
Grammar Engineering for CCG using Ant and XSLT

Scott Martin, Rajakrishnan Rajkumar, and Michael White

Department of Linguistics, The Ohio State University

Motivation

• Transform grammar engineering from a one-shot task to an evolving, iterable process.

•Augment the CCGbank (Hockenmaier and Steedman (2007)) with deeper linguistic
insights:

◦ Propbank roles (Boxwell and White (2008))

◦Derivational restructuring for punctuation analysis (White and Rajkumar (2008))

◦Head lexicalization for case-marking prepositions, named entity annotation, lemma-
tization

Design

• System organized as a pipline, with corpus conversion and grammar extraction splitinto
separate steps to facilitate machine learning over the converted corpus.

• Each step controlled by a separate custom Ant (http://ant.apache.org/) task:

1. Generate an XML version of CCGbank using a JavaCC parser.

2. Apply a series of XSLT transforms to create a converted corpus (in the same XML
format).

3. Extract a grammar in OpenCCG (http://openccg.sourceforge.net/) format.

Example Conversion Paths

; ;

CCGbank PropCCGbank

Initial
Transfor-
mations

Baseline
Punc-
tuation

Transfor-
mations

Punctuation
Transfor-
mations

Conjunction
Transfor-
mations

Final
Transfor-
mations

OpenCCGbank

Ant Target and File List

<target name="convert-puncts-baseline" depends="init-tasks">

<convert target="${convert.dir}"

wordsFile="${words}" stemsFile="${stems}">

...

<templates>

<filelist refid=“convert-initial”>
<filelist refid=“convert-orig-puncts”>
<filelist refid=“convert-conj”>
<filelist refid=“convert-final”>

</templates>

</convert>

</target>

Example of a Filelist

<filelist id="convert-final" dir="${templates.dir}">

...

<file name="adjustRoles.xsl"/>

<file name="addStems.xsl"/>

...

</filelist>

Corpus Conversion

(1) Despite recent declines in yields, investors continue to pour cash into money funds. (wsj 0004.10)

Despite declines in yields , investors continue to ..

s/s , s

s
>s

Despite declines in yields , investors continue to ..

s/s s〈1〉/s〈1〉\?(s〈1〉/s〈1〉) s
>

s/s
>s

XSLT Transform:

<!--Label comma which introduces a pre-sentential adjunct-->

<xsl:template match=“Leafnode[@pos=‘,’ and parent::Treenode/@cat0=‘S[dcl]’ and following-sibling::Treenode/@cat0=‘S[dcl]’]”>

...

</xsl:template>

Resulting category with discourse function semantics:
, ` s〈1〉ind=X1 ,mod=M /s〈1〉\?(s〈1〉/s〈1〉) : @M (〈emph-intro〉+)

Example XSLT Transformation

Implementation

•Advantages of converting the corpus using XSLT:

◦Our CCGbank translation and OpenCCG grammars are both in XML format.

◦No re-compilation required, as XSLT is interpreted.

◦ Corpus conversion can be divided into as many XSLT transforms as desired
(e.g., one for punctuation refactoring, one for derivation restructuring, etc.)

•We chose Ant for top-level process control because:

◦ It allowed us to break the conversion and extraction steps into separate cus-
tomizable Ant tasks.

◦ Configuration requires no source editing or compilation, as code and config-
uration are separated.

◦Ant contains built-in support for JavaCC.

◦Ant’s FileSet and FileList types allow flexible specification of sets of
source files and series of XSLT transforms.

◦ Both OpenCCG (whose libraries are used in grammar extraction) and Ant
tasks are written in Java.

Experimental Impact

• System’s flexibility allows a variety of different experiments to be performed.

•Ability to create corpora with various combinations of attributes.

• Enables extraction of training data for realization scoring and semantic depen-
dency graphs (and features related to them).

•Our results have improved over time for section 23 of the CCGbank, including
a state-of-the-art BLEU score of 0.8506 and the following single-rooted logical
form (SRLF) performance:

Paper LF % SRLF % BLEU
White et al. (2007) 94.3 69.7 0.5768
Espinosa et al. (2008) 96.1 76.7 0.6701
White and Rajkumar (2008) 96.46 92.12 0.7323
Current 97.06 95.8 0.8506

Acknowledgments

This work was supported in part by NSF grant no. IIS-0812297.

References

Stephen Boxwell and Michael White. Projecting Propbank roles onto the CCG-
bank. In Proc. LREC-08, 2008.

Dominic Espinosa, Michael White, and Dennis Mehay. Hypertagging: Supertag-
ging for surface realization with CCG. In Proc. ACL-08: HLT, 2008.

Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank. Computational
Linguistics, 33(3):355–396, 2007.

Michael White and Rajakrishnan Rajkumar. A more precise analysis of punctua-
tion for broad-coverage surface realization with CCG. In Proc. of the Workshop
on Grammar Engineering Across Frameworks (GEAF08), 2008.

Michael White, Rajakrishnan Rajkumar, and Scott Martin. Towards broad cover-
age surface realization with CCG. In Proc. of the Workshop on Using Corpora
for NLG: Language Generation and Machine Translation (UCNLG+MT),
2007.


