atomic (cf. Parigot, 2000). Letting R = ⊥, there is a

Γ; ∆, a : ¬A `M : R
(Absµ)

Γ; ∆ ` µaM : A

Γ; ∆ `M : A
(Appµ)

Γ; ∆, a : ¬A ` (aM) : R

Γ; ∆ `M : R
(Res)

Γ; ∆ ` dMc : R

Figure 2: Additional typing rules of λµV .

metaphorical resemblance (first noticed by Griffin, 1990) between types of λµV and formulas of
classical propositional logic.

Definition 4 (Reduction). In the reduction rules for λµV , we use the notational conventions that

• L[M/N] is the usual capture-avoiding substitution where M replaces free occurrences of N
in L, and

• L[M/∗N] is the term obtained by replacing every instance of a term of the form N with M
in L.

2

The rule βV is the same as for ordinary typed λ-calculus, with the proviso that the argument in a
β-reduction must be a value. The extended reduction rules of λµV are given in Figure 3.

βV :

(λxM V) � M [V/x] (V a value)

π :

(πi 〈M0,M1〉) � M i (i ∈ {0, 1})
µ :

(µaM N) � µbM [(b (LN))/∗(a L)]

µV :

(V µaM) � µbM [(b (V L))/∗(a L)] (V a value)

Rename:

(a µbM) � M [a/b]

ηµ :

µa(aM) � M (a does not occur in M)

Resetµ :

dµaMc � dM [N/∗(a N)]c
ResetV :

dV c � V (V a value)

Figure 3: Reduction rules for λµV .

We will sometimes write M �+N when M reduces to N after multiple applications of these
reduction rules.

2 Using λµV to Model Discourse

Like the CPS version (Martin and Pollard, 2009), our adaptation of de Groote’s direct-style dynamic
logic is based on the hyperintensional semantics of Pollard (2008).

2.1 Types

The type system is almost the same as for the CPS version. The basic types we will use are:

e (entities)

t (truth values)

p (propositions)

3

We let the special type R be p, the type of propositions. Using the type constructors → and ×,
we define:

ε =def e→ t (sets of entities)

ρ =def {r ∈ e→ e→ t | r is a preorder} (resolutions)

σ =def ε× ρ× p (information structures)

π =def σ → σ (dynamic propositions)

Our structures are an enrichment of de Groote’s, which are just sets of entities. Following de Groote,
a dynamic proposition is now simply a “state transformer” on structures.

Dynamic relations are recursively defined by

δ0 =def π (nullary relations)

δ(suc n) =def e→ δn (n-ary relations, where n > 0)

where λn .(suc n) : ω → ω yields any natural number’s successor. We abbreviate δ1 as simply δ.

2.2 Nonlinguistic Constants

We define some helpful functions for working with structures:

e : σ → ε (first projection of σ)

r : σ → ρ (second projection of σ)

c : σ → p (third projection of σ)

• : ε→ e→ ε (extends a set of entities)

∗ : ρ→ e→ ρ (noncommittally extends a resolution)

The functions • (analog of de Groote’s ::) and ∗ are written infix, the projections functions are
written prefix.

2.2.1 Extending Information Structures

To extend an information structure with a new entity, we replace de Groote’s :: with intro:

intro =def λsx 〈(e s) • x, (r s) ∗ x, (c s)〉 : σ → e→ σ (1)

We add the ability to update the common ground of a structure with a new proposition with
upd:

upd =def λsp 〈(e s), (r s), (c s) ∧ p〉 : σ → p→ σ (2)

where ∧ is propositional, not boolean, conjunction.

4

2.2.2 Dynamic Relations

For a functions denoting an n-ary (static) relation Rn on entities, the corresponding dynamic
relation (dynRn) is defined as:

(dynRn) =def λx1...xnsµk .(R x1 . . . xn) ∧ (k (upd s (R x1 . . . xn))) (3)

so that the common ground is always updated (via upd) with the relation’s content. Examples:

(dyn rain) = λsµk .rain∧ (k (upd s rain)) : π

(dyn donkey) = λxsµk .(donkey x) ∧ (k (upd s (donkey x))) : δ

(dyn bray) = λxsµk .(bray x) ∧ (k (upd s (bray x))) : δ

2.2.3 Contributed Content

To get at the contributed (static) content of a dynamic proposition, we use cont, a direct analog
of de Groote’s READ:

cont =def λsAd(λstrue (A s))c : σ → π → p (4)

Example use of cont with rain = (dyn rain) and a hypothetical structure s:

(cont s rain) = (cont s λsµk .rain∧ (k (upd s rain))) (5)

= d(λstrue (λsµk .rain∧ (k (upd s rain)) s))c
� d(λstrue µk .rain∧ (k (upd s rain)))c (βV)

� dµk .rain∧ (k (λstrue (upd s rain)))c (µV)

� dµk .rain∧ (k true)c (βV)

� drain∧ truec (Resetµ)

� rain∧ true (ResetV)

≡ rain (propositional equivalence)

2.3 Dynamic Logic

We adapt de Groote’s work as follows:

• The connectives are mnemonically-named propositional analogs of de Groote’s boolean ones.

• In the quantifiers, de Groote’s :: is replaced with our intro from Equation (1).

• We define dynamic implication (⇒) based on de Morgan’s laws (see Equation (8)).

In the following definitions, ∧, ∃, ¬, and ∀ are propositional, not boolean:

and =def λABs .B (A s) : π → π → π (6)

not =def λAsµk .(¬ (cont s A)) ∧ (k s) : π → π (7)

⇒ =def λAB .not (A and (notB)) : π → π → π (8)

exists =def λDsµk .∃ λx (k (D x (intro s x))) : δ → π (9)

forall =def λDsµk .(∀ λx (cont (intro s x) (D x))) ∧ (k s) : δ → π (10)

The connectives and and ⇒ are written infix, all others are written prefix.

5

Example 1 (Sucky Weather). The connective and is used to model both sentence conjunction and
declarative sentences that occur in sequence. Both of the examples in (1) have the same translation:

(1) a. It rained and it snowed.

b. It rained. It snowed.

In (11), rain = (dyn rain) and snow = (dyn snow) both update the common ground:

(rain and snow) : π (11)

= λs(snow (rain s))

= λs(λs2µk2(snow ∧ (k2 (upd s2 snow))) (λs1µk1(rain∧ (k1 (upd s1 rain))) s))

� λs(λs2µk2(snow ∧ (k2 (upd s2 snow))) µk1 .rain∧ (k1 (upd s rain))) (βV)

� λsµk1 .rain∧ (k1 (λs2µk2(snow ∧ (k2 (upd s2 snow))) (upd s rain))) (µV)

� λsµk1 .rain∧ (k1 µk2 .snow ∧ (k2 (upd (upd s rain) snow))) (βV)

� λsµk1 .rain∧ snow ∧ (k1 (upd (upd s rain) snow)) (Rename)

Example 2 (The Silence of the Donkeys). An existential can occur inside the scope of a negation:

(2) No way a donkey brays.

We need to constrain the scope of the entity introduced by the indefinite determiner a while still
allowing presuppositions to pass through. We use a propositional analog of de Groote’s indefinite:

a =def λDE .exists λx .(D x) and (E x) : δ → δ → π (12)

With donkey = (dyn donkey) and bray = (dyn bray), the negated portion of the utterance is

((a donkey) bray) : π (13)

= (exists λx .(donkey x) and (bray x))

= λsµk .∃ λx (k (λx ((donkey x) and (bray x)) x (intro s x)))

�+ λsµk .∃ λx .(donkey x) ∧ (bray x) ∧ (k (upd (upd (intro s x) (donkey x)) (bray x)))

Translating no way as not, the dynamic meaning of (2) is

(not ((a donkey) bray)) : π (14)

= λsµk .(¬ (cont s ((a donkey) bray))) ∧ (k s)

�+ λsµk .(¬ (∃ λx ((donkey x) ∧ (bray x) ∧ true))) ∧ (k s)

≡ λsµk .(¬ (∃ λx ((donkey x) ∧ (bray x)))) ∧ (k s)

So negation restricts the scope of existential quantification while being a “hole” for presupposition.

Example 3 (Enter the Donkey). In the discourse in (3), the noun phrase the donkey can only refer
to one of the discourse referents introduced prior to its use:

(3) a. A donkey enters.

b. A mule enters.

c. The donkey brays.

6

To capture the presuppositions associated with the English definite determiner the, we introduce
a definiteness operator to select the “highest” entity in the resolution of a structure s with the
property (cont (D x)) for a hypothetical dynamic property D and entity x:

def =def λsD .
⊔

(r s) λx .(c s)→ (cont (D x)) : σ → δ → e (15)

The definite determiner1 uses def to select the right discourse referent from a structure s:

the =def λDEsµk .k (λx ((D x) and (E x)) (def s D) s) : δ → δ → π (16)

With mule = (dynmule), enter = (dyn enter), and a, donkey, and bray as for Example 2,
we can now model the discourse in (3) as

((((a donkey) enter) and ((a mule) enter)) and ((the donkey) bray)) (17)

We start with the leftmost conjunct, which reduces similarly to (13):

((a donkey) enter) : π (18)

�+ λsµk .∃ λx .(donkey x) ∧ (enter x) ∧ (k (upd (upd (intro s x) (donkey x)) (enter x)))

Continuing with the entire left conjunct of the discourse:

(((a donkey) enter) and ((a mule) enter)) : π (19)

�+ λsµk .∃ λx .(donkey x) ∧ (enter x) ∧ (∃ λy .(mule y) ∧ (enter y) ∧ (k ς))

where ς represents the structure that results from this application of and:

ς = (upd (upd (intro (upd (upd (intro s x) (donkey x)) (enter x)) y) (mule y)) (enter y)) (20)

The right conjunct then picks out the most salient donkey from the preceding discourse:

((the donkey) bray) : π (21)

= λsµk .k (λx ((donkey x) and (bray x)) (def s donkey) s)

� λsµk .k (((donkey (def s donkey)) and (bray (def s donkey))) s) (βV)

�+ λsµk .(donkey (def s donkey)) ∧ (bray (def s donkey))

∧ (k (upd (upd s (donkey (def s donkey))) (bray (def s donkey))))

With (def ς donkey) = x, the term in (17) reduces as:

λsµk .∃ λx .(donkey x) ∧ (enter x) ∧ (∃ λy .(mule y) ∧ (enter y) ∧ (donkey x) ∧ (bray x) ∧ (k ς ′))
(22)

where ς ′ = (upd (upd ς (donkey x)) (bray x)) is the new structure resulting from applying and to
(19) and (21).

Example 4 (An Asinine Denial). We want the meaning of every to be a universally quantified
conditional relation between two dynamic properties. This relation should additionally allow the
consequent to access the information structure updated by the antecedent. For example, in

1Hat tip to Michael White for noticing an egregious flaw in an earlier version of the definite determiner.

7

(4) Every donkey denies it brays.

the pronoun it is “anteceded by” the noun phrase every donkey.
Our dynamic meaning of “every” is analogous to de Groote’s:

every =def λDE .forall λx .(D x)⇒ (E x) : δ → δ → π (23)

Rather than adopt de Groote’s sel, we translate it to capture its presuppositions:

it =def λDs .D (def s nonhuman) s : δ → π (24)

where nonhuman = (dyn nonhuman). With denies translated as

deny =def λAxsµk .(deny x (cont s A)) ∧ (k (upd s (deny x (cont s A)))) : π → δ (25)

and donkey and bray as in Example 2, we are in a position to give the dynamic meaning of (4):

(every donkey (deny (it bray))) : π (26)

= (every donkey (deny λs(bray (def s nonhuman) s)))

= (forall λx .(donkey x)⇒ (deny λs(bray (def s nonhuman) s) x))

= (forall λx .not ((donkey x) and (not (deny λs(bray (def s nonhuman) s) x))))

�+ λsµk .(∀ λx (¬ ((donkey x)

∧ (¬ (deny x (bray (def (upd (intro s x) (donkey x)) nonhuman))

∧ true) ∧ true) ∧ true))) ∧ (k s)

≡ λsµk .(∀ λx (¬ ((donkey x)

∧ (¬ (deny x (bray (def (upd (intro s x) (donkey x)) nonhuman))))))) ∧ (k s)

With (def (upd (intro s x) (donkey x)) nonhuman) = x, we have

λsµk .(∀ λx (¬ ((donkey x) ∧ (¬ (deny x (bray x)))))) ∧ (k s) (27)

which constrains the scope of the universal quantification while passing presuppositions through.

References

Philippe de Groote. Typing binding and anaphora: Dynamic contexts as λµ-terms. Presented
at the ESSLLI 2008 Workshop on Symmetric Calculi and Ludics for Semantic Interpreta-
tion, 2008. Available at http://www.ling.ohio-state.edu/research/groups/commies/past/
autumn2009/degroote-esslli08.pdf.

Timothy Griffin. A formulae-as-types notion of control. In Conference Record of POPL 17, 1990.

Scott Martin and Carl Pollard. Enriching contexts for type-theoretic dynamics. Presented at the
CAuLD Workshop on Logical Methods for Discourse, 2009. Available at http://www.ling.

ohio-state.edu/~scott/talks/cauld/cauld_slides.pdf.

Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. Lecture
Notes in Computer Science, 624:190–201, 1992.

Michel Parigot. On the computational interpretation of negation. Lecture Notes in Computer
Science, 1862:472–484, 2000.

Carl Pollard. Hyperintensions. Journal of Logic and Computation, 18(2):257–282, 2008.

8

http://www.ling.ohio-state.edu/research/groups/commies/past/autumn2009/degroote-esslli08.pdf
http://www.ling.ohio-state.edu/research/groups/commies/past/autumn2009/degroote-esslli08.pdf
http://www.ling.ohio-state.edu/~scott/talks/cauld/cauld_slides.pdf
http://www.ling.ohio-state.edu/~scott/talks/cauld/cauld_slides.pdf

	Call-by-value -calculus
	Using V to Model Discourse
	Types
	Nonlinguistic Constants
	Extending Information Structures
	Dynamic Relations
	Contributed Content

	Dynamic Logic

