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Motivation

• Transform grammar engineering from a one-shot task to an evolving, iterable process.

•Augment the CCGbank (Hockenmaier and Steedman (2007)) with deeper linguistic
insights:

◦ Propbank roles (Boxwell and White (2008))

◦Derivational restructuring for punctuation analysis (White and Rajkumar (2008))

◦Head lexicalization for case-marking prepositions, named entity annotation, lemma-
tization

Design

• System organized as a pipline, with corpus conversion and grammar extraction splitinto
separate steps to facilitate machine learning over the converted corpus.

• Each step controlled by a separate custom Ant (http://ant.apache.org/) task:

1. Generate an XML version of CCGbank using a JavaCC parser.

2. Apply a series of XSLT transforms to create a converted corpus (in the same XML
format).

3. Extract a grammar in OpenCCG (http://openccg.sourceforge.net/) format.

Example Conversion Paths
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Ant Target and File List

<target name="convert-puncts-baseline" depends="init-tasks">

<convert target="${convert.dir}"

wordsFile="${words}" stemsFile="${stems}">

...

<templates>

<filelist refid=“convert-initial”>
<filelist refid=“convert-orig-puncts”>
<filelist refid=“convert-conj”>
<filelist refid=“convert-final”>

</templates>

</convert>

</target>

Example of a Filelist

<filelist id="convert-final" dir="${templates.dir}">

...

<file name="adjustRoles.xsl"/>

<file name="addStems.xsl"/>

...

</filelist>

Corpus Conversion
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XSLT Transform:

<!--Label comma which introduces a pre-sentential adjunct-->

<xsl:template match=“Leafnode[@pos=‘,’ and parent::Treenode/@cat0=‘S[dcl]’ and following-sibling::Treenode/@cat0=‘S[dcl]’]”>

...

</xsl:template>

Resulting category with discourse function semantics:
, ` s〈1〉ind=X1 ,mod=M /s〈1〉\?(s〈1〉/s〈1〉) : @M (〈emph-intro〉+)

Example XSLT Transformation

Implementation

•Advantages of converting the corpus using XSLT:

◦Our CCGbank translation and OpenCCG grammars are both in XML format.

◦No re-compilation required, as XSLT is interpreted.

◦ Corpus conversion can be divided into as many XSLT transforms as desired
(e.g., one for punctuation refactoring, one for derivation restructuring, etc.)

•We chose Ant for top-level process control because:

◦ It allowed us to break the conversion and extraction steps into separate cus-
tomizable Ant tasks.

◦ Configuration requires no source editing or compilation, as code and config-
uration are separated.

◦Ant contains built-in support for JavaCC.

◦Ant’s FileSet and FileList types allow flexible specification of sets of
source files and series of XSLT transforms.

◦ Both OpenCCG (whose libraries are used in grammar extraction) and Ant
tasks are written in Java.

Experimental Impact

• System’s flexibility allows a variety of different experiments to be performed.

•Ability to create corpora with various combinations of attributes.

• Enables extraction of training data for realization scoring and semantic depen-
dency graphs (and features related to them).

•Our results have improved over time for section 23 of the CCGbank, including
a state-of-the-art BLEU score of 0.8506 and the following single-rooted logical
form (SRLF) performance:

Paper LF % SRLF % BLEU
White et al. (2007) 94.3 69.7 0.5768
Espinosa et al. (2008) 96.1 76.7 0.6701
White and Rajkumar (2008) 96.46 92.12 0.7323
Current 97.06 95.8 0.8506
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