
Formal Foundations of Linguistic Theory

Carl Pollard and Scott Martin

October 9, 2015

Contents

Introduction 1

I Fundamentals 5

1 Sets 6
1.1 Sets and Membership . 6
1.2 Basic Assumptions about Sets 8
1.3 Russell’s Paradox and Separation 11
1.4 Ordered Pairs and Cartesian (Co-)Products 12

2 Mathese 15
2.1 Introduction . 15
2.2 ‘Logicky’ expressions . 16

2.2.1 Variables . 16
2.2.2 Sentence-level expressions 16
2.2.3 Quantificational expressions 18

2.3 Defining Predicates . 21
2.4 Defining Names . 21

2.4.1 Functional Names . 21

3 Relations 23
3.1 Introduction . 23
3.2 Inverting and Composing Relations 25
3.3 Special Properties of Relations 26

4 Preorders and Equivalences 28
4.1 Orders and Preorders . 28
4.2 Equivalence Relations . 30
4.3 Least Upper Bounds and Greatest Lower Bounds 33

i

ii Contents

5 Functions 34
5.1 Basic Properties . 34
5.2 Composing Functions . 37
5.3 Restrictions and Images . 39
5.4 Monotonicity and Antitonicity 39

6 Induction and Recursive Definition 41
6.1 The Natural Numbers . 41
6.2 Induction and Recursive Definition 42
6.3 Arithmetic . 44

6.3.1 Addition . 44
6.3.2 Multiplication . 44
6.3.3 The Infinitude of the Natural Numbers 45
6.3.4 The Well-Ordering of ω 46

6.4 Transitive Closure and Reflexive Transitive Closure 48
6.5 Replacement and Strong Recursion 49
6.6 Hasse Diagrams . 50

7 Infinities 52
7.1 Equinumerosity . 52
7.2 Dedekind Infinity . 53
7.3 Domination, Countability, and Choice 54

8 Varieties of Set Theory 57
8.1 Zermelo-Fraenkel Set Theory and Variants 58
8.2 Antifoundation . 58

8.2.1 Preliminaries . 58

9 Introduction to Formal Languages 63
9.1 Strings . 63
9.2 Formal Languages . 65
9.3 Operations on Languages . 67
9.4 Regular Languages . 69
9.5 Context-free Languages . 72

9.5.1 Intuitions . 72
9.5.2 Informal Definition . 73
9.5.3 Spelling It Out Formally Using Simultaneous Recursion 75

iii Contents

10 Trees 77
10.1 Informal Motivation . 77
10.2 Trees . 82

10.2.1 Technical Preliminaries 82
10.2.2 Trees . 83
10.2.3 Ordered Trees . 84

10.3 Trees in Syntax . 85

II Proof Theory 86

11 Linear Propositional Logic and Natural Deduction 87
11.1 Proof theory . 88

11.1.1 Finite multisets . 88
11.1.2 Formulas in linear logic 88
11.1.3 A linguistic application: tectogrammar 89
11.1.4 Contexts, Sequents, and Provability 90

11.2 (Pure) linear logic . 91
11.2.1 Axioms and rules . 91
11.2.2 Theorems and proof trees 92
11.2.3 Derived rules . 93

12 The Lambek Calculus and Lambek Grammar 95
12.1 Proof Theory of L . 95
12.2 Lambek Grammars Defined 97

12.2.1 Syntactic Categories of a Lambek Grammar 97
12.3 Empirical Predictions of Lambek Grammars 99
12.4 Extending L with Monoidal Terms 100

13 Propositional and First-order Logics 104
13.1 Positive Intuitionistic Propositional Logic 104

13.1.1 Axioms and Rules . 104
13.2 Extensions of PIPL . 107

13.2.1 Classical Propositional Logic 108
13.2.2 First-order Logics . 109

A Deferred Proofs 111

Bibliography 114

Index 116

Introduction

Even though linguistics departments are, by tradition, usually located in
colleges of humanities, linguistics itself aspires to be—and at its best, manages
to be—a science. That is, linguists aim to do much the same thing that
scientists in general (such as physicists, geologists, biologists, and chemists)
do: to make observations of certain kinds of natural phenomena, and then
state empirical hypotheses about them. The only difference is that the
phenomena linguists study have to do not with swinging pendulums, tectonic
plates, zebra mussels, or hydrocarbons, but with human language: how it
sounds, what it means, how it varies across space and time, how it is learned,
used, and understood.

Roughly speaking, an empirical hypothesis is just a well-informed and
careful guess about what certain kinds of events will be like, based on past
observations of events of that kind. To put it a bit more precisely, an
empirical hypothesis is a general statement about a class of phenomena that
has the following properties:

1. It is clear and unambiguous, that is, there is no question what it asserts
(how things would have to be in order for it to be true).

2. It is general, in the sense that even though it is based only on a
finite number of observations, it makes predictions about how other
phenomena of the same kind will unfold.

3. There is a way to tell whether or not a given observation of the kind of
phenomenon in question is consistent with it, so that if the hypothesis
is wrong, there is some hope of finding out that it is wrong.

This third property of empirical hypotheses is called falsifiability. Espe-
cially valued are empirical hypotheses with the additional property of being
illuminating, in the sense of being sufficiently simple and comprehensible to
help us grasp some of the hidden orderliness or systematicity in seemingly
random or chaotic phenomena.

1

2 Introduction

Scientific theories usually do not directly describe the natural phenomena
under investigation, but rather a mathematical idealization of them that
abstracts away from various complicating factors. For example, a theory
about how the earth, the sun, and the moon move under mutual gravitation
might ignore such complications as the sizes of the three bodies, friction
arising from the presence of interstellar dust, the gravitational force exerted
by other planets and stars, or relativistic effects that become significant
only as the velocities of the bodies in question approach the speed of light.
In the mathematical idealization, the time might be represented by a real
number; the mass of each of the three bodies by a positive real number; its
location in space (or more precisely the location of its center of gravity) at a
particular time by three real numbers (the x, y, and z coordinates relative
to a coordinate system); its velocity at a particular time by three more real
numbers; the state of the three-body system at a given time (real number) t
by the 18 real numbers that specify the locations and velocities of the three
bodies at time t; and the evolution of the system over time by 18 functions
that give the value of each of these 18 parameters at each time t. And
the theory itself is a mathematical specification of which evolutions (‘paths’
through 18-dimensional Euclidean space) are possible. Armed with such a
theory, we can predict, given the state of the system at a given time t0, what
state it will be in at any future time t1.

A linguistic theory is just a set of empirical hypotheses about a class
of natural language phenomena. Linguists often refer to the process of
formulating empirical hypotheses about human languages as ‘capturing
linguistic generalizations.’ This is just a fancy name for linguistic theorizing,
and the purpose of this book is to introduce some techniques for doing just
that. Linguistic theories make predictions not about celestial bodies, but
rather about natural languages, for example:

• How their words can sound

• How their words can be combined into phrases

• What meanings they can express

• Which natural language arguments are judged valid

• How the meanings of sentences can be related to the meanings of the
words they contain

The mathematical idealizations used in formulating linguistic theories are
often called representations or models of the phenomena in question. In

3 Introduction

this book the first of these terms will be preferred, to avoid confusion with a
different, technical, use of the term model (in the sense of an interpretation
of a logical theory) to be introduced in later chapters. For example, phrases
(roughly speaking, multi-word expressions, including sentences) are often
represented as (mathematical) trees; phonemes (roughly, minimal units of
linguistic sound) as (mathematical) graphs of a certain kind; the sequences
of sounds that make up (the phonology of) words as (mathematical) strings
of (representations of) phonemes; and linguistic meanings as (mathematical)
functions of various kinds. (Note that it is typical for technical mathematical
terms, such as tree, string , and function to have other, nonmathematical
meanings!)

The techniques introduced in this book are drawn from areas of math-
ematics (such as set theory, logic, algebra, and formal language theory)
that are usually described as discrete, as opposed to continuous (such as
calculus, differential equations, Fourier analysis, or probability). The natural
numbers are discrete; the real numbers are continuous. The subdisciplines of
linguistics that most readily lend themselves to analysis by discrete methods
include (but are not limited to) the following:

morphology (how words are built up from their meaningful subparts)

syntax (how words combine into successively larger phrases, including
sentences)

semantics (how linguistic expressions manage to refer to things in the
world and express propositions about them, and how it is that some
propositions follow from, or are entailed by, other propositions).

There are also parts of phonology (how human languages structure spoken
sounds) and computational linguistics (the analysis and manipulation of
human language using computational concepts or computer programs) that
yield to such methods. But other linguistic disciplines, such as phonetics,
psycholinguistics, sociolinguistics, and historical linguistics in general call
for continuous methods. Interestingly, many of the discrete mathematical
techniques that come into play in the analysis of human language are the
same ones used in analyzing the artificial languages employed in logic and
computer science.

This is an applied mathematics book, not a linguistics book, and so
the emphasis is primarily on the mathematical concepts and techniques
themselves, not on the phenomena to which they are applied. In fact, most
of these are of inherent interest independent of the linguistic applications,

4 Introduction

and it is entirely possible to master them without knowing or caring about
linguistics at all! But the book is written primarily with the needs of
linguistics students in mind, and many techniques discussed are accompanied
by illustrative linguistic applications.

Part I

Fundamentals

5

Chapter 1

Sets

In order to have a clear understanding of the different kinds of mathematical
entities that are useful for structuring linguistic representations, we will
start out with an overview of set theory. Sets are basic mathematical
entities whose existence is taken for granted by most mathematicians, and
set theory begins with certain assumptions about them. Set theory is the
workspace that most mathematicians work in, but more importantly for us,
it is where the idealized representation of natural phenomena by linguists
and other scientists is carried out. That is, sets are used to construct the
representations of natural language phenomena that linguistic theories talk
about.

As discussed in the introduction, the kinds of mathematical entities
that have proven to be useful for representing such things (words, phrases,
sentences, their meanings, valid arguments, etc.) are not real numbers or real-
valued functions, but rather discrete (in the sense of being non-continuous)
things such as natural numbers, strings, trees, algebras, formal languages, and
proof systems. It turns out that all these kinds of linguistic representations
are themselves sets.

1.1 Sets and Membership

We assume that there exist things which we call sets, and that there is a
relationship, called membership, which, for any two sets, either does or
does not hold of them. That is, if A is a set and B is a set, then either A
is a member of B (written A ∈ B) or A is not a member of B (written
A /∈ B). There are many ways to say this. The members of a set are also
called its elements, and instead of saying A is a member of B, we often say

6

7 Sets

it belongs to B, or is in B, or is contained in B. Intuitively, sets can be
thought of as something like collections, where the members are the things
collected, or as invisible baskets, with the members being the things in the
baskets. But set theory will never tell us what sets are; they are basic and
cannot be reduced to, or explained in terms of, more basic things that are
not sets. That is, they are the unanalyzed primitives of set theory.

We will make certain assumptions about how membership works based
on these intuitions, and then try to ascertain what follows from them. These
assumptions themselves, together with the facts that follow from them,
constitute set theory. To be slightly more precise, they are a set theory,
since some assumptions about how sets should work are controversial. In
this chapter, we will make some of the most generally accepted of these
assumptions explicit and consider some of their consequences. (In Chapter
8, we will also consider some of the more controversial assumptions about
how sets work.)

For the time being, we will state our assumptions about sets in English,
and conduct our reasoning about what follows from these assumptions using
intuitively valid English arguments called informal proofs. In Part II, we
will see that it is possible to formalize the assumptions of set theory with
the help of specialized symbolic systems (formal logics, such as predicate
logic). In that case the formalized counterparts of the assumptions are called
axioms; the additional formulas that follow from them are called theorems;
and the formalized counterparts of the English arguments we make to justify
these theorems are called formal proofs.

In fact, informal (but precise) natural language reasoning is the norm
among mathematicians and natural scientists. Usually they don’t bother to
formalize proofs unless they are studying proofs as mathematical objects in
their own right. We will have occasion to do just that in Part ??, for the
(perhaps surprising) reason that linguistic expressions and their meanings
can themselves be thought of as proofs in certain kinds of logical systems.

In ascertaining what follows from the assumptions we will make about sets
and membership, the reasoning we use will be pretty much the same kind of
reasoning we use when we draw conclusions from assumptions about ordinary
things, e.g. kitchen appliances, furniture, people, etc. (There are, however,
some ways of arguing and ways of expressing arguments that are typical of
mathematical discourse, which we will look at more closely in Chapter 2.)
In practice, mathematics consists of more or less ordinary reasoning about
not-so-ordinary things. The upshot, seemingly paradoxical, is that so-called
formal linguistics is mostly done within informal set theory. The resolution

8 Sets

of the apparent paradox is that even informal set theory is more precise and
explicit than linguistic analysis that uses no set theory at all.

Now we’re ready to start introducing our basic assumptions about sets,
and considering some of their consequences.

1.2 Basic Assumptions about Sets

We have already assumed that there are sets, and that if A and B are sets,
then either A ∈ B or A /∈ B. But to be able to do anything with sets, we
need to make some assumptions about how they work. The assumptions
we make in this chapter are the ones that are generally considered the most
basic, intuitively plausible, and uncontroversial. Later we will add a few
more (but not many more), including some that not all mathematicians are
entirely comfortable with (see Chapter 8). We give each assumption a name,
to make it easy to refer to.

Assumption 1 (Extensionality). If A and B have the same members, then
they are the same set (written A = B).

Note that in stating this assumption, we did not bother to mention that A
and B are sets. That’s because we have already established that we are now
doing (informal) set theory, and in set theory, the only things being talked
about are sets. Note also that we do not have to explicitly assume (though
it is true) that if A and B do not have the same members, then they are
not the same set (written A 6= B). That’s because, if they were the same
set, then everything about them, including what members they have, would
be the same. This reasoning is no different than the kind of reasoning we
would use to conclude (given that A and B are people), that if A and B
do not have the same blood type, then they cannot be the same person: if
they were the same person, everything about them—including their blood
types—would be the same.

If every member of A is a member of B, we say that A is a subset of
B, (or, alternatively, that A is included in B), written A ⊆ B. Note that
if A ⊆ B, B might have members that are not in A. On the other hand, if
both A ⊆ B and B ⊆ A, then it follows from Extensionality that A = B. If
A ⊆ B but A 6= B then we say A is a proper subset of B, written A (B.1

Assumption 2 (Empty set). There is a set with no members.

1We avoid the symbol ⊂ since some authors use it in place of our ⊆, and others in place
of our (.

9 Sets

Note that from this assumption together with Extensionality we can conclude
that the there is only one set with no members. We call this set the empty
set. The empty set is usually denoted by the symbol ‘∅.’ Starting in Chapter
6, we’ll sometimes write it as ‘0’ (the symbol for the number zero), because
according to the most usual way of doing arithmetic within set theory, the
number zero and the empty set are the same thing (in spite of what you may
have been taught in other math classes!).

Now so far, we have no basis for concluding that there are any sets other
than the empty set, not even sets with only one member. For example, we
are not even able to make a valid argument that there is a set with ∅ as its
only member. We remedy this situation by adding a few more assumptions,
beginning with the following:

Assumption 3 (Pairing). For any sets A and B, there is a set whose only
members are A and B.

Note that, because of Extensionality again, there is only one set whose
only members are A and B, which we write as {A,B}. Of course we could
just as well have called this set {B,A}. More generally, we will notate any
nonempty finite set by listing its members, separated by commas, between
curly brackets, in any order. (In Chapter 6, we’ll get clear about what we
mean when we say a set is ‘finite,’ but for now we’ll just rely on intuition.)
Notice that nothing rules out the possibility that A and B are the same set,
so it follows from pairing that for any set A there is a set whose only member
is A, namely {A,A}. Of course, once we realize this, then we might as well
just call it {A} rather than {A,A}: repetitions inside the curly brackets
don’t make any difference because for any given set, either A is a member of
it or it isn’t—it doesn’t make any sense to talk about how many times one
set is a member of another.

A set with only one member is called a singleton. A special case of
singleton sets is the set {0} whose only member is 0. This set is also called 1,
because according to the usual way of doing arithmetic within set theory, it
is the same as the number one. Going one step further, we can use Pairing
again to form the set {0, 1}, also known as 2. There is a general pattern
here, which we will explain in Chapter 6.

We can now form a new set by pairing two sets together. But what if we
want to form a set by combining the members of two sets? The following
assumption enables us to do so:

Assumption 4 (Union). For any set A, there is a set whose members are
those sets which are members of (at least) one of the members of A.

10 Sets

Once again, Extensionality ensures the uniqueness of such a set, which is
called the union of A, written

⋃
A. As a special case, if A = {B,C}, then⋃

A is the set each of whose members is in either B or C (or both). This set
is usually written B ∪ C. Note that this is not the same thing as {B,C}, at
least not for all possible values of B and C. Are there any values of B and
C for which B ∪C = {B,C}? It turns out that the answer depends on what
other assumptions we make about sets. The specific set of assumptions we
will adopt will not enable us to answer this question one way or the other.

Exercise 1.1. Prove that for any sets a, b, and c, there is a set whose only
members are a, b, and c. (Note: this way of wording the problem is not
intended to imply that a, b, and c are necessarily distinct from each other.)

For any set A, the successor of A, written s(A), is the set A ∪ {A}.
That is, s(A) is the set with the same members as A, except that A itself is
also a member of s(A).2 For example, 1 is the successor of 0, and 2 is the
successor of 1.

Exercise 1.2. Prove that 1 is the successor of 0 and that 2 is the successor
of 1.

Exercise 1.3. Prove that 0, 1, and 2 are distinct.

To enable the formation of the set of all subsets of some set, we add the
following:

Assumption 5 (Powerset). For any set A, there is a set whose members
are the subsets of A.

Yet again, Extensionality guarantees the uniqueness of such a set. We call
it the powerset of A, written ℘(A). It’s important to realize that ℘(A) is
never the same set as A (a fact which we will prove in Chapter 6). That’s
because the subsets of a set are not the same as the members of the set.
For example, 0 is a subset of 0 (in fact, every set is a subset of itself), but
obviously 0 is not a member of 0 (since 0 is the empty set).

Exercise 1.4. What is the powerset of 4?

2Nothing we have said rules out the possibility that A ∈ A, in which case A = s(A).
However, the most widely used set theory (called Zermelo-Fraenkel set theory) includes an
assumption (called Foundation) which does rule out this possibility. We will not assume
Foundation in this book. For more discussion of this point, see Chapter 8.

11 Sets

1.3 Russell’s Paradox and Separation

Why do we need the powerset assumption? Why don’t we just define ℘(A) to
be the set of all subsets of A? The answer is that the other assumptions we
have made so far do not seem to enable us to conclude that there actually is
such a set. More generally, whenever one says “the set of all sets such that . . . ,”
there is no guarantee that the assumptions one has made about sets enable
one to conclude that there actually is a set meeting that description. That
may seem counterintuitive, but, perhaps surprisingly, there is a knockdown
argument that there is no such guarantee, which was discovered by the
philosopher and mathematician Bertrand Russell.3

The argument runs as follows. Consider the description the set of all sets
which are not members of themselves. Suppose for a moment there were such
a set, called R. Then is R a member of R? Well, either it is or it isn’t. In the
first case, we see right away that R cannot be a member of R. And in the
second case, we see right away that R must be a member of R. Either way,
we arrive at a contradiction, and so our temporary assumption that there
is a set whose members are the sets which are not members of themselves
must have been false. This argument is called Russell’s Paradox.

Russell’s Paradox shows that, in general, we cannot assume that, for any
set description, we can take for granted the existence of a set meeting that
description. However, there is a more cautious assumption that proves to be
extremely useful and which so far has not been shown to result in paradox.

Assumption 6 (Separation). If A is a set and P [x] is a condition on x
(where x is a variable that ranges over sets), then there is a set, written
{x ∈ A | P [x]}, whose members are all the x in A that satisfy P [x].

Separation is so called because, intuitively, we are separating out from A
some members that are special in some way, and collecting them together
into a set. We call Separation an assumption, but to be more precise it is an
assumption schema: for each condition P [x], we get a different separation
assumption. For the moment we remain deliberately vague about what we
mean by a condition on x. (We’ll clear this up in Part II when we formalize
set theory using predicate logic.) For the moment, the easiest way to get an
idea of what we mean by a condition on x is to look at some examples.

Suppose we have two sets A and B. Then by taking P [x] to be the
condition x ∈ B, Separation guarantees the existence of the set consisting of

3Russell made this argument in a famous letter written in 1902 to Gottlob Frege, another
philosopher and mathematician, whose accomplishments include the invention of predicate
calculus and of modern linguistic semantics.

12 Sets

those members of A which are also in B. This set is called the intersection
of A and B, written A ∩ B. A and B are said to intersect if A ∩ B is
non-empty; otherwise they are said to be disjoint. A set is called pairwise
disjoint if no two distinct members of it intersect.

Alternatively, by taking P [x] to be the condition x /∈ B, Separation
guarantees the existence of the set consisting of those members of A which
are not in B. This set, called the complement of B relative to A, or the
set difference of A and B, is written A \B.

A rather different application of Separation shows that there can be no
set of all sets. For suppose there were; then applying Separation to it using
the condition x /∈ x, we would have the set of all sets which are not members
of themselves. But as we already saw (Russell’s Paradox), there can be no
such set.

Exercise 1.5. Why did we assume Union instead of defining it as an appli-
cation of Separation?

1.4 Ordered Pairs and Cartesian (Co-)Products

Sets do not embody any notion of order: {A,B} = {B,A}. But for linguistic
applications, clearly we cannot escape from dealing with order! For example,
we cannot describe the phonology of a word without specifying the order of
the phonemes in it, nor can we fully describe a sentence without specifying
the order of its words. One way we might imagine responding to this need is
simply to assume that for any A and B, there is an ordered pair with A
first and B second, written 〈A,B〉. But what properties should we assume
that ordered pairs have? Perhaps surprisingly, it turns out that once we have
gotten clear about how ordered pairs should work, the assumptions we have
already made about sets enable us to conclude that sets with the desired
properties already exist. So we do not need to make any further assumptions
in order to have ordered pairs.

In fact, the crucial property of ordered pairs, from which their usefulness
derives, is that they are uniquely determined by their components, in the sense
that 〈A,B〉 = 〈C,D〉 if and only if A = C and B = D. Any way of defining
the notion of ordered pair that results in their demonstrably having this
property will suffice. The approach we will adopt here is the standard one,
due originally to Kuratowski, which is to define the ordered pair of A and
B as the set {{A} , {A,B}}. (Note that we can form this set by successive
invocations of the Pairing assumption.) A and B are called, respectively, the
first and second component of 〈A,B〉. Notice that an ordered pair has

13 Sets

either one or two members. In the first case, which arises when A = B, the
ordered pair is just {{A}}, and both components are A. In the second case,
the ordered pair has two members, one with one member and one with two
members. In that case, the first component of the pair is the one that belongs
to the set with one member, and the second component is the member of
the two-member set which is not the member of the one-member set.

Exercise 1.6. Letting 3 = s(2), how many members does
⋃
〈2, 3〉 have?

What are they? (Note: you will have to use the definition of ordered pair.
You are not required to prove anything here.)

Exercise 1.7. Prove that for any sets a, b, c, and d, if 〈a, b〉 = 〈c, d〉, then
a = c and b = d. (Hint : notice that either a = b or not, so you can split the
proof into two cases.)

Given two sets A and B, it is also useful to have the notion of the
cartesian product of A and B, written A × B, which is the set of all
ordered pairs 〈a, b〉 such that a ∈ A and b ∈ B. As it turns out, we do not
have to assume that cartesian products exist, because their existence follows
from Separation. A and B are called the factors of A×B.

Exercise 1.8. Prove the existence of cartesian products. In other words,
prove that for any sets A and B, there is a unique set whose members are
those ordered pairs 〈c, d〉 such that c ∈ A and d ∈ B. (Hint : use Separation.
The hard part is deciding which set to start with from which the ordered
pairs in question are to be separated out.)

Exercise 1.9. Prove that for any set A, A× ∅ = ∅.

Having defined ordered pairs, we can now proceed to define an ordered
triple to be an ordered pair whose first component is an ordered pair:

〈a, b, c〉 =def 〈〈a, b〉 , c〉

and correspondingly the threefold cartesian product:

A×B × C =def (A×B)× C

These definitions can be extended to quadruples, quintuples, etc. in the
obvious way. Special cases of cartesian products, called cartesian powers,
are ones where the factors are all the same set A. These are notated with

14 Sets

parenthesized ‘exponents’ (superscripts), e.g.

A(2) = A×A
A(3) = A×A×A

...

Additionally, we define A(1) to be A, and we define A(0) to be 1. This last
definition is less mysterious than it appears to be, but we will be in a better
position to explain the motivation for it a little later. (It is actually closely
related to the reason that n0 = 1 in arithmetic, but for some readers, that
may seem equally mysterious. We will revisit this point in Chapter 6.)

Less well known than cartesian product, but also important in some of
our applications, is the notion of the cartesian coproduct, also called the
disjoint union) of A and B, written A+B. This is defined as

({0} ×A) ∪ ({1} ×B) ,

the set of all ordered pairs 〈C,D〉 such that either C = 0 and D ∈ A or
C = 1 and D ∈ B. A and B are called the cofactors of A+B.

Intuitively, A+B is the union of two sets, ‘copies’ of A and B respectively,
and these copies are disjoint, even if A and B are not. As with cartesian
products, there is a straightforward extension to more than two cofactors.
For the case of identical cofactors (called cartesian copowers), there does
not seem to be a standard notation; here we write A(n), which, intuitively, is
the union of n pairwise disjoint copies of A. So it should not come as much
of a surprise that A(1) is defined to be A and A(0) is defined to be 0.

Chapter 2

Mathese

2.1 Introduction

Mathematicians (well, English-speaking ones, anyway) talk and write about
things logical and mathematical (including set theory and anything they
construct inside it) in a mixture of ordinary colloquial English and a special
purpose dialect of English, which we will refer to as Mathese. Mathese is
intended to avoid the ambiguity, vagueness, and imprecision of much ordinary
colloquial English. It is a good idea to get into the habit of judiciously
using Mathese when writing about formally rigorous linguistic theory for an
audience with a reasonable degree of mathematical sophistication—e.g. when
writing answers to the exercises in this book. (Alert : it is every bit as
important not to write this way for a general linguistic audience!) Of course,
unless you have an unusually strong mathematical background, it takes some
time to get the hang of Mathese, so mastery may not be immediate. It’s also
okay to use ordinary English as long as the meaning is completely clear.

In its most basic form, all Mathese has is a few ‘logicky’ expressions
and some basic predicates for talking about set membership and equality.
Fortunately, it’s permissible to add new predicates and names to the language
as needed, as long as you take care to define them in terms of expressions
that are already in the language, as will be explained below. (Without
such abbreviations, Mathese quickly becomes opaque to the point of sheer
incomprehensibility.) There are also symbols for abbreviating expressions,
which are mostly used in displayed calculations and inside of set descriptions;
the abbreviations (especially the logicky ones) are usually not used in writing

15

16 Mathese

Mathese prose (which is what you would use to write proofs for this book’s
exercises).1

2.2 ‘Logicky’ expressions

2.2.1 Variables

These are upper- or lower-case Roman letters (usually italicized in typing),
with or without numerical subscripts, used roughly as pronouns or as names
of arbitrary sets, e.g. x, y, x0, x1, X, Y, etc.

2.2.2 Sentence-level expressions

And Mathese ‘and’ is abbreviated using the conjunction symbol ∧. It is
used mainly for combining sentences, as in:

S1 and S2. (Abbreviated form: S1 ∧ S2)

A sentence formed this way is called a conjunctive sentence. Here S1

is called the first conjunct and S2 is called the second conjunct. A
conjunctive sentence is considered to be true if both conjuncts are true;
otherwise it is false.

Or Mathese ‘or’ is abbreviated using the disjunction symbol ∨. Like ‘and’,
it is used mainly for combining sentences, as in:

S1 or S2. (Abbreviated form: S1 ∨ S2)

A sentence formed this way is called a disjunctive sentence. Here
S1 is called the first disjunct and S2 is called the second disjunct.
Mathese or is inclusive disjunction, so that a disjunctive sentence is
true if either or both of the disjuncts are true, and it is false otherwise.

Implies Mathese ‘implies’ is abbreviated using one of the two implication
symbols → or ⊃. A synonym for ‘implies’ is ‘if . . . then . . . ’. It too is
used for combining sentences, as in:

S1 implies S2. (Abbreviated forms: S1 → S2 or S1 ⊃ S2)

1In Part II, we’ll introduce some formal languages, called first-order languages, which
consist entirely of such symbols. By then, you’ll have a good intuitive feeling for what
such symbols mean. If you’ve taken a basic course in predicate logic, you’ll already be
familiar with these.

17 Mathese

A sentence formed this way is called a conditional or implicative
sentence. Here S1 is called the antecedent and S2 is called the con-
sequent. Caution: this does not mean quite exactly the same thing
as if S1 then S2 in ordinary English. One difference is that a condi-
tional Mathese sentence is considered to be true if the consequent is
true, no matter whether the antecedent is true or false and even if the
antecedent and the consequent seem to have nothing to do with each
other, e.g. the statement

If there does not exist a set with no members, then 0 = 0

is true. Another difference is that a conditional Mathese sentence is
considered to be true if the antecedent is false, no matter whether the
consequent is true or false, e.g.

If 0 6= 0 then 1 6= 1

is true!

If and only if Mathese ‘if and only if,’ usually written simply as ‘iff,’ is
abbreviated using the biimplication symbol ↔. It is used to combine
sentences as in:

S1 iff S2. (Abbreviated form: S1 ↔ S2)

A sentence of this form is called a biconditional. S1 iff S2 can be
thought of as shorthand for:

S1 implies S2, and S2 implies S1.

Consequently, a sentence of this form is considered to be true if either

1. Both S1 and S2 are true, or

2. Both S1 and S2 are false.

Otherwise, it is false.

It is not the case that Mathese ‘it is not the case that’ is abbreviated
using one of the two negation symbols ¬ or ∼. It is placed before a
sentence in order to negate it, as in:

It is not the case that S. (Abbreviated forms: ¬S or ∼ S)

18 Mathese

A sentence of this form is called a negative sentence. Here S is called
the scope of the negation. Unsurprisingly, a negative sentence is
considered to be true if the scope is false, and false if the scope is true.
For any sentence S, the sentence it is not the case that S is called the
negation of S, or, equivalently, the denial of S.

Note that often, the effect of negation with it is not the case that can
be achieved by ordinary English verb negation, which (simplifying
slightly) involves replacing the finite verb (the one that agrees with the
subject) V with ‘does not V’ if V is not an auxiliary verb (such as has
or is), or negating V with a following not or -n’t if it is an auxiliary.
Thus, for example, these pairs of sentences are equivalent (express the
same thing):

It is not the case that 2 belongs to 1.
2 does not belong to 1.

It is not the case that 1 is empty.
1 isn’t empty.

But negation by it is not the case that and verb negation cannot be
counted on to produce equivalent effects if the verb is in the scope of
a quantifier (see the following section). For example, these are not
equivalent:

It is not the case that for every x, x belongs to x.
For every x, x doesn’t belong to x.

The first is clearly true (for example, 0 doesn’t belong to 0), but
the truth of the second cannot be determined on the basis of the
assumptions in Chapter 1, and in fact different ways of adding further
set-theoretic assumptions resolve the issue in different ways (see Chapter
8).

Note that for predicates with an abbreviatory symbol, such as equals
(=) and belongs to (∈), the effect of verb negation is accomplished by
a diagonal slash, e.g. 6= ‘is not equal to,’ /∈ ‘is not a member of.’

2.2.3 Quantificational expressions

For all Mathese ‘for all,’ abbreviated by the universal quantifier symbol
∀, forms a sentence by combining first with a variable and then with a
sentence, as in:

19 Mathese

For all x, S. (Abbreviated form: ∀xS)

Synonyms of ‘for all’ include ‘for each,’ ‘for every,’ and ‘for any.’ A
sentence formed in this way is said to be universally quantified, or
simply universal.

There exists . . . such that Mathese ‘there exists . . . such that’, abbre-
viated by the existential quantifier symbol ∃, forms a sentence by
combining first with a variable and then with a sentence, as in:

There exists x such that S. (Abbreviated form: ∃xS)

Synonyms of ‘there exists . . . such that’ include ‘for some’ and ‘there
is a(n) . . . such that.’ A sentence formed in this way is said to be
existentially quantified, or simply existential.

There exists unique . . . such that In Mathese, ‘there exists unique . . .
such that,’ abbreviated ∃!, combines first with a variable, then with a
sentence, as in:

There exists unique x such that S.
(Abbreviated form: ∃!xS)

This is understood to be shorthand for

∃x(S[x] ∧ ∀y(S[y]→ (y = x))) .

In a quantificational expression of the form ∀xS or ∃xS, the variable
x is said to be bound by the quantifier, and the sentence S is called the
scope of the quantifier. Usually the bound variable also occurs in the scope;
if it doesn’t, then the quantification is said to be vacuous. If a sentence
contains variables which are not bound by any quantifier, those variables are
called free. A sentence is called closed if it has no free variables, and open
otherwise. A sentence whose free variables are x0, . . . , xn is often called a
condition on x0, . . . , xn. The number of free variables in a condition is
called its arity. Thus conditions might be nullary (no free variables, i.e. a
closed sentence), unary (one free variable), binary (two free variables),
ternary (three free variables), etc.

As long as we are using Mathese only to talk about set theory, we can
assume that the variable used to form a quantified sentence ranges over all
sets, that is, ‘for all x’ is implicitly understood as ‘for all sets x.’ Similarly,
‘there exists x’ is implicitly understood as ‘there exists a set x.’

However, often we want to quantify not over every set, but just over the
sets that satisfy some condition on x, S1[x]. Then we say, for example:

20 Mathese

For every x with S1[x], S2[x].

This is understood to be shorthand for

For every x, S1[x] implies S2[x].
(Abbreviated form: ∀x(S1[x]→ S2[x]))

If such a sentence is true, then we say that S1[x] is a sufficient condition
for S2[x], or, equivalently, that S2[x] is a necessary condition for S1[x]. A
special case of this is that a sentence of this format is true if, no matter
what x is, S1[x] is false. Such a sentence is said to be vacuously true. For
example, the sentence

For every x with x 6= x, x = 2

is (vacuously) true. If a universal sentence of the form

For every x, S1[x] iff S2[x]

(i.e. whose scope is a biconditional) is true, then we say S1[x] is a necessary
and sufficient condition for S2[x].

Existential sentences are abbreviated in a similar way:

There exists x with S1[x], such that S2[x].

is understood to be shorthand for the following:

There exists x such that S1[x] and S2[x]
(Abbreviated form: ∃x(S1[x] ∧ S2[x]))

Note here the use of parentheses for disambiguation. Without the parentheses,
it would be hard to be sure whether the scope of the quantification is the
conjunctive sentence or just its first conjunct. This is a common device in
Mathese. Both round and square parentheses can be used, and multiple sets
of parentheses can be used in the same sentence.

Exercise 2.1. Translate the following Mathese sentences into Mathese
symbols. Don’t worry about whether the sentences are true or false, or
provable or unprovable; in math it’s necessary to be able to express things
that are false, and things that are true but unprovable.

1. There exists a set x such that [(the empty set is in x) and (for every
set y, if y is in x then the successor of y is in x)].

2. There does not exist a set x such that [(x is a member of x) and (for
every set y, if y is in x then y is equal to x)].

21 Mathese

3. For every set n, n belongs to the successor of n.

4. For every set n, either n is zero or there exists a set m such that n is
the successor of m.

Exercise 2.2. Translate the mathese sentences in Exercise 2.1 into sentences
of ordinary English. (If you are starting to have trouble distinguishing
Mathese from ordinary English, imagine you have to translate these sentences
for your parents, dentist, vet, bartender, etc.)

2.3 Defining Predicates

At the outset, the only predicates in Mathese are equals (abbreviated =)
or synonyms such as is the same as or is identical to, and is a member of
(abbreviated ∈) or synonyms such as belongs to or is an element of. But
we can define new predicates in terms of these and other predicates which
have already been defined. The arity of a defined predicate is the arity of
the condition that is used to define it. For example, we define x is empty to
mean ∀y(y /∈ x), and x is a singleton to mean ∃!y(y ∈ x); these are unary
predicates. In x is a subset of y (abbreviation: x ⊆ y), ⊆ is a binary predicate
defined by the condition ∀z(z ∈ x→ z ∈ y).

2.4 Defining Names

If we can prove (i.e. provide a persuasive valid argument based only on
our assumptions about set theory and other things that have already been
proved) that there exists a unique set x such that S[x], where S[x] is some
condition on x, then we permit ourselves to bestow a name on that set. For
example, it is easy to show that there is a unique set x such that x is empty.
(The existence part of the proof is by the Empty set assumption, and the
uniqueness part of the proof is an application of Extensionality.) In this case,
as we saw in Chapter 1, the set in question is named ∅ (read ‘the empty set’).

2.4.1 Functional Names

Often we can show that for any set y, there exists a unique set x satisfying
some condition S[x, y]. In such cases, we permit ourselves to introduce a
functional name, which is basically a scheme which, for each y, provides a
name for the unique set x such that S[x, y]. To make an analogy with real
life: obviously everybody has a mother, so we can use the functional name

22 Mathese

y’s mom to refer to the unique individual x such that x is a mother of y,
no matter who y is. Returning to sets, it is easy to prove that for any set y,
there is a unique set x such that y is the only member of x. This justifies
introducing the functional name singleton(y), abbreviated {y}. Likewise, we
introduce the functional name successor(y), abbreviated s(y), which, for each
set y, names the unique set x that satisfies the binary condition x = y ∪ {y}.

This naming convention extends to names that depend on more than
one variable. Again, to take a real-life example, we might introduce the
functional name x’s seniority over y: for any two individuals x and y this
is defined to be the number of days (rounded off) from x’s birthdate to
y’s birthdate (this is a negative integer if y’s birthdate precedes x’s). The
general principle is that if, for some positive natural number n and some
(n+ 1)-ary condition S[x0, . . . , xn] we can prove

∀x1 · · · ∀xn∃!x0S[x0, . . . , xn] ,

then we are allowed to make up a functional name name(x1, . . . , xn) which
for each choice of values for the n variables x1, . . . , xn provides a name for
the unique set which satisfies the condition for that choice of values.

Exercise 2.3. Translate the following sequences of symbols into clear, unam-
biguous English, either standard English or Mathese or a mixture of the two,
whichever you prefer. Again, don’t worry about whether the sentences are
true, or whether they are provable. (Note: In Mathese, there is a standard
way of avoiding repeating sequences of quantifiers of the same kind (i.e. all
universal or all existential), e.g.:

Instead of For every x, for every y . . . , say For all x and y . . .
or For any two sets x and y, . . .

Instead of There exists x such that there exists y such that there
exists z . . . , say There exist three sets x, y, and z such that . . .)

1. ∀x∃y∀z(z ∈ y ↔ ∃u∃v[z ∈ u ∧ u ∈ v ∧ v ∈ x])

2. ∃!x∀y(y ∈ x↔ y 6∈ y)

3. ∀x∀y[x 6= y → (s(x) 6= s(y))]

4. ∀x([0 ∈ x ∧ ∀y(y ∈ x→ s(y) ∈ x)]→ z ⊆ x)

Chapter 3

Relations

3.1 Introduction

Intuitively, a relation is the sort of thing that either does or does not hold
between certain things, e.g. the love relation holds between Kim and Sandy
just in case Kim loves Sandy, and the less-than relation holds between two
natural numbers A and B just in case A < B. How should we represent
relations mathematically if sets are all we have to work with? A simple-
minded first pass might be to represent the love relation as the set of all
pairs {A,B} such that A and B are two people and A loves B. (Actually,
A and B would not be people at all, but rather certain sets that we have
chosen as theoretical stand-ins for (representations of) people: remember
that the only things in our mathematical workspace are sets!) Unfortunately,
this is too simple, since, for example, we are left with no way to represent
unrequited love: what if Kim loves Sandy but Sandy does not love Kim?

A more promising approach is to represent love as the set of ordered pairs
〈A,B〉 such that A loves B. Of course nobody is under the illusion that a
set of ordered pairs is the answer Cole Porter had in mind when he wrote
What is this Thing Called Love? It is what a formal semanticist would call
the extension of the love relation. (The appropriate way to mathematically
represent the actual love relation, as opposed to its extension, is a question
we will turn to in Part ?? when we consider how to represent linguistic
meaning.) To take a less vexing example, we can consider the relation ⊆U of

23

24 Relations

set inclusion restricted to the subsets of a given set U to be the following set
of ordered pairs:1

⊆U=def {〈A,B〉 ∈ ℘(U)× ℘(U) | A ⊆ B}

More generally, we now define the notion of relation as follows: a relation
between A and B is a subset of A×B. Equivalently, it is

• A set of ordered pairs whose first and second components are in A and
B respectively.

• A member of ℘(A×B).

In the special case where A = B, we speak of a relation on A. For example,
⊆A is a relation on ℘(A). But note: according to the way we have defined
the notion of a relation, there is no ⊆ relation!

Exercise 3.1. Why is there no ⊆ relation?

As a matter of notation, we usually write a R b to mean that the ordered pair
〈a, b〉 is in the relation R; that is, a R b is just another way to say 〈a, b〉 ∈ R.

An important special case arises when A = B and the relation is

idA =def {〈x, y〉 ∈ A×A | x = y} .

This relation is called the identity relation on A. For any set A, the subset
inclusion relation

⊆A=def {〈x, y〉 ∈ ℘(A)× ℘(A) | x ⊆ y}

and the proper subset inclusion relation

(A=def {〈x, y〉 ∈ ℘(A)× ℘(A) | x (y}

are both relations on ℘(A). The less than relation

< =def {〈m,n〉 ∈ ω × ω | m (n}

is a relation on the set ω of natural numbers. (We will get clear about what
a natural number is and show that there is a set of them in Chapter 6.)

1On the right-hand side of the following definition, we are making use
of a commonplace notational convention whereby {〈x, y〉 ∈ A×B | φ} abbreviates
{z ∈ A×B | ∃x∃y(φ ∧ z = 〈x, y〉)}.

25 Relations

3.2 Inverting and Composing Relations

If R is a relation from A to B, the inverse of R is the relation from B to A
defined as follows:

R−1 =def {〈x, y〉 ∈ B ×A | y R x}

For example, suppose ≤ is the standard order on the natural numbers (to
be defined precisely in Chapter 6); its inverse is the relation ≥. Similarly,
<−1 = > and ⊆A

−1 = ⊇A, where ⊇A holds of any two subsets a and b of A
just in case b ⊆ a. And the inverse of the (extension) of the love relation is
the is-loved-by relation. It is easy to see that for any set A,

id−1A = idA ,

and that for any relation R,

(R−1)−1 = R .

As we have seen, a relation is defined as a subset of a cartesian product
A × B. More precisely, this should have been called a binary relation.
Likewise, we can define a ternary relation among the sets A, B, and C to
be a subset of the threefold cartesian product A × B × C; thus a ternary
relation is a set of ordered triples. For n > 3, n-fold cartesian products and
n-ary relations are defined in the obvious way.

Recall that a cartesian power is a cartesian product all of whose factors
are the same, e.g.

A(0) = 1

A(1) = A

A(2) = A×A
A(3) = A×A×A

Correspondingly, a unary relation on A is just a subset of A, and a nullary
relation on A is a subset of 1, i.e. either 1 or 0.

Suppose R is a relation from A to B and S is a relation from B to C.
Then the composition of S and R is the relation from A to C defined2 by

S ◦R =def {〈x, z〉 ∈ A× C | ∃y ∈ B(x R y ∧ y S z)} .
2This composition is sometimes written with the composed relations in the other order,

as R ; S.

26 Relations

It is easy to see that if R is a relation from A to B, then

idB ◦R = R = R ◦ idA .

Suppose R is a relation from A to B. Then the domain and range of
R are defined as

dom(R) =def {x ∈ A | ∃y ∈ B(x R y)}

and

ran(R) =def {y ∈ B | ∃x ∈ A(x R y)}

respectively.

3.3 Special Properties of Relations

Here we collect some useful definitions for future reference. Throughout, we
assume R is a binary relation on A.

• Distinct a, b ∈ A are (R-)comparable if either a R b or b R a;
otherwise, they are incomparable. R is connex iff a and b are
comparable for all distinct a, b ∈ A.

• R is reflexive if a R a for all a ∈ A (i.e. idA ⊆ R). R is irreflexive if
a 6R a for all a ∈ A (i.e. idA ∩R = ∅).

• R is symmetric if a R b implies b R a for all a, b ∈ A (i.e. R = R−1). R
is asymmetric if a R b implies b 6R a for all a, b ∈ A (i.e. R∩R−1 = ∅).

• R is antisymmetric if a R b and b R a imply a = b for all a, b ∈ A
(i.e. R∩R−1 ⊆ idA). Thus asymmetry is a special case of antisymmetry;
more specifically, a relation is asymmetric iff it is both antisymmetric
and irreflexive.

• A relation R is transitive if a R b and b R c imply a R c for all
a, b, c ∈ A (i.e. R ◦R ⊆ R). R is intransitive if a R b and b R c imply
a 6R c for all a, b, c ∈ A (i.e. (R ◦R) ∩R = ∅).

It is important to note, in particular, that being asymmetric is not defined
as simply not symmetric, and similarly, being intransitive is not equivalent
to not being transitive. For example, given a relation R, it is possible for
a R b and b R c to imply a R c only for some (but not all) a, b, c ∈ A; in
that case R is neither transitive nor intransitive.

27 Relations

Exercise 3.2. Let A be a fixed set. In this question “relation” means
“binary relation on A.” Prove that:

1. The intersection of two transitive relations is a transitive relation.

2. The intersection of two symmetric relations is a symmetric relation.

3. The intersection of two reflexive relations is a reflexive relation.

Suppose R is a binary relation on A. Then the reflexive closure of R
is the relation R ∪ idA, and the irreflexive interior of R is the relation
R \ idA.

Exercise 3.3. Prove the following:

1. A relation is reflexive iff it is equal to its reflexive closure, and irreflexive
iff it is equal to its irreflexive interior.

2. The reflexive closure of a relation R is the intersection of the set of
reflexive relations on A which have R as a subset.

3. The irreflexive interior of a relation R is the union of the set of irreflexive
relations which are subsets of R.

Exercise 3.4. Let A be any set. What are the reflexive closure and reflexive
interior of the following relations?

1. idA

2. ⊆A

3. <

Exercise 3.5. Which relations discussed so far are symmetric? Which are
asymmetric? Which are antisymmetric?

Exercise 3.6. Prove that a relation is asymmetric iff it is both antisymmetric
and irreflexive.

Exercise 3.7. Which relations discussed so far are transitive? Which are
intransitive?

Chapter 4

Preorders and Equivalences

In this chapter, we examine some special kinds of binary relations: orders,
preorders, and equivalence classes.

4.1 Orders and Preorders

A preorder is a reflexive transitive relation; and an order is an antisymmet-
ric preorder. Preorders are often notated with the symbol v (read ‘less than
or equivalent to’) or one of its variants. One of the most useful orders overall
is the subset relation ⊆A on ℘(A). Another example is the relation ≤, which
is an order on the natural numbers (as we will see in Chapter 6). In linguistic
applications, as we will see later on, one of the most widely used orders is
the dominance order on the nodes of a tree (Chapter 10), used in logic to
formalize the notion of a proof (Chapter 11), and in many syntactic theories
to represent the (putative) constituent structure of a linguistic expression.
(But not in all syntactic theories; for example, in the family of syntactic
theories known as categorial grammar , the notion of constituent plays little
or no role.)

In many approaches to formal semantics of natural languages, the math-
ematical objects that model declarative sentence meanings (usually called
propositions) are preordered by a relation called entailment . Without getting
technical at this point, if p and p′ are the propositions expressed by two
natural-language sentence utterances S and S’, p entails p′ just in case, no
matter what the world is like, if S is true with the world that way, then
so is S’. In order to have a formal theory of this, we will have to have a
way of set-theoretically representing sentence utterances, propositions, and
possible ways the world might be. Considerable care is needed here, since one

28

29 Preorders and Equivalences

and the same sentence can express different propositions depending on the
context of utterance, and utterances of different sentences can express the
same proposition. A controversial issue here is whether or not the entailment
relation is antisymmetric. In other words: if two sentences always agree in
truth value no matter what the world is like, then must they express the
same proposition? We will take up these and related issues in due course.

Let v be a preorder on A, S ⊆ A, and a ∈ A. Then a is a upper (lower)
bound of S iff, for every b ∈ S, b v a (a v b). Suppose moreover that a ∈ S.
Then a is greatest (least) in S iff it is an upper (lower) bound of S. a is a
top (bottom) iff it is greatest (least) in A; if there is a unique top (bottom),
it is often written >v (⊥v). And a is maximal (minimal) in S iff a v b
implies b v a (b v a implies a v b) for every b ∈ S. It is not hard to see that
if S has any greatest (least) elements, then they and only they are maximal
(minimal) elements of S.

Now suppose the preorder v is also antisymmetric (i.e. it is an order).
Then S can have at most one greatest (or least) member; in particular, there
can be at most one top (or bottom). If a is greatest (or least) in S, then it
is the unique maximal (or minimal) element of a.

But it is possible (even if v is antisymmetric) for a to be the unique
maximal (or minimal) element of S without being the greatest (or least)
element in S. For that matter, S can have more than one maximal (or
minimal) element without any of them being greatest (or least).

Exercise 4.1. Letting S be a set, construct suitable examples of the follow-
ing:

1. A preorder with a unique maximal (or minimal) element a that is not
greatest (or least) in S,

2. A preorder with more than one maximal (or minimal) element that is
not greatest (or least), and

3. An antisymmetric preorder with a unique greatest (or least) member.

In a connex preorder, for a to be maximal (minimal) in S is the same
thing as for a to be greatest (least) in S. A connex (pre)order is called a
(pre)chain. A chain is also called a total order, or a linear order. A
chain is called a well-ordering provided every non-empty subset of A has a
least element. The most familiar example of a well-ordering is the standard
(≤) order on the natural numbers.

For linguists, the most familiar chains are the linear precedence (LP)
orders that arise in the representation of the constituent structure (within

30 Preorders and Equivalences

linguistic theories that countenance such things) of a linguistic expression by
an ordered tree, namely

1. The LP order on the daughters (immediate constituents) of a nonter-
minal node, and

2. The LP order on the preterminals.

We will take a close look at the use of tree representations in syntax in
Chapters 9 and 10.

4.2 Equivalence Relations

An equivalence relation is a symmetric preorder. The symbol ≡ is often
used to notate equivalence relations.

Exercise 4.2. Show that the intersection of two equivalence relations on a
set A is itself an equivalence relation.

If ≡ is an equivalence relation on a set A, then for each a ∈ A, the
(≡-)equivalence class of a is

[a]≡ =def {b ∈ A | a ≡ b} .

Usually the subscript is dropped when it is clear from context which equiva-
lence relation is in question. The members of an equivalence class are called
its representatives. The set of equivalence classes, written A/ ≡, is called
the quotient of A by ≡.

Exercise 4.3. Prove that if ≡ is an equivalence relation on A, then A/ ≡
is a partition of A, i.e. it is pairwise disjoint and its union is A.

Exercise 4.4. Which relations discussed in Chapter 3 are equivalences?
What are their equivalence classes?

For any binary relation R on a set A, the symmetric interior of R,
written Sym(R), is defined to be the relation R ∩R−1. For example, if R is
the relation that holds between a pair of people when the first respects the
other, then Sym(R) is the relation of mutual respect.

Exercise 4.5. Prove that the symmetric interior of a preorder is an equiva-
lence relation.

31 Preorders and Equivalences

If v is a preorder, then Sym(v) is called the equivalence relation induced
by v and written ≡v, or just ≡ if it’s clear from the context which preorder
is under discussion. If a ≡ b, then we say a and b are tied with respect to
the preorder v.

Also, for any relation R, there is a corresponding asymmetric relation
called the asymmetric interior of R, written Asym(R) and defined to be
R \R−1. For example, the asymmetric interior of the love relation on people
is the unrequited love relation.

In a context where there is a fixed preorder v, a v b is usually read ‘a is
less than or equivalent to b’; if in addition v is antisymmetric (i.e. an order),
then it is read ‘a is less than or equal to b’ because the only thing tied with
a is a itself.

In a context where there is a fixed preorder v, Asym(v) is usually read
‘strictly less than,’ and abbreviated @. Careful: if a Asym(v) b, then not
only are a and b not equal, but also they are not equivalent.

If v is a preorder, then we say c is strictly between a and b to mean
that a is strictly less than c and c is strictly less than b.

Given a preorder v on a set A and a, b ∈ A, we say a is covered by b
if a is strictly less than b and there is nothing strictly between them. The
relation consisting of all such pairs 〈a, b〉 is called the covering relation
induced by v and written �v, or just � when no confusion can arise.

Exercise 4.6. Prove that � is an intransitive relation.

Exercise 4.7. Let ≤ be the usual order on ω. What is the induced covering
relation? (Hint : we encountered it earlier, under another name.)

Exercise 4.8. Let ≤ be the usual order on the real numbers. What is the
induced covering relation?

Exercise 4.9. Remember from grade school (or maybe middle school?) that
any positive rational number less than 1 can be represented in a unique
way by a fraction m/n where both m and n are nonzero natural numbers,
m < n, and m and n have no common factor (other than 1), i.e. the fraction
is ‘reduced to lowest terms.’ In this context, let ≤ represent the usual order
on the set of such numbers (just take it on faith that there is such a set).
What is the induced covering relation on ≤?

Exercise 4.10. Let U be a set, ⊆U the subset inclusion relation on ℘(U),
and � the corresponding covering relation. In simple English, how do you
tell by looking at two subsets A and B of U whether A �B?

32 Preorders and Equivalences

Exercise 4.11. Background. For this exercise, let Refl(R) be the reflexive
closure of R, defined in §3.3. Clearly if R is transitive then Refl(R) is a
preorder.

Now suppose P is the set of all people who have ever lived (i.e. a set
that we are using to represent the collection of people who have ever lived)
and let D be a transitive asymmetric relation on P used to represent the
relation that holds between a pair of people if the first is a descendant of the
second. Let v =def Refl(D), and � the corresponding covering relation. To
keep things simple, assume (counterfactually, of course) that

A. Every person has exactly two parents, and

B. Any two people with a parent in common have both of their parents in
common.

Then do the following:

1. In plain English, why did we require that D be transitive an asym-
metric? (That is, what facts of life are modeled by imposing these
conditions on D?)

2. Write a formula (a sentence made up of Mathese symbols) expressing
the condition A. (Hint : it is much easier to express this in terms of �
than in terms of D!)

3. Write a formula expressing the condition B. (Same hint as immediately
above.)

4. Suppose a and b are two people. Write a formula that means that a
and b are cousins. (To eliminate any variation in or unclarity about
the meaning of English kinship terms, assume that a person’s cousins
are the children of his or her parents’ siblings, not counting ones with
whom he or she has a parent in common.)

Translate the following into plain English, using familiar kinship terms.

5. a � b

6. b �−1 a

7. a � ◦ � b

8. a (� ◦ �−1) \ idP b

9. a (�−1 ◦ �) \ idP b

33 Preorders and Equivalences

4.3 Least Upper Bounds and Greatest Lower Bounds

Throughout this section, v is a preorder on a set A, and ≡ (= ≡v) is the
equivalence relation induced by the preorder.

The set of upper (lower) bounds of S is denoted by UB(S) (LB(S)). In
case S is a singleton {a}, UB(S) (LB(S)) is written ↑ a (↓ a), read up of a
(down of a).

A least member of UB(S) is called a least upper bound (lub) of S,
and a greatest member of LB(S) is called a greatest lower bound (glb)
of S. In case S = A, the notions of lub and top (glb and bottom) coincide.

Exercise 4.12. Find an example where a lub of S does not belong to S.

Exercise 4.13. Show that if there are any bottoms, they are the least upper
bounds of ∅, and if there are any tops, they are the greatest lower bounds of
∅.

Exercise 4.14. Prove that if v is an order on A and S ⊆ A, then S can
have at most one glb (lub).

For the case S = A, this last exercise implies that there can be at most
one top and at most one bottom. In the special case S = {a, b}, if S has a
glb (lub), it is usually written a u b (a t b).

Chapter 5

Functions

5.1 Basic Properties

A relation F between A and B is called a (total) function from A to B
provided for every x ∈ A, there exists a unique y ∈ B such that x F y. In
that case we write F : A → B. This is often expressed by saying that F
takes members of A as arguments and returns members of B as values
(or, alternatively, takes its values in B). Obviously,

dom(F) = A .

For each a ∈ dom(F), the unique b such that a F b is called the value of F
at a, written F (a). Equivalently, we say F maps a to b, written F : a 7→ b.

In formal semantics, linguistic meanings are often represented as functions
of certain kinds. For example, it is fairly standard (but not unproblematic)
to represent declarative sentence meanings as functions from a set W of
possible worlds (which themselves are taken to be representations of different
possible ways the world might be) to the set 2 (i.e. {0, 1}). Here 1 and 0 are
identified, respectively, with the intuitive notions of truth and falsity, and the
set 2 is often called the set of truth values. Not quite so straightforward is
the use of function terminology by syntacticians, for example referring to the
subjects and complements of a verb as its grammatical arguments . If a verb
were really a function, then what would its domain and codomain be? In
due course we’ll look into the motivation for talking about verbs and other
linguistic expressions as if they were functions.

Note that for any set A, the identity relation idA is the function from A
to A such that

idA(a) = a

34

35 Functions

for every a ∈ A. In some linguistic theories, identity functions serve as the
meanings of referentially dependent expressions such as pronouns and gaps.

It is not hard to see (after some reflection) that a relation R from A to
B is a function from A to B iff

R ◦R−1 ⊆ idB

and

idA ⊆ R−1 ◦R .

We note here a confusing though standard bit of terminology. Given a function
F : A→ B, we often call B the codomain of F . What is confusing is that
if B is a proper subset of some other set B′, then clearly also F : A→ B′;
but then B′ must be the codomain of F ! Evidently the notion of codomain
of a function is not well-defined. Technically, we can clear up this confusion
by defining a (set theoretic) arrow from A to B to be an ordered triple
f = 〈A,B, F 〉, where F : A → B. Now we can unambiguously refer to A
and B as the domain and codomain of f , respectively; F is called the graph
of f . The point is that two distinct arrows can have the same domain and
the same graph but different codomains. Thus when we speak (loosely) of a
function F : A→ B having B as its codomain, we are really talking about
the arrow 〈A,B, F 〉. Having called attention to this abuse of language, we
will persist in it without further comment.

For any sets A and B, the exponential from A to B is the set of arrows
from A to B. This is written BA, read ‘B to the A.’ An alternative notation
is A ⇒ B, read ‘A into B.’ Note for any set A there is a unique function
♦A : ∅ → A and a unique function �A : A→ 1.

Exercise 5.1. Suppose A is a set. What are the unique functions from ∅ to
A and from A to 1?

Some other important functions include the successor function suc,
the unary operation on the set of natural numbers that maps each natural
number to its successor, and the arithmetic functions, such as addition
(+), multiplication (·), and exponentiation (?), all binary operations on
the set of natural numbers. (In Chapter 6 we will show how to define these
functions recursively.) Other examples are the members of An, which, for
any set A, are called the A-strings of length n. These functions, as we
will see starting in Chapter 9, are indispensible for formalizing theories of
phonology and syntax.

36 Functions

A relation F between A and B is called a partial function from A to
B provided there is a subset A′ ⊆ A such that F is a (total) function from
A′ to B. If F is a partial function from A to B, we write F : A ⇀ B to
distinguish it from the total case.

For n ≥ 0, an n-ary (total) operation on a set A is a function from
A(n) to A. So a unary operation on A is just a function from A to itself, and
a nullary operation on A is a function from 1 (i.e. {0}) to A. It is easy to
see that there is a one-to-one correspondence between A and A1, with each
a ∈ A corresponding to the function from 1 to A that maps 0 to a.

Suppose F : A→ B. Then F is called:

• injective, or one-to-one, or an injection, if it maps distinct members
of A to distinct members of B;

• surjective, or onto, or a surjection, if ran(F) = B; and

• bijective, or one-to-one and onto, or a bijection, or a one-to-one
correspondence, if it is both injective and surjective.

An important special case of injective functions are defined as follows:
if A ⊆ B, then the function µA,B : A → B that maps each member of A
to itself is called the embedding of A into B. (Note that µA,B has the
same graph as idA, but possibly a larger codomain.) Also injective are the
functions ι1 and ι2, called canonical injections, from the cofactors A and
B of a coproduct A + B into the coproduct, defined by ι1(a) = 〈0, a〉 and
ι2(b) = 〈1, b〉 for all a ∈ A and b ∈ B.

Standard examples of surjections are the projections π1 and π2 of a
product A×B onto its factors A and B respectively, defined by π1(〈a, b〉) = a
and π2(〈a, b〉) = b for all a ∈ A and b ∈ B. For a set A with an equivalence
relation ≡, another example of a surjection is the function from A to A/ ≡
that maps each member of A to its equivalence class.

Exercise 5.2. Prove that, for any function f : A → B, there is an equiv-
alence relation ≡f , with two members of A being equivalent just in case f
maps them to the same member of B.

Any identity function is a bijection, and we can prove that suc is a
bijection from ω (the set of natural numbers) to the set ω \ {0} of positive
natural numbers (see Chapter 6). Other examples of bijections include the
function from 2 to 2 that maps 0 and 1 to each other, and the complement
operation on the powerset of a set. And for any set A, there is a bijection
from A to A1 that maps each a ∈ A to the nullary operation that maps 0 to

37 Functions

a. More generally, for any natural number n, there is a bijection from A(n)

to An that maps each A-string of length n to an n-tuple of elements of A.
For each function f : A→ 2, the kernel of F is the subset

ker(f) =def {x ∈ A | f(x) = 1} .

Operations on 2 are called truth functions, and, as we will see in Chapter
??, are used to define the meanings of the first-order logical connectives,
such as ¬, ∧, ∨, and →.

If B is a set and A one of its subsets, then there is a function χA,B : B → 2
such that, for each b ∈ B, χA,B(b) = 1 iff b ∈ A. This function is called
the characteristic function of A relative to B, or simply the characteristic
function of A if B can be understood from the context (in which case the
subscript B is usually omitted).

Exercise 5.3. Prove that for any set B, the function fB : ℘(B)→ 2B that
maps each subset of B to its characteristic function is a bijection.

Exercise 5.4. Prove that if f : A→ B is a bijection, then its inverse relation
f−1 is itself a function, and in fact bijective.

Exercise 5.5. Describe the inverse of the function fB : ℘(B)→ 2B.

Exercise 5.6. Suppose B is a set, and gB : ℘(B)→ ℘(B) the function that
maps each subset B of A to B \A. Show that gB is a bijection.

Exercise 5.7. What is the inverse of gB?

Exercise 5.8. For any set U , let ≈U be the binary relation on ℘(U) such
that A ≈U B iff there is a bijection from A to B. Prove that ≈U is an
equivalence relation.

5.2 Composing Functions

Since functions are relations, the definition of composition for relations
makes sense when the two relations being composed are functions. Thus if
F : A→ B and G : B → C, then G ◦ F : A→ C, and for every x ∈ A,

G ◦ F (x) = G(F (x)) .

It is not hard to see that1

G ◦ F = {〈x, z〉 ∈ A× C | ∃y ∈ B(y = F (x) ∧ z = G(y))} .
1Note that in the set description on the right-hand side of the following equation,

we make use of a commonplace notational convention whereby ∃y ∈ Bφ abbreviates
∃y(φ ∧ y ∈ B).

38 Functions

For example, taking it one faith for the moment that there is a set ω whose
members are precisely the natural numbers, and that the familiar (binary)
arithmetic operations (addition, multiplication, and exponentiation) have
been given satisfactory set-theoretic definitions (we will make this precise in
due course), let F and G be the functions from ω to ω such that

F (x) = x2

G(x) = x+ 2

for all x ∈ ω. Then G ◦ F is given by

G ◦ F (x) = x2 + 2 .

Suppose once again that F : A → B and G : B → C, and suppose
moreover that H : C → D. Then it is not hard to see that

H ◦ (G ◦ F) = (H ◦G) ◦ F

Since functions are relations, the following hold for any function F : A→ B:

idB ◦ F = F = F ◦ idA

F ◦ F−1 ⊆ idB

idA ⊆ F−1 ◦ F

Additionally, it is easy to see that F is surjective iff

F ◦ F−1 = idB ,

and F is injective iff

idA = F−1 ◦ F .

As a special case, if F is a unary operation on A, then

idA ◦ F = F ◦ idA = F .

If in addition F is bijective, then the relation F−1 is also a unary operation
on A, and

F ◦ F−1 = F−1 ◦ F = idA .

Exercise 5.9. Prove that the composition of two bijections is a bijection.

39 Functions

5.3 Restrictions and Images

Suppose F : A→ B, A′ ⊆ A, and B′ ⊆ B. Then the restriction of F to A′

is the function from A′ to B given by

F � A′ =
{
〈u, v〉 ∈ F | u ∈ A′

}
.

Note that this is the same function as F ◦ µA′,A. The image of A′ by F is
the set

F [A′] =def

{
y ∈ B | ∃x ∈ A′(y = F (x))

}
.

The preimage (or inverse image) of B′ by F is the set

F−1[B′] =def {x ∈ A | ∃y ∈ B′(y = F (x))} .

This is more simply described as{
x ∈ A | F (x) ∈ B′

}
.

5.4 Monotonicity and Antitonicity

Now suppose we have two sets A and B (pre)ordered by v and ≤ respectively.
A function f : A → B is called monotonic or order-preserving with re-
spect to the given (pre)orders provided, for all a, a′ ∈ A, if a v a′, then
f(a) ≤ f(a′); and f is called antitonic or order-reversing with respect to
the given (pre)orders provided for all a, a′ ∈ A, if a v a′ then f(a′) ≤ f(a). A
monotonic (respectively, antitonic) bijection is called a (pre)order isomor-
phism (respectively, (pre)order anti-isomorphism) provided its inverse
is also monotonic (respectively, antitonic). Two (pre)ordered sets are said to
be (pre)order-isomorphic provided there is a (pre)order isomorphism from
one to the other. Intuitively speaking, (pre)order-isomorphic (pre)orders are
‘copies of each other,’ differing only in which members they contain.

It is possible to consider to different preorders on the same set. For
example, besides the usual order ≤ on the nonzero natural numbers, we
could also the consider the order v that holds between a pair of nonzero
natural numbers if the first is a factor of (i.e. divides evenly into) the second.

If v and ≤ are two preorders on the same set A, we can ask whether the
identity function on A is monotonic from the first to the second. Interestingly,
many (all?) languages have a special grammatical construction, called the

40 Functions

correlative comparative construction, to describe situations of this kind.
A typical English example is a sentence such as The more expensive an SUV
is, the more cupholders it has, which asserts that the identity function on
the set of SUVs is monotonic from v to ≤, where, for two SUVs a and b,
a v b means b costs at least as much as a, and a ≤ b means that b has at
least as many cupholders as a.

Chapter 6

Induction and Recursive
Definition

6.1 The Natural Numbers

In Chapter 1, we introduced 0 (also known as ∅), its successor 1 = s(0) =
0 ∪ {0} = {0}, 1’s successor 2 = s(1) = 1 ∪ {1} = {0, 1}, and 2’s successor
3 = s(2) = 2 ∪ {2} = {0, 1, 2}. This is how the first four natural numbers
are usually modeled within set theory; it’s intuitively obvious that we could
go on in the same way to model as many of the natural numbers as time
would permit. Note that 0 ∈ 1 ∈ 2 ∈ 3 ∈ · · · and 0 ⊆ 1 ⊆ 2 ⊆ 3 · · · Is there
a set consisting of all the natural numbers? The assumptions we made in
Chapter 1 do not seem to enable us to draw this conclusion. It would be
most useful to have such a set, but we are not yet quite in a position to add
the assumption that there is a set whose members are precisely the natural
numbers, since so far we haven’t said what a natural number is! But we are
about to.

A set is called inductive iff it has 0 as a member and has the successor
of each of its members as a member. We then define a natural number to
be a set which belongs to every inductive set. It is not hard to show that 0,
1, 2, and 3 are all natural numbers. But at this stage, for all we know, every
set might be a natural number. After all, even though we defined what it
means for a set to be inductive, at this point we don’t know that there are
any inductive sets! What if there weren’t any? In that case, it’s easy to see
that indeed every set would be a natural number. And then, since (as we
already know) there is no set of all sets, there could not be a set of all the

41

42 Induction and Recursive Definition

natural numbers. So if we want there to be a set of all natural numbers,
there better be at least one inductive set.

We now add to our assumptions about sets the following:

Assumption 7 (Natural Numbers). There is a set whose members are the
natural numbers.

By Extensionality, there can only be one such set. We call it ω. With the
help of this assumption, it is now easy to prove the following two theorems:1

Theorem 6.1. ω is inductive.

Exercise 6.1. Prove Theorem 6.1.

Theorem 6.2. ω is a subset of every inductive set.

Exercise 6.2. Prove Theorem 6.2.

The relation < (read less than) on ω is defined by n < m iff n ∈ m, and
the relation ≤ (read less than or equal to) by n ≤ m iff n < m or n = m.
(So ≤ is the reflexive closure of <.)2 The terminology ‘less than or equal to’
is justified, since in fact ≤ is an order, as we will show. In fact we will show
more, namely that ≤ is a well-ordering (and in particular a linear order).

6.2 Induction and Recursive Definition

The following theorem is a corollary of the preceding one (6.2):

Theorem 6.3 (Principle of Mathematical Induction). The only inductive
subset of ω is ω.

Exercise 6.3. Prove the Principle of Mathematical Induction.

1A theorem is just something important that we can prove. More generally, something
that we can prove is usually called a proposition. (Note: this is a different use of the
term proposition than in linguistic semantics, where it refers to the interpretation of a
declarative sentence utterance.) So a theorem is an important proposition. A lemma is a
proposition which is not so important in and of itself, but which is used in order to prove
a theorem. And a corollary of a proposition is another proposition which is easily proved
from it.

2Later we will be able to prove that, for any two natural numbers n and m, n < m iff
n (m, and n ≤ m iff n ⊆ m.

43 Induction and Recursive Definition

The Principle of Mathematical Induction (PMI) is one of the mathematician’s
most important resources for proving theorems. It is applicable any time
we want to prove that a condition φ[n] is true for every natural number n.
The trick is to consider the set {n ∈ ω | φ[n]} and show that it is inductive.
To put it another way, we first prove φ[0] (this is called the base case of
the proof) and then prove that, if we assume φ[k] for an arbitrary natural
number k (the so-called inductive hypothesis), then φ[s(k)] follows (the
so-called inductive step). By way of illustration, we prove the following:

Proposition 6.4. Let suc : ω → ω be the function that maps each natural
number to its successor. Then ran(suc) = ω \ {0}.
Proof. Obviously 0 /∈ ran(suc). Let T be the set of all natural numbers that
are either 0 or else the successor of some natural number. We must show
that T is inductive, that is that

1. 0 ∈ T , and

2. for each n ∈ T , suc(n) ∈ T .
But both of these are immediate consequences of the definition of T .

Why do we persist in saying “suc(n)” instead of “1+n”? Answer: because
the operation of addition for natural numbers has not been defined yet. Yet
it seems clear how addition works: for any natural number m, m+ 0 should
be m; and if k is nonzero (so that it is the successor of some other natural
number n), then m+ k should be the successor of m+ n. That is, for each
m ∈ ω we would like to define addition by the equations

m+ 0 = m

and

m+ suc(n) = suc(m+ n) .

Definitions of this kind are called recursive. But how do we know recursive
definitions make sense? The answer is provided by the Recursion Theorem,
henceforth abbreviated RT:

Theorem 6.5 (Recursion Theorem). Let X be a set, x ∈ X, and F : X → X.
Then there exists a unique function h : ω → X such that

1. h(0) = x ; and

2. for every n ∈ ω, h(suc(n)) = F (h(n)) .

RT is not hard to prove, but the proof is a bit long. So we relegate it to an
appendix (A), and turn straightaway to some applications.

44 Induction and Recursive Definition

6.3 Arithmetic

6.3.1 Addition

As our first application of RT, let’s show that the informal recursive definition
of addition given above actually makes sense.

To get started, suppose m ∈ ω. We’ll use RT to show there is a function
Am such that Am(0) = m and Am(suc(n)) = suc(Am(n)). The trick, as
always when applying RT, is to find the right instantiations of X, x, and F .
In the present case the happy choices are X = ω, x = m, and F = suc; with
these choices, the function h whose unique existence is guaranteed by RT has
just the properties we want for Am. We then define the addition operation
+ : ω(2) → ω such that, for all m,n ∈ ω, m+ n =def Am(n). It follows from
this definition that m+ 0 = m for all m ∈ ω and m+ suc(n) = suc(m+ n)
for all m,n ∈ ω, as desired.

Theorem 6.6. For every natural number n, 1 + n = suc(n).

Exercise 6.4. Prove Theorem 6.6.

6.3.2 Multiplication

Turning next to multiplication, we first use RT to define multiplication by a
fixed natural number m. We want a function Mm such that

1. Mm(0) = 0 ; and

2. for every n ∈ ω, Mm(suc(n)) = m+Mm(n) .

To this end, we apply RT again, this time with X = ω, x = 0, and F =
Am. We then define the multiplication operation · : ω(2) → ω such that
m · n =def Mm(n). So m · 0 = 0 and m · (1 + n) = m+m · n, which is as it
should be.

Theorem 6.7. For every n ∈ ω, 1 · n = n.

Exercise 6.5. Prove Theorem 6.7.

With more time and ambition, one can also prove the familiar Five Laws
of Arithmetic (hereafter we omit the ‘·’ for multiplication):

Commutativity of Addition m+ n = n+m

Associativity of Addition m+ (n+ p) = (m+ n) + p

45 Induction and Recursive Definition

Commutativity of Multiplication mn = nm

Associativity of Multiplication m(np) = (mn)p

Distributivity of Multiplication Over Addition m(n+p) = mn+mp

Exercise 6.6. Prove the commutativity of addition.

Exercise 6.7. Use RT to define the exponentiation operation m ? n cus-
tomarily written mn. (Hint : define m?n to be Em(n) where Em(0) = 1 and
Em(suc(n)) = m ·Em(n). That is, as with + and ·, start by holding m fixed.
The heart of the problem is to correctly identify the appropriate values of X,
x, and F to use in applying RT.) This definition should establish the first
two of the following three general properties of exponentiation:

1. m0 = 1

2. m1+n = m(mn)

3. mn+p = (mn)(mp)

Note that the second is a special case of the third, which is called the Law
of Exponents.

6.3.3 The Infinitude of the Natural Numbers

Everyone knows that there is an infinite number of natural numbers, but
what exactly does that mean? A set is called finite if it is in one-to-one
correspondence with a natural number, and infinite otherwise. A set is
called Dedekind infinite if it is in one-to-one correspondence with a proper
subset of itself. On the basis of the assumptions we’ve made so far about
sets, it’s possible to prove (see Chapter 7) that any Dedekind-infinite set
is infinite.3 Since we already know that ran(suc) = ω \ {0}, we could then
show ω is infinite if we could show that suc : ω → ω is injective. This is of
course the case; a sketch of a proof follows.

First, we define a set A to be transitive iff every member of a member
of A is itself a member of A. It is easy to see that all three of the following
conditions on a set A are equivalent to transitivity:

1. (
⋃
A) ⊆ A;

3To prove the converse, however, we need an additional assumption, viz. the Choice
assumption (AC, Chapter 7). AC also enables us to prove that ω is a ‘smallest’ infinite set,
in the sense of being in one-to-one correspondence with a subset of any other infinite set.

46 Induction and Recursive Definition

2. every member of A is a subset of A; and

3. A ⊆ ℘(A).

The proof that suc is injective requires a couple of preliminary results:

Lemma 6.8. If A is transitive, then
⋃
s(A) = A.

Proof. We use the (easily proved) general fact about union that⋃
(x ∪ y) =

(⋃
x
)
∪
(⋃

y
)

and reason as follows: ⋃
s(A) =

⋃
(A ∪ {A})

= (
⋃
A) ∪ (

⋃
{A})

= (
⋃
A) ∪A

= A

The last step follows from the fact that
⋃
A ⊆ A for transitive A.

Lemma 6.9. Every natural number is transitive.

Exercise 6.8. Prove Lemma 6.9.

Theorem 6.10. suc is injective.

Proof. Suppose suc(m) = suc(n). Then
⋃

suc(m) =
⋃

suc(n). But m and
n are transitive (by Lemma 6.9), so (by Lemma 6.8)

⋃
suc(m) = m and⋃

suc(n) = n. Therefore m = n.

As noted above, the infinitude of ω is a corollary of this.

6.3.4 The Well-Ordering of ω

We now have the resources to establish that the relation ≤ on ω is an order,
indeed a well-ordering (i.e. a chain such that every nonempty subset of ω has
a least member). Given how obvious this seems, the argumentation required
is surprisingly intricate and too long to reproduce in full detail here, so we
content ourselves with an outline, including key lemmata and proof sketches.

Recall that by definition m < n iff m ∈ n, and m ≤ n iff m < n or
m = n.

47 Induction and Recursive Definition

Theorem 6.11. For all n ∈ ω, n = {m ∈ ω | m < n}.

Proof. To show inclusion, suppose m ∈ n. Since ω is transitive, m ∈ ω. Then
m < n. To show the reverse inclusion, suppose m < n. Then by definition,
m ∈ n.

Lemma 6.12. For all m,n ∈ ω, m < suc(n) iff m ≤ n.

Proof. We have

m < suc(n)

iff m ∈ suc(n)

iff m ∈ n ∪ {n}
iff m ∈ n or m ∈ {n}
iff m ∈ n or m = n

iff m ≤ n .

Lemma 6.13. For all m,n ∈ ω, m ∈ n iff suc(m) ∈ suc(n).

Proof. For the only-if direction, assume suc(m) ∈ suc(n). Then suc(m) <
suc(n), so by Lemma 6.12, suc(m) ≤ n, i.e. either suc(m) ∈ n or suc(m) =
n. If suc(m) ∈ n, then m ∈ suc(m) ∈ n, so m ∈ n by transitivity. Otherwise
suc(m) = n; but suc(m) = m∪{m}, from which it follows easily that m ∈ n.

For the if direction, we use PMI. Let

T = {n ∈ ω | ∀m ∈ n(suc(m) ∈ suc(n))} .

It is sufficient to show that T is inductive.

Exercise 6.9. Complete the proof of Lemma 6.13 by showing that T is
inductive.

Lemma 6.14. For all n ∈ ω, n /∈ n.

Proof. This is another inductive proof. Let T = {n ∈ ω | n /∈ n}. It suffices
to show that T is inductive. The base case is trivial, and the inductive step
is an easy consequence of Lemma 6.13.

Theorem 6.15. < is transitive, irreflexive, and connex.

48 Induction and Recursive Definition

Proof. Transitivity follows readily from Lemma 6.9 and irreflexivity from
Lemma 6.14. Connexity is proved inductively, by showing that the set

T = {n ∈ ω | ∀m ∈ ω(m 6= n→ (n ∈ m ∨m ∈ n))}

is inductive.

Exercise 6.10. Complete the proof of Theorem 6.15 by proving that T is
inductive. (Hint : for the inductive step, use Lemmas 6.12 and 6.13.)

As two easy consequences of this theorem, we have the following:

Corollary 6.16. For all m,n ∈ ω, m ∈ n iff m (n.

Corollary 6.17. ≤ is a chain.

And finally:

Theorem 6.18. ≤ is a well-ordering.

Proof. Suppose A ⊆ ω has no least element. It suffices to show A = ∅. To
this end, let B be the set of all natural numbers n such that no natural
number less than n belongs to A. All that is required is to show B is
inductive.

Exercise 6.11. Complete the proof of Theorem 6.18 by showing that B is
inductive. (Hint : use Lemma 6.12 in the inductive step.)

6.4 Transitive Closure and Reflexive Transitive Clo-
sure

Let R be a binary relation on A. Then informally, the transitive closure
of R, written R+, transitive closure is usually ‘defined’ as follows: For all
n ∈ ω, recursively define h(n) by h(0) = idA and h(n+ 1) = h(n) ◦R. Then
R+ =def

⋃
n>0 h(n).4 We leave as an exercise the formal justification of

this definition using RT. Similarly, the reflexive transitive closure of R,
written R∗, is

⋃
n∈ω h(n). Note that R∗ = R+ ∪ idA.

Exercise 6.12. Use RT to give a correct definition of the function h used
in the definition of transitive closure.

4Note that if f : A → B, we write
⋃

x∈A f(x) for
⋃

ran(f). Also,
⋃

n>0 abbreviates⋃
n∈ω\{0} and

⋃
i<n abbreviates

⋃
i∈n.

49 Induction and Recursive Definition

Lemma 6.19. For any binary relation R on a set A, R+ is transitive.

Exercise 6.13. Prove Lemma 6.19.

Theorem 6.20. The transitive closure of R is the intersection of all the
transitive relations of which R is a subset, i.e.

R+ =
⋂{

S ⊆ A(2) | R ⊆ S and S is transitive
}
.

6.5 Replacement and Strong Recursion

It turns out that the RT is not as powerful as we might like. For example,
for some set U , suppose we wish to define a function with domain ω such
that f(0) = U and for each n ∈ ω, f(suc(n)) =

⋃
f(n). Precisely such a

function is employed in the standard definition of the transitive closure of U :

T (U) =def

⋃
n∈ω

f(n) .

Unfortunately, the RT as presently formulated doesn’t enable us to define
such an f recursively, since there is evidently no guarantee that there is a
set X to which all the f(n) belong. Similarly, our RT doesn’t enable us to
define a function g with domain ω such that g(0) = u and for each n ∈ ω,
g(suc(n)) = ℘(f(n)). Essentially, the problem is that axiomatic concepts
like union and powerset are not functions but in many ways act as if they
were.

To solve these and similar problems, we need a stronger version of RT
that takes as its point of departure not necessarily a function (the one that is
applied at each step of the recursive definition), but rather a weaker notion of
a functional condition. Suppose φ[x, y] is a condition with x and y among
its free variables. Then φ[x, y] is called x, y-functional provided, for every
x, there is a unique y such that φ[x, y] holds. Significantly, this does not
require that there be a function f such that φ[x, y] holds iff y = f(x). For
example, φ[x, y] could be the condition y =

⋃
x or the condition y = ℘(x).

Then we can assume the following:

Assumption 8 (Replacement). Let φ[x, y] be x, y-functional and A any set.
Then there is a set whose members are those y such that φ[x, y] holds for
some x ∈ A.

Note that, as for Separation, the Replacement assumption is actually a
schema of assumptions, with one assumption for each choice of the functional

50 Induction and Recursive Definition

condition φ[x, y]. Informally, Replacement says that if we replace each
member of a set by something that the member is related to by a functional
condition, the result is also a set.

With this new assumption in place, we can state a generalized version of
RT, called the Strong Recursion Theorem (SRT):

Theorem 6.21 (Strong Recursion Theorem). Let φ[x, y] be x, y-functional
and A a set. Then there is a function h with domain ω such that

1. h(0) = A, and

2. for every n ∈ ω, φ[h(n), h(suc(n))].

A proof of Theorem 6.21 is given by Abian (1965).

Theorem 6.22. For any set U , T (U) is transitive.

Exercise 6.14. Prove Theorem 6.22.

Theorem 6.23. For every transitive set T with U ⊆ T , T (U) ⊆ T , i.e.,
T (U) is the smallest transitive set containing U .

Exercise 6.15. Prove Theorem 6.23.

6.6 Hasse Diagrams

A Hasse diagram is a kind of textual (paper or blackboard) diagrammatic
representation of a preorder v on a set A, made up of dots and straight
line segments directly connecting two dots (here “directly” means there are
no dots on the line segment other than the two being connected). The line
segments are of two kinds:

1. Nonhorizontal (i.e. either slanting or vertical) single line segments, and

2. Horizontal double line segments.

The interpretation is as follows: the dots represent the members of A; if
(the dots representing) b and a are connected by a single nonhorizontal line
segment and b is higher (on the page or board) than a, then a�b; and if a and
b are connected by a horizontal double line segment, then a and b are tied ,
i.e. a v b and b v a. (So if v is an order, there will be no horizontal double
line segments.) Figure 6.1 shows a simple example of a Hasse diagram.

Any finite preorder can be represented by a Hasse diagram, but not every
infinite one can. (There can be infinite Hasse diagrams, but there is not

51 Induction and Recursive Definition

d

b c

a

Figure 6.1: Hasse diagram of the reflexive transitive closure of the relation
{〈a, b〉 , 〈b, c〉 , 〈c, b〉 , 〈b, d〉 , 〈c, d〉} on the set {a, b, c, d}.

enough time to draw all of one! Sometimes the gist of an infinite Hasse
diagram can be conveyed with judicious use of ellipsis (‘and so on’) dots,
though.) For antisymmetric preorders (i.e. orders) the property of being
representable by a Hasse diagram is easy to express precisely in set-theoretic
terms: it is the property of being the reflexive transitive closure of its own
covering relation. It can be shown (though the details are a bit tedious) that
any finite order has this property.

Exercise 6.16. Draw Hasse diagrams to show that it is possible for:

1. An order to have a unique maximal element but no top;

2. An order to have more than one maximal element but no top;

3. A preorder to have more than one top;

4. An order to have no maximal element.

Exercise 6.17. Draw a Hasse diagram for the subset-inclusion order on the
set ℘(3).

Chapter 7

Infinities

7.1 Equinumerosity

Two sets A and B are said to be equinumerous, written A ≈ B, iff there
is a bijection from A to B. It follows that a set is finite iff it is equinumerous
with a natural number and infinite otherwise.

It is easy to show that equinumerosity is an equivalence relation on the
powerset of any set. It is not hard to show that for any set A, ℘(A) ≈ 2A;
the bijection in question maps each subset of A to its characteristic function
(with respect to A).

Intuitively speaking, equinumerosity may seem to amount to ‘having the
same number of members.’ As we soon will see, this intuition is essentially
on the mark in the case of finite sets. But when the sets involved are infinite,
intuition may fail us. For example, all the following sets can be shown to be
(pairwise) equinumerous: ω, ω × ω, the set Z of integers, and the set Q of
rational numbers.1

Not all infinite sets are equinumerous! To put it imprecisely but sug-
gestively, there are different sizes of infinity. For example, as Cantor fa-
mously proved, ω 6≈ I, where I is the set of real numbers from 0 to 1.
It is beyond the scope of this book to consider how the real numbers are
modeled set-theoretically, but for our purposes it will suffice to think of
I as the set of ‘decimal expansions,’ i.e. the set of functions from ω to
10 (= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) excluding the ones which for some natural

1Actually proving all these things would of course require us to model ‘the integers’
and ‘the rationals’ as sets. There are standard ways of doing that, but limitations of space
and time prevent us from spelling them out here.

52

53 Infinities

number n assign 9 to every natural number greater than or equal to n.2 The
proof is surprisingly simple: suppose f is an injection from ω to I. Then
f cannot be a surjection. To see why, let r be the member of I (i.e. the
function from ω to 10) which, for each n ∈ ω, maps n to 6 if f(n)(n) = 5
and maps n to 5 otherwise. A moment’s thought shows that r cannot be in
the range of f !

Theorem 7.1 (Cantor). For any set A, A 6≈ ℘(A).

Proof. Let g be a function from A to ℘(A). We will show g cannot be surjec-
tive, and therefore cannot be bijective. To this end, letB = {x ∈ A | x /∈ g(x)}.
Then obviously B ∈ ℘(A). But B cannot be in the range of g. For suppose
it were. In that case there would exist a y ∈ A such that B = g(y). But then
y ∈ B iff y /∈ g(y). In other words, y ∈ B iff y /∈ B, a contradiction.

7.2 Dedekind Infinity

As mentioned in §6.3.3, a set is said to be Dedekind infinite iff it is equinu-
merous with a proper subset of itself. (Contrast this with the definition that
a set is infinite if it is not equinumerous with any natural number.)

Theorem 7.2. No natural number is Dedekind infinite.

Exercise 7.1. Prove Theorem 7.2. (Hint : show that the set whose members
are the natural numbers n such that every injective function from n to n is
bijective is inductive.)

Corollary 7.3. No finite set is Dedekind infinite.

Exercise 7.2. Prove Corollary 7.3.

Corollary 7.4. Every Dedekind infinite set is infinite.

Exercise 7.3. Prove Corollary 7.4.

Is the converse of this corollary true? We will return to this question later
in this chapter.

Corollary 7.5. ω is infinite.

2We can omit these because they have alternative decimal expansions, e.g. .7999 . . .
represents the same real number as .8000 . . .

54 Infinities

Proof. This follows from the preceding corollary (7.4) together with the fact
that the successor function is a bijection from ω to ω \ {0} (see Proposition
6.4 and Theorem 6.10).

Corollary 7.6. No two distinct natural numbers are equinumerous.

Exercise 7.4. Prove Corollary 7.6. (Hint : use the fact that the ≤ order on
ω is connex (Corollary 6.17 and Theorem 6.18), together with the corollary
above (7.5).)

Corollary 7.7. Every finite set is equinumerous with a unique natural
number.

Exercise 7.5. Prove Corollary 7.7.

The unique natural number equinumerous with a finite set A is called the
cardinality of A, written |A|.

Lemma 7.8. If C (n ∈ ω, then C ≈ m for some m < n.

Exercise 7.6. Prove Lemma 7.8. (Hint : show that the set whose members
are those natural numbers n such that any proper subset of n is equinumerous
to a member of n is inductive.)

Theorem 7.9. Any subset of a finite set is itself finite.

Proof. Suppose A is a subset of a finite set B. Let n = |B|, so there is a
bijection f : B → n. Then f [A] ⊆ f [B] = n. So either f [A] = n or f [A] (n.
If f [A] = n, then A ≈ B. If f [A] (n, then by the previous lemma (7.8)
f [A] ≈ m for some m < n.

7.3 Domination, Countability, and Choice

We say a set A is dominated by a set B, written A � B, iff there is an
injection from A to B, or, equivalently, iff A is equinumerous with a subset
of B. If A � B and A 6≈ B, A is said to be strictly dominated by B,
written A � B or A ≺ B.

Exercise 7.7. Show that for any sets A, B, and C,

1. A � A;

2. if A � B and B � C then A � C; and

55 Infinities

3. A � ℘(A) .

Theorem 7.10 (Schröder-Bernstein). For any sets A and B, if A � B and
B � A, then A ≈ B.

We have the resources to prove this, but since the proof is rather involved,
we postpone it to the appendix.

Before continuing, we need to add to our list of assumptions about sets
again (remember our last new assumption was that there is a set whose
members are the natural numbers). To state the new assumption, we first
need a couple of definitions. First, if A is a set, then the nonempty
powerset of A, written ℘ne(A), is just ℘(A) \ {∅}, i.e. the set of nonempty
subsets of A. And second, a choice function for A is a function c :
℘ne(A) → A such that, for each nonempty subset B of A, c(B) ∈ B. The
new assumption is this:

Assumption 9 (Choice). There is a choice function for any set.

It has been proved (by Paul Cohen, in 1963) that Choice is independent
of the other assumptions we have made, in the sense that, if in fact our
other assumptions are consistent, then either one of Choice or its denial
(that some set does not have a choice function) can be added without leading
to inconsistency. But as a practical matter, most working mathematicians
prefer to assume Choice, because there are so many useful theorems that
cannot be proved without it. One such theorem is the following:

Theorem 7.11. If A is infinite, then ω � A.

The proof of this theorem is also deferred to appendix A.

Theorem 7.12 (Dedekind-Pierce). A set is infinite iff it is Dedekind infinite.

Proof. The only-if part was proven above in Corollary 7.4. Now suppose A
is infinite. Then ω � A, that is, there is an injection f : ω → A. Now define
a bijection g : A→ A \ {f(0)} as follows: if a ∈ A is not in the range of f ,
then g(a) = a; and if a is in the range of f , so that a = f(n) for some n ∈ ω,
then g(a) = f(n + 1). It is easy to see that g is injective and its range is
A \ {f(0)}.

A set is said to be countable if it is dominated by ω. An infinite countable
set is called denumerable, denumerably infinite, or countably infinite.
A set which is not countable is called uncountable, nondenumerable, or
nondenumerably infinite.

56 Infinities

Corollary 7.13. Any countably infinite set is equinumerous with ω.

Exercise 7.8. Prove Corollary 7.13.

Corollary 7.14. Any infinite subset of ω is equinumerous with ω.

Exercise 7.9. Prove Corollary 7.14.

Exercise 7.10. Prove that ℘(ω) is nondenumerable.

Some standard examples of countably infinite sets are the following: ω,
ω × ω, the positive natural numbers, the even natural numbers, Z (the
integers), and Q (the rationals). The following sets can all be shown to be
equinumerous with ℘(ω): R (the reals), the subset I of R consisting of the
real numbers between 0 and 1 (including 0 and 1), R \Q (the irrationals),
R×R (the plane), and ωω (infinite sequences of natural numbers).

Exercise 7.11. For any set A, the set of A-strings, written A∗, is defined
to be

⋃
n∈ω A

n, and the domain of an A-string is called its length. Show
that if A is nonempty and finite, then A∗ is countably infinite. (Hint : this
means showing there is a bijection from ω to A∗. In practical terms, that
amounts to describing a way of listing all the A-strings without repetitions.)

Now consider the following statement:

Proposition 7.15 (Continuum Hypothesis). There is no set A such that
ω � A � ℘(ω).

This hypothesis has the same status as the assumption of Choice: it can be
proven to be independent of our other assumptions. The same is true of the
following generalized form of the Continuum Hypothesis:

Proposition 7.16 (Generalized Continuum Hypothesis). For any infinite
set B, there is no set A such that B � A � ℘(B).

Chapter 8

Varieties of Set Theory

Could there be a set A with A ∈ A? Nothing we have said rules it out. If
you want to rule it out, here is one way:

Assumption 10 (Foundation). Any nonempty set A has a member none of
whose members is a member of A.

This rules out the existence of a set A such that A ∈ A. To see why,
suppose that B ∈ B and A = {B}. The only member of A is B, but B, by
Assumption 10, has at least one member, namely B itself, which is a member
of A. Foundation likewise rules out C ∈ D ∈ C, because of the following:
letting E = {C,D}, both members of E contain a member of E.

More generally, assuming Foundation, there is no finite sequence A0 · · ·An

with Asuc(i) ∈ Ai, for some i < n, and A0 ∈ An. For we could simply define
A to be ⋃

i<n

{Ai} = {A0, . . . , An} .

Likewise, there is no infinite sequence f : ω → A, for some set A, such that
f(suc(n)) ∈ f(n) for every natural number n.

Exercise 8.1. Let A be any set. Show that there is no f : ω → A such that
f(suc(n)) ∈ f(n) for all n ∈ ω.

None of the material in this book requires Foundation, and some theories
(e.g. situation semantics) explicitly reject it. In fact, situation semantics
uses a different assumption—called the Antifoundation Axiom or AFA—
which is inconsistent with Foundation. We will discuss Antifoundation in
due course (§8.2).

57

58 Varieties of Set Theory

8.1 Zermelo-Fraenkel Set Theory and Variants

The most widely used variety of set theory is Zermelo-Fraenkel set theory ,
or ZF , which consists of the following axioms:

Extensionality (our Assumption 1)

Empty set (our Assumption 2)

Pairing (our Assumption 3)

Union (our Assumption 4)

Powerset (our Assumption 5)

Separation (our Assumption 6)

Natural Numbers (our Assumption 7)

Replacement (our Assumption 8)

Foundation (our Assumption 10)

The Natural Numbers assumption is sometimes called the Axiom of Infinity ;
the Separation assumption is also known as the Subset assumption. And the
Foundation assumption is also referred to as the Axiom of Regularity .

Another axiom we will consider is Choice (our Assumption 9). Like
Foundation, Choice is independent of ZF (this fact was proved by Paul
Cohen in 1963). Some popular combinations include the following.

ZF− ZF minus Foundation (Assumptions 1–8)

ZFC ZF plus Choice (Assumptions 1–10)

ZFC− ZF− plus Choice (Assumptions 1–9)

The variant of ZF used in this book is ZFC−. Situation semantics uses ZFC−

plus Antifoundation, which we now introduce.

8.2 Antifoundation

8.2.1 Preliminaries

Definition 8.1 (Directed Graph). A directed graph is an ordered pair
G = 〈G,−→〉 where G is a set (the nodes of G) and −→ ⊆ G × G (the
edges of G). So a directed graph is just a set with a binary relation.

59 Varieties of Set Theory

Figure 8.1: Pictures of 2.

If n −→ n′, we say that n′ is a child of n (in G). A path from n to n′ (in
G) is a string of nodes n0 · · ·nm (for some m ∈ ω) such that

1. For all i < m, ni −→ nsuc(i),

2. n0 = n, and

3. nm = n′.

We say that n′ is accessible from n (in G) provided there is a path from
n to n′, or, equivalently, if n −→+ n′, recalling from §6.4 that −→+ is the
transitive closure of −→.

Definition 8.2 (Pointed Graph). A pointed graph is an ordered pair
〈G, n〉 where G is a directed graph 〈G,−→〉 and n ∈ G. We call n the point
of the pointed graph.

A pointed graph is called accessible, or an apg provided every node is
accessible from n.

We can use apgs as pictures of sets. First, the intuition:

is a picture of 0,

is a picture of 1, and both of the pictures in Figure 8.1 are pictures of 2. If
there were a set Ω where Ω = {Ω}, this would be a picture of it:

Now the formalities.

60 Varieties of Set Theory

1

2

∅

(a) Canonical picture of 2.
∅

1

2
∅

(b) A noncanonical picture of 2.

Figure 8.2: Decorated pictures of 2.

Definition 8.3 (Decoration). A decoration of a graph G = 〈G,−→〉 is a
function ∆ : G→ A, for some set A, such that for every node n ∈ G,

∆(n) =
{
x ∈ A | ∃n′(x = ∆(n′) ∧ n −→ n′)

}
,

i.e. ∆(n) is the set of all the ∆(n′) for n′ a child of n.

Definition 8.4 (Picture). An apg G = 〈G,−→, n〉 is a picture of a set A
iff there is a decoraction ∆ of 〈G,−→〉 such that ∆(n) = A.

Examples The apg

is a picture of 0 because there is a decoration

∅

Recalling that 1 = {∅}, the apg

is a picture of 1:

∅1

And recalling that 2 = suc(1) = 1∪{1}, the apgs in Figure 8.2 are (decorated)
pictures of 2 (compare these with the apgs in Figure 8.1).

Theorem 8.1. Every set has a picture.

Proof. Let S be a set and G = 〈G,−→, n〉 the apg such that G = {S} ∪
T (S) (recalling from §6.5 that T (S) is the transitive closure of S), −→ =
{〈x, y〉 ∈ G×G | y ∈ x}, and n = S. Let A = G and ∆ : G→ A such that
∆ = idG. Trivially ∆ is a decoration of G with ∆(n) = S, so by definition, G
is a picture of S.

61 Varieties of Set Theory

...

Figure 8.3: Apgs ruled out by Foundation.

The picture of S constructed in the theorem is called the canonical picture
of S.

A set can have more than one picture, e.g. the pictures of 2 in Figure 8.2.
The picture in Figure 8.2a is the canonical picture of 2; the one in Figure
8.2b is noncanonical. What about the apgs in Figure 8.3? Foundation rules
these out as pictures of sets. But suppose we reject Foundation and replace
it with the following:

Assumption 11 (Antifoundation (AFA)). Every graph has a unique deco-
ration.

Consequences of AFA:

• Every apg is a picture of a unique set.

• There are nonwellfounded sets, i.e. sets A such that there are infinite
sequences A0, A1, . . . with A0 = A and Asuc(n) ∈ An for every n ∈ ω.

• There is a set called Ω whose canonical picture is the following:

Exercise 8.2. What is the canonical picture of 3?

Exercise 8.3. Assuming AFA, give the canonical pictures of all sets {x, y} =
x ∪ y.

62 Varieties of Set Theory

Exercise 8.4. Assuming AFA, prove that an apg is a picture of Ω iff every
node has a child.

In situation semantics, nonwellfounded sets are used to model the mean-
ings of paradoxical sentences like

This sentence is false.

See Aczel 1988 for more discussion of nonwellfounded sets. One last point:
we can never show that ZF− plus AFA (or ZFC− plus AFA) is consistent.
But it can be shown that they are consistent if ZF is!

Chapter 9

Introduction to Formal
Languages

It is a familiar and basic intuition that language somehow involves stringing
things together. Examples include stringing phonemes together to form syl-
lables or (phonologies of) morphemes, stringing morphemes together to form
words, stringing words together to form phrases (including sentences), and
stringing sentences together to form discourses. Indeed, in the early days of
syntactic theory (early to mid 1950s), natural languages were modeled as sets
of strings, and the notion of a grammar was identified with a mathematical
device for listing the members of such sets. But what exactly is a string?

9.1 Strings

As we saw in Chapter 6, for every natural number n,

n = {m ∈ ω | m < n} .

Let us now consider, for some set A and some n ∈ ω, the set An, i.e. the set
of arrows (functions with specified codomains) from n to A. The members of
this set are called the A-strings of length n. In a linguistic application, we
would think of the members of A as linguistic entities of some kind (phonemes,
morphemes, words, etc.) that we would like to be able to string together,
and of a particular A-string of length n > 0, f , as one of the possible results
of stringing n such entities together, namely the one starting with f(0), then
f(1), then f(2), etc. If f(i) = ai for all i < n, then we usually denote f by
the string (in the informal sense) of symbols a0 · · · an−1. (But in working
with strings, it is important to remember that, technically, a string is not

63

64 Introduction to Formal Languages

really a bunch of symbols lined up from left to right on a page, but rather a
function whose domain is a natural number.) Also, it’s important to note
that there is exactly one A-string of length 0, denoted by εA (or just ε when
no confusion is possible).1 The set of all A-strings of length greater than 0 is
denoted by A+.

For strings of length 1, a mild notational confusion arises: if f : 1→ A
and f(0) = a, then the notation ‘a’ could refer to either a itself (a member
of A), or to the length-one A-string f . It should be clear from context which
is intended. Note also that an A-string of length one is the same thing as a
nullary operation on A.

The ‘infinite counterpart’ of an A-string is called an infinite A-se-
quence; technically, an infinite A-sequence is a function from ω to A.

The set of all A-strings, i.e. the union of all the sets An, for all n ∈ ω, is
written A∗. Thus A∗ = A+ ∪ {εA}. When the identity of the set A is clear
from context, we usually speak simply of strings, rather than A-strings. It
should be obvious that there is a function from A∗ to ω that maps each string
to its length, and that the relation on strings of having the same length is
an equivalence relation. Of course the sets in the partition induced by that
equivalence relation are just the sets An. If A is a subset of another set B,
then clearly there is an injection η : A∗ → B∗ that maps each A-string to a
B-string just like it except that its codomain is B instead of A.

For each n ∈ ω, there is an obvious bijection from A(n) to An. For n ≥ 2,
the bijection maps each n-tuple 〈a0, . . . , an−1〉 to the string a0 · · · an−1. For
n = 1, it maps each a ∈ A to the length-one string that maps 0 to a; and for
n = 0, it is the (only) function from 1 to {εA}, i.e. the function that maps 0
to εA.

The binary operation of concatenation on A∗, written _, can be
described intuitively as follows: if f and g are strings, then f _ g is the
string that ‘starts with f and ends with g.’ More precisely, for each pair of
natural numbers 〈m,n〉, if f and g are strings of length m and n respectively,
then f _ g is the string of length m+ n such that

1. (f _ g)(i) = f(i) for all i < m ; and

2. (f _ g)(m+ i) = g(i) for all i < n .

1In Chapter 3, we called this ♦A, but the name εA is more usual when we are thinking
of it as a string.

65 Introduction to Formal Languages

It can be proven inductively (though the details are quite tedious) that for
any strings f , g, and h, the following equalities hold:2

(f _ g) _ h = f _ (g _ h)

f _ ε = f = ε _ f

Usually concatenation is expressed without the “_,” by mere juxtaposition;
e.g. fg for f _ g. And because concatenation is an associative operation,
we can write simply fgh instead of f(gh) or (fg)h.

Exercise 9.1. Suppose A is finite and nonempty. Prove that the set of A-
languages is nondenumerable. You can use any of the theorems or corollaries
stated in Chapter 7, even if their proofs were not given.

9.2 Formal Languages

A formal (A-)language is defined to be a subset of A∗. But when it is clear
that we are talking about formal languages rather than natural languages, we
will usually just speak of an A-language, or simply a language if the identity of
A is clear from the context. In the most straightforward application of formal
languages to linguistics, we mathematically model a natural language as a
set of A-strings, where A is a set each of whose members is (a representation
of) one of the words of the natural language in question. Of course this is
a very crude model, since it disregards any linguistic structure a sentence
has other than the temporal sequence of the words themselves. Additionally,
once one speaks of a sentence as a string of words, one is immediately faced
with the question of what counts as a word, or, to put it another way, what
criterion of identity one is using for words. Is it enough to be homophonous
(i.e. to sound the same), so that meat and meet count as the same word? Or
to be homographic (written the same), so that row ‘linear array’ and row
‘fight’ count as the same word? Or must two words have the same sound,
meaning, and ‘part of speech’ (whatever we think that is), so that murder
counts as two words (one a noun and one a verb)? We will return to these
and related questions in later chapters.

2As we will see later, the truth of these equations means that A∗ together with the
nullary operation ε and the binary operation _ is an instance of a kind of algebra called a
monoid; i.e.

1. _ is an associative operation, and

2. ε is a two-sided identity for _.

66 Introduction to Formal Languages

For the time being, we set such issues aside and assume we know what we
mean by a ‘word.’ Assuming that, we can begin theorizing about questions
such as the following: How many sentences (qua word strings) does the
language have? Is there a way to list all its members? Is there a way to
decide whether a given word string is a sentence of the language? Can we
construct a plausible model of the process by which people who know the
language recognize that a given string is a sentence of the language? Can the
processing model somehow be extended to a model of how language users
interpret utterances in context?

In order to address such questions, we need some techniques for defin-
ing formal languages. Since natural languages uncontroversially have an
infinitude of sentences (how do you know?), it will not do to just make
a list of A-strings. In due course we’ll consider various kinds of formal
grammars—mathematical systems for specifying formal languages—but
we already have a powerful tool for doing just that, namely the Recursion
Theorem (RT). One important way RT is used to specify an A-language L is
roughly as follows: we start with

1. A set L0 of A-strings which we know to be in the A-language we wish
to define, and

2. A general method for adding more strings to any arbitrary set of strings,
i.e. a function F from A-languages to A-languages.

We can think of L0 as the ‘dictionary’ of the language we are trying to define
and F as its ‘rules.’ We then define L as the union of the infinite sequence of
languages L0, . . . , Ln, . . . where for each k ∈ ω, Lk+1 is the result of applying
F to Lk.

We now give a simple example of a recursive definition for a language.
Intuitively, a mirror image string in A is one whose second half is the reverse
of its first half. Informally, we define the language Mir(A) as follows:

1. εA ∈ Mir(A) ;

2. if x ∈ Mir(A) and a ∈ A, then axa ∈ Mir(A) ;

3. nothing else is in Mir(A) .

Formally, this definition is justified by the RT as follows (here X, x, and F
are as in the statement of RT in Chapter 6) we take X to be ℘(A∗), x to be
{ε}, and F : ℘(A∗)→ ℘(A∗) to be the function such that for any A-language
S,

F (S) = {y ∈ A∗ | ∃a∃x[a ∈ A ∧ x ∈ S ∧ y = axa]} .

67 Introduction to Formal Languages

RT then guarantees the existence of a function h : ω → ℘(A∗) such that
h(0) = {ε} and for every n ∈ ω, h(suc(n)) = F (h(n)). Finally, we define
Mir(A) to be

⋃
n∈ω h(n). Intuitively, h(n) is the set of all mirror image

strings of length 2n.

9.3 Operations on Languages

Let A be a set, so that A∗ is the set of A-strings, ℘(A∗) is the set of A-
languages, and ℘(℘(A∗)) is the set whose members are sets of A-languages.

We introduce the following notations for certain particularly simple
A-languages:

1. For any a ∈ A, a is the singleton A-language whose only member is
the string of length one a (remember this is the function from 1 to A
that maps 0 to a).

2. ε is the singleton A-language whose only member is the null A-string
(i.e. the unique arrow from 0 to A, a. k. a. εA). An alternative notation
for this language is IA.

3. ∅ as always is just the empty set, but for any A we can also think
of this as the A-language which contains no strings! An alternative
notation for this language is 0A.

Next, we define some operations on ℘(A∗). In these definitions, L and
M range over A-languages.

1. The fusion of L and M , written L •M , is the set of all strings of the
form u _ v where u ∈ L and v ∈M .

2. The right residual of L by M , written L/M , is the set of all strings
u such that u _ v ∈ L for every v ∈M .

3. The left residual of L by M , written M \L, is the set of all strings u
such that v _ u ∈ L for every v ∈M .

4. The Kleene closure of L, written kl(L), has the following informal
recursive definition (formalizing this definition will be the subject of
exercise 9.2):

(a) (Base clause) ε ∈ kl(L);

(b) (Recursion clause) if u ∈ L and v ∈ kl(L), then uv ∈ kl(L); and

68 Introduction to Formal Languages

(c) nothing else is in kl(L).

To put it even less formally but more intuitively: the Kleene closure of
L is the language whose members are those strings that result from
concatenating together zero or more strings drawn from L.

5. The positive Kleene closure of L, written kl+(L), has the following
informal recursive definition:

(a) (Base clause) If u ∈ L, then u ∈ kl+(L);

(b) (Recursion clause) if u ∈ L and v ∈ kl+(L), then uv ∈ kl+(L);
and

(c) nothing else is in kl+(L).

Intuitively: the positive Kleene closure of L is the language whose
members are those strings that result from concatenating together one
or more strings drawn from L.

Exercise 9.2. Given an A-language L, use RT to formally define kl(L).
More specifically, read the statement of RT and then tell how X, x, and F
must be instantiated so that the function h whose existence is guaranteed by
RT has the property that kl(L) is the union of all the languages h(n), where
h(0) is x and for each k ∈ ω, h(k + 1) is F (h(k)). (Hints: (a) The base
clause in the informal definition should tell you what x has to be, and the
recursion clause should tell you what F has to be. (b) Another informal, but
perhaps more helpful way to define kl(L) is as the union of all the languages
kln(L), where

• kl0(L) = IA; and

• klk+1(L) = L • klk(L) for all k ∈ ω.)

Exercise 9.3. In propositional logic (PL), we have

1. A formal language PL whose strings are called (PL-)formulas , together
with

2. A semantics , i.e. a function from PL to some other set whose members,
called propositions, are thought of as the meanings expressed by the
formulas, and

3. A proof theory , which is a precise way of formalizing what it means for
one formula to follow from one or more other formulas.

69 Introduction to Formal Languages

For now we’re concerned only with the language PL itself. We assume given
a set Let whose members are usually called propositional letters. Informally,
the set of formulas is defined as follows:

1. (The length-one string corresponding to) each propositional letter is a
formula;

2. (The length-one strings corresponding to) > and ⊥ are formulas;

3. If P and Q are formulas, so are (∼ P), (P ∧ Q), (P ∨ Q), (P ⊃ Q),
and (P ↔ Q); and

4. Nothing else is a formula.

It’s important to be aware that what we are talking about here are formulas
(which are strings), and not the propositions (whatever they are) that the
formulas express. For example, in the informal definition, when we write
“(∼ P)” we mean the string obtained by concatenating together the following
symbols in the specified order:

1. The left-paren symbol (;

2. The negation symbol ∼;

3. The symbols in the string P ; and finally

4. The right paren symbol).

The problem is to define PL formally, using RT. As you should realize by
now, this means telling how X, x, and F in the statement of RT should be
instantiated. To keep things simple, suppose the only propositional letters
are X, Y , and Z. (Hints : (a) Clauses 1 and 2 are the bases clauses and clause
3 is the recursion clause. (b) After you think you have the right definition,
check to make sure it makes ((X ∧ Y) ∧ Z) a formula. If it doesn’t, you’ll
need to revise your definition.)

9.4 Regular Languages

Linguists are often concerned not just with languages, but with sets of
languages, e.g. the set of finite languages, the set of decidable languages
(languages for which an algorithm exists that tells for any given string whether
it is in the language), the set of recursively enumerable languages
(languages for which an algorithm exists for listing all its strings while not

70 Introduction to Formal Languages

listing any strings not in the language), etc. In computational linguistics
applications, one of the most important sets of languages is (for a fixed
alphabet A) the set Reg(A) of regular A-languages. As with many other
important sets of languages, there are several different ways to define this
set, all of which give the same result. For our purposes, the simplest way is
a recursive definition. The informal version runs as follows:

1. For each a ∈ A, a ∈ Reg(A) ;

2. 0A ∈ Reg(A) ;

3. IA ∈ Reg(A) ;

4. For each L ∈ Reg(A), kl(L) ∈ Reg(A) ;

5. For each L,M ∈ Reg(A), L ∪M ∈ Reg(A) ;

6. For each L,M ∈ Reg(A), L •M ∈ Reg(A) ; and

7. Nothing else is in Reg(A).

Note that in this definition, the first three clauses are base clauses and the
next three are recursion clauses.

Exercise 9.4. Formalize this definition of Reg(A) using RT. (Hint : remem-
ber that we are defining not a language, but rather a set of languages, and
therefore the choice of X (as in the statement of RT in Chapter 6) is not
℘(A∗), but rather ℘(℘(A∗))).

Exercise 9.5. In autosegmental-metrical (AM) theory, the phonological
structure of the intonation of an English expression is represented by a string
of tones.3 (The question of how such a string is realized as a ‘tune’ (pitch
contour) is a matter of phonetics, which doesn’t concern us here.)

In one version of this theory, the set of tones has eleven members:

A =
{

H∗, L∗, L∗ + H, L + H∗,H−, L−,H%, L%
}

Note that each of these eleven elements is to be thought of as a single member
of the tonal ‘alphabet,’ no matter how many symbols it is written with. Of

3The sense of the term tone here is ‘minimal unit of intonational phonology.’ This
is distinct from the notion of tone in the sense of pitch levels or contours within words
that function as part of the word phonology and distinguish words from each other,
e.g. Mandarin ma [high level] ‘mother’ vs. ma [high-falling-to-low] ‘scold’.

71 Introduction to Formal Languages

these, the first four are called pitch accents (PAs),4 the next two are called
intermediate-phrase final boundary tones (IFBTs); and the last two
are called final boundary tones (FBTs).

Certain sets of tone strings are defined informally as follows:

1. An intermediate phrase consists of one or more PAs followed by an
IFBT.

2. An intonation phrase consists of one or more intermediate phrases
followed by an FBT.

3. An utterance consists of one or more intonation phrases.

The problem is to formally define each of the following as regular languages:

1. The language IP of intermediate phrases;

2. The language IN of intonation phrases; and

3. The language UT of utterances.

You do not need to prove anything, you do not need to use RT, and you do
not need to use PMI. All you need to do is express each of the these three
languages in terms of

1. The eight tones;

2. The underscore (that maps each tone to the singleton language whose
only string is the length-one string of that tone);

3. The empty language ∅;

4. the singleton language I whose only member is the null string; and

5. The operations union (∪) of languages, fusion (•) of languages, Kleene
closure (kl), and positive Kleene closure (kl+).

Note: the fact that this is possible means that these languages are all regular.
(Hint : You will not necessarily need to use all the available operations.
Parentheses cannot be used to express optionality; you will have to express
it some other way.)

4The asterisks in the notation for the pitch accents have nothing to do with the asterisk
of formal language theory. Instead, they designate a tone (or part of a tone) that has to
be associated with an accented syllable.

72 Introduction to Formal Languages

9.5 Context-free Languages

Context-free grammars (CFGs) are a particular way of defining languages
recursively that is very widely used in syntactic theory; in one form or an-
other, CFGs play a central role in a wide range of syntactic frameworks (here
‘framework’ means, roughly, a research paradigm or community), including,
to name just a few, all forms of transformational grammar (TG); many kinds
of categorial grammar (CG); lexical-functional grammar (LFG); generalized
phrase structure grammar (GPSG); and head-driven phrase structure gram-
mar (HPSG). In due course it will emerge that CFGs are a rather blunt
instrument for modeling natural languages, but they are a good point of
departure in the sense that they can be elaborated, refined, and adapted in
many ways (some of which we will examine closely) that make them more
suitable for this task.

9.5.1 Intuitions

The basic idea behind CFGs is to simultaneously recursively define a finite
set of different languages, each of which constitutes a set of strings that
have the same ‘distribution’ or ‘privileges of occurrence’ or ‘combinatory
potential’ in the whole language being defined, which is the union of that
set of languages. The languages in that family are called the syntactic
categories of the whole language.

Getting technical, a CFG consists of four things:

1. A finite set T whose members are called terminals;

2. A finite set N whose members are called nonterminals;

3. A finite set D of ordered pairs called lexical entries, each of which
has a nonterminal as its left component and a terminal as its right
component,5 and

4. A finite set P of ordered pairs called phrase structure rules (or
simply PSRs), each of which has a nonterminal as its left component
and a non-null string of nonterminals as its right component.6

5Formal language theorists usually allow any T -string as the right component of a
lexical entry, but we will not need this generality for our applications.

6Formal language theorists usually allow any (N ∪ T)-string containing at least one
nonterminal as the right component of a PSR, but again this generality goes beyond the
needs of our linguistic applications.

73 Introduction to Formal Languages

Intuitively, the terminals are the words (or word phonologies, or word
orthographies—see above) of the language under investigation. The nonter-
minals are names of the syntactic categories. The lexical entries make up the
dictionary (or lexicon) of the language. And the PSRs provide a mechanism
for telling which strings (other than length-one strings of words) are in the
language and what syntactic categories they belong to. Once all this is made
more precise, the CFG will specify, for each nonterminal A, a T -language
CA, and the language defined by the CFG will be the union over all A ∈ N
of the CA. We’ll make all this precise in two stages, first using an informal
recursive definition (the usual kind), and then a more informal or ‘official’
definition employing the Recursion Theorem (RT).

9.5.2 Informal Definition

First, the informal version. As with all recursive definitions, a CFG has a
base part and a recursion part. The base part makes use of the lexicon D
and the recursion part uses the set P of PSRs. Starting with the lexicon,
remember that formally a lexical entry is an ordered pair 〈A, t〉 ∈ D ⊆ N×T ;
but formal language theorists usually write entries in the form

A→ t

to express that 〈A, t〉 ∈ D. In the informal recursive definition, the signifi-
cance of a lexical entry expressed as follows:

If A→ t, then t ∈ CA.

That is: for any terminal a which the dictionary pairs with the nonterminal
A, the string a of length one will be in the category which that nonterminal
names.

Note that it is conventional to abbreviate sets of lexical entries with the
same left-hand side using curly brackets on the right-hand side, e.g.

A→ {t1, t2}

abbreviates

A→ t1

A→ t2 .

As mentioned above, the recursive part of the (informal) recursive defi-
nition draws on the set P of PSRs. Technically, a PSR is an ordered pair

74 Introduction to Formal Languages

〈A,A0, . . . , An−1〉 ∈ P ⊆ N × N+, but formal language theorists usually
write

A→ A0 · · ·An−1

to express that 〈A,A0, . . . , An−1〉 ∈ P . In the informal recursive definition,
the significance of a PSR is expressed this way:

IfA→ A0 · · ·An−1 and for each i < n, si ∈ CAi , then s0 · · · sn−1 ∈
CA.

That is: if, for each nonterminal on the right-hand-side of some rule, we
have a string belonging to the category named by that nonterminal, then
the result of concatenating together all those strings (in the same order in
which the corresponding nonterminals appear in the rule) is a member of
the category named by the nonterminal on the left-hand side of the rule.

As with lexical entries, sets of rules with the same left-hand side can be
abbreviated using curly brackets on the right-hand side.

Before going on to the formal, RT-based formulation of CFGs, we illus-
trate the informal version with a ‘toy’ (i.e. ridiculously simplified) linguistic
example.

T = {Fido,Felix,Mary, barked, bit, gave, believed, the, cat, dog, yesterday}
N = {S,NP,VP,TV,DTV,SV,Det,N}

D consists of the following lexical entries:

NP→ {Fido,Felix,Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ believed

Det→ the

N→ {cat, dog}
Adv→ yesterday

P consists of the following PSRs:

S→ NP VP

VP→ {TV NP,DTV NP NP, SV S,VP Adv}
NP→ Det N

75 Introduction to Formal Languages

In this grammar, the nonterminals are names for the syntactic categories of
noun phrases, verb phrases, transitive verbs, sentential-complement verbs,
ditransitive verbs, determiners, and common noun phrases.7 The lexical
entries tell us, for example, that Felix (the length-one word string, not the
word itself) is a member of the syntactic category CNP, and the PSRs tell us,
for example, that the string that results from concatenating two strings, one
belonging to the syntactic category CNP (e.g. Felix) and the other belonging
to the syntactic category CVP (e.g. barked), in that order (in this case, the
length-two string Felix barked), belongs to the syntactic category CS.

9.5.3 Spelling It Out Formally Using Simultaneous Recur-
sion

Finally, we show how to formalize the simultaneous recursive definition of
the syntactic categories associated with a CFG, using the RT. As always
when applying the RT, the key is making the right choice for the three pieces
of data X, x, and F . Since we are defining not a language but rather a
function from nonterminals to languages, the right choice for X is not ℘(T ∗)
but rather ℘(T ∗)N ; x will be a member of this set, and F will be a function
from this set to itself.

So what is x? Intuitively, it should tell us, for each nonterminal A,
which strings are in the syntactic category CA by virtue of the lexicon alone,
i.e. without appealing to the recursive part of the definition (the PSRs).
That is, x is the function that maps each nonterminal A to the set of strings
t (all of which will have length one) such that A → t is one of the lexical
entries.

What about F ? What should be the result of applying F to an arbitrary
function L : N → ℘(T ∗)? Well, for each A ∈ N , we will want F (L)(A) to
contain all the strings that were in L(A), together with any strings that
can be obtained by applying a rule of the form A→ A0 · · ·An−1 to strings
s0 · · · sn−1, where, for each i < n, si belongs to the language that L assigned
to Ai. Another way to say this is that F maps each L to the function that
maps each nonterminal A to the language which is the union of the following
two languages:

1. L(A), and

7The category names are a bit confusing, since the categories of noun phrases, verb
phrases, and common noun phrases are allowed to contain length-one strings (intuitively,
words).

76 Introduction to Formal Languages

2. The union, over all rules of the form A→ A0 · · ·An−1, of the languages
L(A0) • · · · • L(An−1).

Given these values of X, x, and F , the RT guarantees us a unique function
h from ω to functions from N to ℘(T ∗). Finally, for each nonterminal A, we
define the corresponding syntactic category to be

CA =def

⋃
n∈ω

h(n)(A) .

Exercise 9.6. Calculate, for as many values of n as you have patience for,
and for each nonterminal A, the value of h(n+ 1)(A) \ h(n)(A) (that is, the
set of strings that are added to CA at the nth recursive step).

Exercise 9.7. Let T be a finite set. We say a T -language L is context-
free if there exists a CFG 〈T,N,D, P 〉 such that L is one of its syntactic
categories, i.e. L = CA for some A ∈ N .

1. Prove that L = Mir(2) is context-free by presenting a CFG which has
L as one of its syntactic categories.

2. Same problem, but with L = PL, the language of propositional logic
with three propositional letters in exercise 9.3.

Exercise 9.8. Recall that if 〈T,N,D, P 〉 is a CFG, then, in the informal
style of recursive definition, the syntactic categories are defined as follows:

1. (Base Clause) If A→ t ∈ D, then t ∈ CA.

2. (Recursion Clause) If A → A0 · · ·An−1 ∈ P and for each i < n,
si ∈ CAi , then s0 · · · sn−1 ∈ CA.

Now using the toy English grammar discussed above, prove that Mary believed
the cat bit the dog ∈ CS.

Chapter 10

Trees

10.1 Informal Motivation

As we will illustrate presently, given a CFG 〈T,N,D, P 〉, a nonterminal
A ∈ N , and a T -string s ∈ CA, we can use the CFG to guide us in constructing
a proof that s ∈ CA. In fact, as anyone who has taken a course in formal
language theory or computational linguistics will already realize, there are
general procedures for deciding, given any CFG 〈T,N,D, P 〉, any T -string s
and any nonterminal A, whether or not s ∈ CA. Such a procedure is called
a recognizer because it tells, in effect, whether the CFG recognizes a given
string as a member of a given syntactic category. In order to decide correctly
that s ∈ CA, the recognizer essentially must construct a proof that this is
the case. What about making the correct decision when s /∈ CA? For that
to be possible, the recognizer must in some sense ‘know’ when it has gotten
to the point where, had there been a proof that s ∈ CA, it would have found
one; at that point it would render a negative decision. A parser, roughly
speaking, is just a recognizer which renders not merely a decision but also
(symbolic representations of) the proofs (if any) upon which the decision was
based.

The construction of recognizers and parsers for CFGs and other kinds
of formal grammars, one of the central concerns of both formal language
theorists and of computational linguists, is a very highly evolved and subtle
discipline, which unfortunately is beyond the scope of this book. However,
the fundamental distinction between a parser and a (mere) recognizer has an
analog that is relevant even for empirical/theoretical linguists (as opposed to
formal language theorists and computational linguists), namely the intuition
that a sentence is not just a string of words that belongs to CS but rather a

77

78 Trees

way that the string in question belongs to CS. To take a very simple example,
let’s consider a slightly expanded version of the toy English grammar in
Chapter 9, as follows:

T = {Fido, Felix, Mary, barked, bit, gave, believed, heard, the,

cat, dog, yesterday}
N = {S, NP, VP, TV, DTV, SV, Det, N, Adv}

D consists of the following lexical entries:

NP→ {Fido, Felix, Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ {believed, heard}
Det→ the

N→ {cat, dog}
Adv→ yesterday

P consists of the following PSRs:

S→ NP VP

VP→ {TV NP, DTV NP NP, SV S, VP Adv}
NP→ Det N

The only additions are

1. The nonterminal Adv (adverb);

2. The terminals heard and yesterday;

3. The lexical entries for yesterday as an adverb and for heard as a
sentential-complement verb; and

4. the PSR VP→ VP Adv.

Now consider the string s = Mary heard Fido bit Felix yesterday. According
to our grammar, s ∈ CS (the syntactic category of sentences), but few (if
any) syntacticians would say that s is an English sentence! Rather, they
would say that the word string s corresponds to two different sentences,

79 Trees

one roughly paraphrasable as Mary heard yesterday that Fido bit Felix and
another roughly paraphrasable as Mary heard that yesterday, Fido bit Felix.
Of course, these two sentences mean different things; but more relevant for
our present purposes is that we can also characterize the difference between
the two sentences purely in terms of two distinct ways of proving that s ∈ CS.

To understand this point, remember from Chapter 9 that the set of syn-
tactic categories is (informally) defined by simultaneous recursive definition
as follows:

1. (Base Clause) If A→ t, then t ∈ CA.

2. (Recursion Clause) If A → A0 · · ·An−1 and for each i < n, si ∈ CAi ,
then s0 · · · sn−1 ∈ CA.

Then the two proofs run as follows:

First Proof. From the lexicon and the base clause, we know that Mary, Fido,
Felix ∈ CNP, heard ∈ CSV, bit ∈ CTV, and yesterday ∈ CAdv. Then, by
repeated applications of the recursion clause, it follows that:

1. Since bit ∈ CTV and Felix ∈ CNP, bit Felix ∈ CVP;

2. Since bit Felix ∈ CVP and yesterday ∈ CAdv, bit Felix yesterday ∈ CVP;

3. Since Fido ∈ CNP and bit Felix yesterday ∈ CVP, Fido bit Felix yesterday
∈ CS;

4. Since heard ∈ CSV and Fido bit Felix yesterday ∈ CS, heard Fido bit
Felix yesterday ∈ CPVP; and finally,

5. Since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP, Mary
heard Fido bit Felix yesterday ∈ CS.

Second Proof. The same as the first proof, up through step 1. From there,
we proceed as follows:

2. Since Fido ∈ CNP and bit Felix ∈ CVP, Fido bit Felix ∈ CS;

3. Since heard ∈ CSV and Fido bit Felix ∈ CS, heard Fido bit Felix ∈ CVP;

4. Since heard Fido bit Felix ∈ CVP and yesterday ∈ CAdv, heard Fido bit
Felix yesterday ∈ CVP; and finally,

80 Trees

5. Since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP, Mary
heard Fido bit Felix yesterday ∈ CS.

There is nothing complicated about any of this, but this is not how a syntac-
tician would usually describe the difference between the two homophonous
sentences. Instead, s/he would draw two different tree diagrams as in Figures
10.1 and 10.2.

S

VP

S

VP

Adv

yesterday

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Figure 10.1: Tree diagram with ‘low’ adverb attachment.

But what exactly are tree diagrams, and what is supposed to be their
relationship to the linguistic phenomena being theorized about? Well, roughly
speaking (we will get more precise in the following two sections), tree diagrams
are elaborated Hasse diagrams of mathematical objects called labeled trees.
And what are labeled trees? Well, trees are partially ordered sets of a
certain kind, and a labeled tree is a tree together with a function that assigns
things called labels to the members (called nodes) of the partially ordered
set. When syntacticians use labeled trees, the labels assigned to the minimal
nodes are drawn from the set T of terminals and the labels assigned to the
other nodes are drawn from the set N of nonterminals.

81 Trees

S

VP

Adv

yesterday

VP

S

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Figure 10.2: Tree diagram with ‘high’ adverb attachment.

Intuitively, it is pretty clear that these two tree diagrams are closely
related to, or in some sense correspond to, the two proofs given earlier
(though the precise relationship remains quite obscure at this stage). But
when we begin to construct a linguistic theory, which should we use? Should
we use labeled trees or elaborations of them as set-theoretic idealizations of
sentences, as is done in syntactic frameworks such as HPSG (head-driven
phrase structure grammar) and LFG (lexical-functional grammar)? Or is
it better to think of a sentence as a proof that a certain string belongs to
a certain syntactic category, as is done in CG (categorial grammar)? Or
is it perhaps best to use a hybrid approach with both set-theoretic and
proof-theoretic aspects, such as most forms of transformational grammar
(TG), which include MP (the Minimalist Program) and its predecessor GB
(Government-Binding)? We will not be able to answer these questions until
we start to formalize logic and look at how formal logic is applied to linguistic
theory. But because tree representations are so widely used by syntacticians
(not to mention semanticists, computational linguists, and logicians), it is
important for us to get clear early on precisely what trees are and how
syntacticians use them.

82 Trees

10.2 Trees

10.2.1 Technical Preliminaries

Here we gather together some facts that will simplify the discussion of trees.

Theorem 10.1. Any nonempty finite order has a minimal (and so, by
duality, a maximal) member.

Proof sketch. Let T be the set of natural numbers n such that every ordered
set of cardinality n+ 1 has a minimal member, and show that T is inductive.
The main idea of the proof is to show that T is an inductive set.

Exercise 10.1. Complete the proof of Theorem 10.1 by showing that T is
inductive.

Corollary 10.2. Any nonempty finite chain has a least (and so, by duality,
a greatest) member.

Proof. This follows from the fact (itself a simple consequence of connexity)
that in a chain, a member is least (greatest) iff it is minimal (maximal).

Theorem 10.3. For any natural number n, any chain of cardinality n is
order-isomorphic to the usual order on n (i.e. the restriction to n of the
usual ≤ order on ω).

Proof sketch. By induction on n. The case n = 0 is trivial. By inductive
hypothesis, assume the statement of the theorem holds for the case n = k
and let A of cardinality k + 1 be a chain with order v. By the Corollary
(10.2), A has a greatest member a, so there is an order isomorphism f from
k to A \ {a}. The rest of the proof consists of showing that f ∪ {〈k, a〉} is
an order isomorphism.

Exercise 10.2. Complete the proof of Theorem 10.3 by showing that f ∪
{〈k, a〉} is an order isomorphism.

Theorem 10.4. Suppose v is an order on a finite set A. Then v = �∗.

That is: a finite order is the reflexive transitive closure of its own covering
relation.

Proof. That �∗ ⊆ v follows easily from the definition of reflexive transitive
closure and the the transitivity of v. To prove the reverse inclusion, suppose
a v b and let X be the (nonempty, finite) set of all subsets of A which, when

83 Trees

ordered by v, are chains with b as greatest member and a as least member.
(X is nonempty since one of its members is {a, b}.) Then X itself is ordered
by ⊆X , and so by Theorem 10.1 has a maximal member C. Let n + 1 be
|C|; by Theorem 10.3, there is an order-isomorphism f : n+ 1→ C. Clearly
n > 0, f(0) = a, and f(n) = b. Also, for each m < n, f(m) � f(m + 1),
because otherwise, there would be a c properly between f(m) and f(m+ 1),
contradicting the maximality of C.

10.2.2 Trees

We now define a tree is to be a finite set A with an order v and a top >,
such that the covering relation � is a function with domain A \ {>}. In the
linguistic community, the following terminology for trees is standard:

1. The members of A are called the nodes of the tree.

2. > is called the root.

3. If x v y, y is said to dominate x; and if additionally x 6= y, then y is
said to properly dominate x.

4. If x � y, then y is said to immediately dominate x. In that case
y = �(x) is called the mother of x, and x is said to be a daughter of
y.

5. Distinct nodes with the same mother are called sisters.

6. A minimal node (i.e. one with no daughters) is called a a terminal
node.

7. A node which is the mother of a terminal node is called a preterminal
node.

We state here some important facts about trees, sketching some of the
proofs and leaving others as exercises.

Theorem 10.5. No node can dominate one of its sisters.

Exercise 10.3. Prove Theorem 10.5.

Theorem 10.6. For any node a, ↑ a is a chain.

84 Trees

Proof sketch. Use the RT to define a function h : ω → A, with X = A, x = a,
and F the function which maps non-root nodes to their mothers and the
root to itself. Now let Y = ran(h); it is easy to see that Y is a chain, and
that Y ⊆ ↑ a. It remains to show that ↑ a ⊆ Y . So assume b ∈ ↑ a; we have
to show b ∈ Y .

By definition of ↑ a, a v b, and so by Theorem 10.4 of section 10.2, a�∗ b.
From this and the definition (§6.4) of reflexive transitive closure, it follows
that there is a natural number n such that a �n b, where �n is the n-fold
composition of � with itself. In other words, there is an A-string a0 · · · an
such that a0 = a, an = b, and for each k < n, ak � ak+1. But then b = h(n),
so b ∈ Y .

Corollary 10.7. Two distinct nodes have a meet iff they are comparable.

Exercise 10.4. Prove Corollary 10.7.

Theorem 10.8. Any two nodes have a lub.

Exercise 10.5. Prove Theorem 10.8.

10.2.3 Ordered Trees

An ordered tree is a set A with two orders v and ≤, such that the following
three conditions are satisfied:

1. A is a tree with respect to v.

2. Two distinct nodes are ≤-comparable iff they are not v-comparable.

3. (No-tangling condition) If a, b, c, d are nodes such that a < b, c�a, and
d � b, then c < d.

In an ordered tree, if a < b, then a is said to linearly precede b.

Theorem 10.9. If a is a node in an ordered tree, then the set of daughters
of a ordered by ≤ is a chain.

Exercise 10.6. Prove Theorem 10.9.

Theorem 10.10. In an ordered tree, the set of terminal nodes ordered by ≤
is a chain.

Exercise 10.7. Prove Theorem 10.10.

85 Trees

10.3 Trees in Syntax

In so-called phrase-structural approaches to natural language syntax, a CFG
〈T,N,D, P 〉 is used to define a set of phrase structure trees. These are
just ordered trees equipped with a labeling function l from the set of nodes
to T ∪N such that, for each node a,

l(a) ∈ T if a is a terminal node, and

l(a) ∈ N otherwise.

We then speak of the set of phrase structure trees generated by, or licensed
by, or admitted by the CFG, defined below.

The Set of Phrase Structure Trees Admitted by a CFG A phrase
structure tree is generated by the CFG G = 〈T,N,D, P 〉 iff

1. For each preterminal node with label A and (terminal) daughter with
label t, A→ t ∈ D; and

2. For each nonterminal nonpreterminal node with label A and linearly
ordered (as per Theorem 10.9) daughters with labels A0 · · ·An−1 re-
spectively, (n > 0), A→ A0 · · ·An−1 ∈ P .

Additionally, for a phrase structure tree with linearly ordered (as per Theo-
rem 10.10) set of terminal nodes a0 · · · an−1 with labels t0 · · · tn−1 respectively,
the string t0 · · · tn−1 is called the terminal yield of the phrase structure
tree. The strong generative capacity of G is the set of phrase structures
that it generates. The weak generative capacity of G is the function
wgc : N → T ∗ that maps each nonterminal symbol A to the set of T -strings
which are terminal yields of phrase structures generated by G with root label
A.

Part II

Proof Theory

86

Chapter 11

Linear Propositional Logic
and Natural Deduction

Many different kinds of logic can be directly applied to formalizing theories
in syntax, phonology, semantics, pragmatics, and computational linguistics.
Some examples include:

• linear logic

• Lambek calculus (intuitionistic bilinear logic)

• intuitionistic propositional logic

• (simply) typed lambda calculus

• dependent type theories

• higher-order logic

This chapter introduces linear logic (Girard, 1987), with Lambek calculus,
(both intuitionistic and classical) propositional logic and first-order extensions
discussed in Chapters 12 and 13, respectively. Variants of type theory,
including typed lambda calculus, dependent type theory, and higher-order
logic, are introduced in Part ??.

To explain linear logic and the logics in subsequent chapters, we first in-
troduce a kind of proof theory called (Gentzen-sequent-style) natural
deduction, or ND for short.

87

88 Linear Propositional Logic and Natural Deduction

11.1 Proof theory

Proof theory is the part of logic concerned with purely syntactic methods
for determining whether a formula is deducible from a collection of
formulas. By ‘syntactic’, we mean that we are only concerned with the
form of the formulas, the symbols that comprise them, not their semantic
interpretation—the part of logic concerned with how formulas are to be
interpreted is called model theory. What counts as a formula varies from
one proof theory to the next, but usually they are certain strings of symbols.
Intuitively, to say that A is deducible from Γ is to say that if the formulas in
Γ have been established, then A can also be established.

11.1.1 Finite multisets

What counts as a collection of formulas also varies from one proof theory
to the next. In some proof theories, the collections are taken to be sets; in
others, strings. We will take them to be finite multisets.

Roughly speaking, finite multisets represent a sort of compromise between
finite sets and strings. They are like strings in that repetitions matter, but
they are like sets in that order does not matter. Technically, for any set S, a
finite S-multiset is an equivalence class of S-strings, where two strings count
as equivalent if they are permutations of each other. But we can alternatively
think of a finite S-multiset as a function f from a finite subset S′ of S to the
positive natural numbers. From this perspective, for every s ∈ S′, f(s) = n
if and only if s occurs n times in the multiset. So, writing multisets with
square brackets rather than the curly brackets we use for ordinary sets, [A] is
a different multiset from [A,A], but [A,B] and [B,A] are the same multiset.

11.1.2 Formulas in linear logic

Another prerequisite for defining a proof theory is to recursively define the
set of formulas. The base of the recursion specifies some basic formulas,
and the recursion clauses tell how to build up additional formulas using
connectives.

The set of linear logic formulas is defined as follows:1

1. Any basic formula is a formula.

2. If A and B are formulas, then so is A(B.

1Actually, there are many linear logics. The one we describe here, whose only connective
is (, is implicative intuitionistic linear propositional logic.

89 Linear Propositional Logic and Natural Deduction

3. Nothing else is a formula.

Note that we still need to specify somehow what the basic formulas are. The
connective (is called linear implication, sometimes also called lollipop.
We adopt the convention that A(B(C abbreviates A((B(C); this
convention is often called the right associativity of (. As we’ll see, (
works a lot like the→ of familiar propositional logic (see Chapter 13), except
that it has fewer options.

11.1.3 A linguistic application: tectogrammar

Linear logic is used in categorial grammar (CG) frameworks, such as
λ-grammar (Muskens, 2001, 2007), abstract categorial grammar (ACG,
de Groote, 2001), linear categorial grammar (LCG, Martin, 2013; Mar-
tin and Pollard, 2014) and hybrid grammar, which distinguish between
tectogrammatical structure (also called abstract syntax or syntac-
tic combinatorics) and phenogrammatical structure (also called con-
crete syntax). Such frameworks are sometimes called curryesque, after
Haskell Curry, who first made this distinction (1961). Tectogrammatical
structure drives the syntactic composition. Phenogrammatical structure
(phenogrammar or simply pheno) is concerned with surface realization,
including word order and intonation.

In curryesque frameworks, linear logic formulas, called tecto types (or
just tectos) play a role analogous to that played by nonterminals in a
context-free grammar (CFG): they can be thought of as names of syntactic
categories of linguistic expressions. However, a curryesque grammar has far
fewer rules than a CFG, because the combinatory potential of a linguistic
expression is encoded in its tecto.

In a simple LCG of English (ignoring details such as case, agreement, and
verb inflectional form), we might take the basic tectos, the basic formulas in
the underlying linear logic, to be:

Ordinary sentences S

that-sentences S

Noun phrases, such as names NP

Dummy pronoun it It

Common nouns N

90 Linear Propositional Logic and Natural Deduction

Then some nonbasic tectos, formed based on the definition of linear logic
formulas, are the following:

Attributive adjectives N(N

Complementizer that S(S

Intransitive verbs NP(S

Transitive verbs NP(NP(S

Ditransitive verbs NP(NP(NP(S

Sentential-complement verbs NP(S(S

Quantificational noun phrases (NP(S)(S

11.1.4 Contexts, Sequents, and Provability

A finite multiset of formulas is called a context. Careful: this is a distinct
usage from the notion of context as the linguistically relevant features of the
situation in which an expression is uttered. We use capital Greek letters
(usually Γ or ∆) as metavariables ranging over contexts.

An ordered pair 〈Γ, A〉 of a context and a formula is called a sequent. Γ
is called the context of the sequent and A is called the statement of the
sequent. The formula occurrences in the context of a sequent are called its
hypotheses or assumptions.

The proof theory recursively defines a set of sequents. That is, it recur-
sively defines a relation between contexts and formulas. The relation defined
by the proof theory is called deducibility, derivability, or provability,
and is denoted by ` (read deduces, derives, or proves). The metalanguage
assertion that 〈Γ, A〉 ∈ ` is usually written Γ ` A. Such an assertion is
called a judgment. The symbol ` that occurs between the context and the
statement of a judgment is called turnstile. If Γ is empty, we usually just
write ` A. If Γ is the singleton multiset with one occurrence of B, we write
B ` A. Commas in contexts represent multiset union, e.g., if Γ = [A,B] and
∆ = [B], then Γ,∆ = [A,B,B].2

2Technically, multiset union is defined as follows. Let S′ and S′′ be finite subsets of some
set S, and f : S′ → ω \ {0} and g : S′′ → ω \ {0} multisets. Then for every s ∈ S′ ∪ S′′,

f, g(s) =def

f(s) if s ∈ dom(f) but s 6∈ dom(g)
g(s) if s ∈ dom(g) but s 6∈ dom(f)
f(s) + g(s) otherwise

.

91 Linear Propositional Logic and Natural Deduction

The base clauses of the proof theory identify certain sequents, called
axioms, as deducible, The recursion clauses of the proof theory, called
(inference) rules, are (metalanguage) conditional statements, whose an-
tecedents are conjunctions of judgments and whose consequent is a judgment.
The judgments in the antecedent of a rule are called its premisses, and
the consequent is called its conclusion. Rules are notated by a horizontal
line with the premisses above and the conclusion below, as follows, where
P1, . . . , Pn are the premisses and C the conclusion:

P1 · · · Pn

C

11.2 (Pure) linear logic

11.2.1 Axioms and rules

The proof theory for (pure) linear logic has one schema of axioms, and
two schemas of rules. The axiom schema, called Refl (Reflexivity), Hyp
(Hypotheses), or just Ax (Axioms), looks like this:

A ` A

To call this an axiom schema is just to say that upon replacing the metavari-
able A by any (not necessarily basic) formula, we get (a judgment that
specifies) an axiom, e.g.:

NP ` NP

We often speak of axiom and rule schemas and their instantiations with
formulas and contexts interchangeably. In LCG, hypotheses play a role
analogous to that of traces in frameworks such as the minimalist program
(MP) and head-driven phrase structure grammar (HPSG).

The two rule schemas are Modus Ponens, also called(-Elimination, and
Hypothetical Proof , also called (-Introduction. The Modus Ponens rule
schema is defined as follows:

Γ ` A(B ∆ ` A (E
Γ,∆ ` B

And the definition of the Hypothetical Proof rule schema is given below.

Γ, A ` B
(I

Γ ` A(B

In both of these rule schemas, A and B are metavariables over formulas and
Γ and ∆ are metavariables over contexts.

92 Linear Propositional Logic and Natural Deduction

Modus Ponens eliminates the connective (, i.e. there is an occurrence
of(in one of the premisses (called the major premiss; the other premiss is
called the minor premiss) that does not occur in the conclusion. Hypothetical
Proof introduces (, i.e., there is an occurrence of (in the conclusion
but not in the premiss. Note that since contexts do not have a notion of
order, the premiss Γ, A ` B of the (-Introduction rule only requires A to
be among the hypotheses in the context, even though we write it in the
rightmost position. Pairs of rules that eliminate and introduce connectives
are characteristic of the natural deduction style of proof theory.

11.2.2 Theorems and proof trees

If Γ ` A, then we call the sequent 〈Γ, A〉 a theorem (in the present case, of
linear logic). It is not hard to see that Γ ` A if and only if there is a proof
tree whose root is labeled with the sequent 〈Γ, A〉. By a proof tree we mean
an ordered tree whose nodes are labeled by sequents, such that

1. the label of each leaf node is an axiom; and

2. the label of each nonleaf node is (the sequent of) the conclusion of a
rule such that (the sequents of) the premisses of the rule are the labels
of the node’s daughters.

In displaying a proof tree, the root appears at the bottom and the leaves at
the top (so from a logician’s point of view, linguists’ trees are upside down).
Even though technically the labels are sequents, we conventionally write the
corresponding judgments (metalanguage assertions that the sequents are
deducible). Instead of edges connecting mothers to daughters as in linguists’
trees, we write horizontal lines with the label of the mother below and the
labels of the daughters above (just as in inference rules). Sometimes, as a
mnemonic, we label the horizontal line with the name of the rule schema
that is instantiated.

The simplest possible proof tree in linear logic has just one leaf, which
is also the root. In this case the only option is for the node to be labeled
by an axiom, e.g., NP ` NP. This just means that any formula is deducible
from itself. Although this doesn’t sound very exciting, it turns out that an
elaborated form of such axioms come into play in hypothetical reasoning in
syntax, the categorial grammar analog of wh-movement, quantifier raising,
focus constructions, etc.

93 Linear Propositional Logic and Natural Deduction

A somewhat more interesting proof tree is the following:

NP(S ` NP(S NP ` NP (E
NP(S,NP ` S

(I
NP ` (NP(S)(S

This is an instance of the derived rule of Type Raising (TR) to be introduced
below. The statement in the root sequent is the tecto (NP (S) (S of
quantificational noun phrases, which we abbreviate QP (for quantifier phrase).
This enables an ordinary (i.e., nonquantificational) NP to have the so-called
higher type of a QP, for example, in coordinate structures such as Pedro and
some donkey.

Exercise 11.1. Give a natural-deduction proof tree for the following theorem
of linear logic, called Antecedent Permutation:

` (A(B(C)(B(A(C

Exercise 11.2. Give a natural-deduction proof tree for the following theorem
of linear logic, a version of Type Raising:

` A((A(B)(B

Exercise 11.3. Give a natural-deduction proof tree for the following theorem
of linear logic, a version of Geach’s Law:

` (A(B)((C (A)((C (B)

11.2.3 Derived rules

In natural deduction, we say that an inference rule is derivable if we could
have proved the conclusion if the premiss(es) had been provable. In other
words, we derive an inference rule by presenting a proof tree where

1. the root sequent is the conclusion of the rule, and

2. we allow the premisses of the rule, in addition to the usual axioms, to
label the leaves.

For example, the following derived rule is the Converse of Hypothetical Proof
(i.e., the premiss and the conclusion are switched):

Γ ` A(B
CHP

Γ, A ` B

94 Linear Propositional Logic and Natural Deduction

CHP is derivable in our natural deduction formulation of linear logic as
follows:

Γ ` A(B A ` A
Γ, A ` B

Notice that the premiss A ` A does not appear in the derived rule CHP.
That’s because a proof that A ` A is always available, for any formula A,
via the axiom schema. Thus the rule CHP is only contingent on a proof that
Γ ` A(B.

Some more useful derived rules are given below.

Hypothetical Syllogism (also called Composition)

Γ ` B(C ∆ ` A(B
HS

Γ,∆ ` A(C

Generalized Contraposition

Γ ` A(B
GC

Γ ` (B(C)(A(C

Type Raising
Γ ` A

TR
Γ ` (A(B)(B

Once derived, a rule can be used in any proof just as if it were one of the
original rules of the proof system.

In linear logic, for any formulas A and B, A ` B is a theorem iff the rule
schema

Γ ` A
Γ ` B

is derivable. For example, the derived rules GC and TR could just as well
be expressed, respectively, as the following theorems:

A(B ` (B(C)(A(C

A ` (A(B)(B

Exercise 11.4. Give a natural-deduction proof tree for the following theorem
of linear logic, a version of Generalized Contraposition:

` (A(B)((B(C)((A(C)

Exercise 11.5. Derive the rule of Hypothetical Syllogism.

Chapter 12

The Lambek Calculus and
Lambek Grammar

The mathematician Joachim Lambek invented a simple kind of propositional
logic in 1958. He called it the syntactic calculus, but everyone else calls it
the Lambek calculus, L for short. L can be thought of as a bidirectional
variant of linear logic (LL, Girard, 1987), though historically it predates LL
by nearly three decades. Lambek used L to write grammars of a certain kind,
now called Lambek grammars, where the formulas are used as names of
syntactic categories (sets of strings), roughly in the way that nonterminals
serve the same purpose in context-free grammar. The mainstream of catego-
rial grammar research, e.g. Morrill’s type-logical grammar (TLG) and
Moortgat’s categorial type logic (CTL), extends this approach in various
ways.

12.1 Proof Theory of L

The set of L formulas is defined as follows:

1. Any basic formula is a formula. (So, the finite set of basic formulas
has to be specified. In the application to natural language grammar,
these will be the basic syntactic types, such as NP and S.)

2. If A and B are formulas, then so are A\B and B/A.1

1The antecedent is always the formula under the connective. This differs from the
convention in combinatory categorial grammar (CCG), where the antecedent formula is
always written to the right of the connective.

95

96 The Lambek Calculus and Lambek Grammar

3. Nothing else is a formula.

The proof theory of L is similar to the proof theory for LL. There is a
single axiom, namely

A ` A ,

which is identical to the axiom in LL. But whereas LL has only a single
introduction rule and a single elimination rule for (, L has separate rules
for introducing and eliminating the two implications. The rules of L are
given in Figure 12.1.

Γ ` A ∆ ` A\B
\E

Γ,∆ ` B

A,Γ ` B \I
Γ ` A\B

Γ ` B/A ∆ ` A
/E

Γ,∆ ` B

Γ, A ` B
/I

Γ ` B/A

Figure 12.1: Proof rules of L.

The differences between LL and L, presented as sequent-style natural-
deduction systems, are:

1. LL has one implication (; whereas L has two, \ and /, as mentioned
above.

2. In LL, contexts are multisets; whereas in L they are strings.

3. In LL, commas in contexts stand for multiset union; whereas in L they
stand for concatenation (of strings; see Chapter 9).

4. In LL, hypotheses are unordered; whereas in the conclusion of /E
the hypotheses from the major premiss precede those from the minor
premiss, and vice versa for \E.

97 The Lambek Calculus and Lambek Grammar

5. The rule (I can discharge any one of the hypotheses; whereas /I
discharges the rightmost hypothesis, and \I discharges the leftmost
hypothesis.

12.2 Lambek Grammars Defined

A Lambek grammar G is an ordered triple 〈W,B,D〉 where

1. W is a nonempty finite set of words, e.g., Mary, walks, etc.

2. B is a nonempty finite set of basic syntactic types.

3. D is a set of lexical entries, ordered pairs 〈w,A〉 where w ∈W is a
word and A ∈ B is a (not necessarily basic) syntactic type.

12.2.1 Syntactic Categories of a Lambek Grammar

A Lambek grammar G = 〈W,B,D〉 recursively defines a function C from
syntactic types to W-languages as follows:

1. For 〈w,A〉 ∈ D, (the length-one string of) w ∈ CA.

2. For any n > 0 and syntactic types A0, . . . , An, if

(a) si ∈ CAi (i < n), and

(b) A0, . . . , An−1 ` An

then s0 · · · · · sn−1 ∈ CAn .

3. Nothing else is in any of the CA.

For each syntactic type A, the language CA is called the syntactic category
corresponding to A.

In a simple Lambek grammar of English (ignoring details such as case,
agreement, and verb inflectional form), we might take the basic syntactic
types to be:

Ordinary (declarative) sentences S

that-sentences S

Main-clause interrogative sentences Q

Embedded interrogative sentences Q

98 The Lambek Calculus and Lambek Grammar

Noun phrases (such as names) NP

‘Dummy pronoun’ it It

Common nouns N

Nonpredicative (to)-prepositional phrases To

Some more complex types are the following:

Attributive adjectives N/N

Postnominal modifiers (including relative clauses) N\N

Subject relativizers Rels =def (N\N)/(NP\S)

Object relativizers Relo =def (N\N)/(S/NP)

Declarative complementizer that S/S

Determiners of subject QPs Dets =def (S/(NP\S))/N

Determiners of object QPs Deto =def ((S/NP)\S)/N

Intransitive verbs VP =def NP\S

Transitive verbs TV =def (NP\S)/NP

Ditransitive verbs DV =def ((NP\S)/NP)/NP

Sentential-complement verbs SV =def (NP\S)/S

Interrogative-complement verbs QV =def (NP\S)/Q

Nonpredicative preposition to To/NP

For example, a · kitten · that · chris · saw · exploded ∈ CS because:

1. a ∈ CDets , kitten ∈ CN, that ∈ CRelo , chris ∈ CNP, saw ∈ CTV,
exploded ∈ CVP; and

2. Dets,N,Relo,NP,TV,VP ` S.

Exercise 12.1. Prove the sequent in item 2, immediately above.

99 The Lambek Calculus and Lambek Grammar

12.3 Empirical Predictions of Lambek Grammars

It was conjectured for a long time that the syntactic categories of Lambek
grammars were context-free languages (CFLs). This conjecture is usually
attributed to Chomsky, and because Chomsky (inter multa alia) also asserted
that natural languages could not all be CFLs, it also came to be widely
believed that Lambek grammar was a hopeless case. Subsequently Stuart
Shieber (1985) established definitively that the string set of Swiss German
sentences was not a CFL. Then in 1993, Mati Pentus proved that indeed
the syntactic categories of a Lambek grammar are CFLs. And so, Lambek
grammar as it stands does not provide a satisfactory basis for natural language
syntax.

Setting that fact aside, there are some aspects of the analysis of languages
like English that Lambek grammars have a hard time with. One is extraction,
at least in the general case. To see why, consider how the following Qs would
be modeled in a Lambek grammar:

(12.1) a. who [t introduced Kim to Sandy]

b. who [Chris introduced Kim to t]

c. who [Chris introduced t to Sandy]

Exercise 12.2. Give syntactic type assignments for who that account for
the examples in (12.1).

Exercise 12.3. Can you think of a way to specify the entire set of syntactic
assignments needed to analyze embedded who-questions?

Another point of difficulty for Lambek grammars is the scoping of quan-
tifier phrases (QPs), as in the following:

(12.2) a. Everyone introduced Kim to Sandy.

b. Chris introduced Kim to everyone.

c. Chris introduced everyone to Sandy

Exercise 12.4. Give syntactic type assignments for everyone that account
for the examples in (12.2). Keep in mind that, since syntactic combination
drives semantic composition, a QP must take its scope as a syntactic ‘ar-
gument’; i.e., there must be a \E or /E step in the proof whose major and
minor premisses corresponds to the QP and its scope respectively.

Exercise 12.5. Can you think of a way to specify the entire set of syntactic
assignments for every needed to account for every possible position where

100 The Lambek Calculus and Lambek Grammar

it can occur and every possible constituent containing that position that it
might scope over?

On the other hand, aside from the elegant handling of the syntax-
semantics interface (an advantage shared with all forms of categorial gram-
mar), perhaps the biggest selling point for Lambek grammars to linguists
is its success in analyzing coordinate structures, including coordination of
things that are traditionally not analyzed as constituents:

(12.3) Kim tolerates, and Sandy adores, Sicilian miniature donkeys.
(Right Node Raising)

(12.4) Kim gave Chris books and Sandy records.
(Argument Cluster Coordination)

The treatment of coordination is a selling point shared with CCG, which also
has the directional implications \ and /, on which the analysis of coordination
hinges. In Lambek grammar (as in CCG), the key idea behind the analysis
of coordination is that expressions that can be conjoined have the same
syntactic type, a result that is enforced by assigning coordinators (such as
and and or) syntactic types of the form (A\A)/A.

In particular, if A is a functor type (i.e., A is B\C or C/B), this analysis
guarantees that conjoined functors are looking for their argument in the
same direction, which is often (but not invariably) empirically borne out:

(12.5) Kim tolerates, and Sandy adores, Sicilian miniature donkeys.
(Both conjuncts are S/NP)

(12.6) Kim tolerates donkeys, and adores burros.
(Both conjuncts are NP\S)

(12.7) * Kim tolerates, and adores burros, Sandy.
(According to the linear categorial grammar discussed in Chapter
11, both conjuncts are NP(S.)

Exercise 12.6. Give Lambek analyses of the sentences in (12.3) and (12.4).

12.4 Extending L with Monoidal Terms

For linguists, it’s more practical to present Lambek grammatical analyses in
a format that directly associates string-denoting algebraic terms with proof
tree nodes. Superficially, these string terms resemble Curry-Howard proof
terms (see Chapter ??), but they aren’t really (there is no application or
abstraction). In this setup, the grammar assigns string a to syntactic type A

101 The Lambek Calculus and Lambek Grammar

iff the term-labeled sequent ` a : A is provable, where the string a is called
the label for (this instance of) the category A. We will call the system L
extended with monoidal terms L+.

The terms here are algebraic terms in the language of monoids (see
Chapter ??), not terms of typed lambda calculus (TLC) or higher-order logic
(discussed in Chapters ?? and ??, respectively). Thus we have:

1. just one type of variable (we use s, t, u),

2. a constant e for the null string,

3. constants mary, walks, etc., for words,

4. the symbol · for concatenation,

5. but neither of the TLC term constructors (application and lambda
abstraction; see Chapter ??)

There is an equivalence relation defined for monoidal terms similar to
the the one for TLC terms, except that of course all the clauses in the defini-
tion that mention application or abstraction are missing. In the following
definitions, a, a′, a′′, b, b′, and c are all metavariables over monoidal terms.

Definition 12.1 (Equivalences of Equational Reasoning in L+). The follow-
ing describe term-level equivalences.

(ρ) a ≡ a

(σ) If a ≡ a′, then a′ ≡ a.

(τ) If a ≡ a′ and a′ ≡ a′′, then a ≡ a′′.

(µ) If a ≡ a′ and b ≡ b′, then a · b ≡ a′ · b′.

Definition 12.2 (Monoid Equivalences in L+). The equivalences below
pertain to the term concatenation operator ·.

1. (a · b) · c ≡ a · (b · c)

2. e · a ≡ a

3. a · e ≡ a

102 The Lambek Calculus and Lambek Grammar

In the language of preorders (see Chapter 4), the first three clauses of
Definition 12.1 state that the relation ≡ between terms is an equivalence
relation; the last clause states that equivalent terms can be substituted
under concatenation. The first clause of Definition 12.2 just says that · is
associative, and the last two ensure that e is a two-sided identity for · (see
Chapter ??).

In L+, terms are interpreted as strings, syntactic types are interpreted as
languages (string sets), and \ and / are interpreted as the language residuals.
Contexts in sequents are sets (not strings, as in the base system L) because
the ordering issues will be taken care of in the term of the statement. The
judgment Γ ` a : A says that under any assignment that maps each variable
to a member of the language that interprets the syntactic type it is paired
with in Γ, a is interpreted as a member of the language that interprets A.

The axiom of L+ is just like the axiom for L, except that the metavariable
s over term labels is added:

s : A ` s : A

The rules of L+, given in Figure 12.2, correspond to the rules of L, but they
also say what happens to the terms. As you might expect, each rule of L+ has

Γ ` a : A ∆ ` b : A\B
\E

Γ,∆ ` a · b : B

s : A,Γ ` s · a : B \I
Γ ` a : A\B

Γ ` a : B/A ∆ ` b : A
/E

Γ,∆ ` a · b : B

Γ, s : A ` a · s : B
/I

Γ ` a : B/A

Figure 12.2: Proof rules of L+.

the same structure at the level of syntactic categories as the corresponding
rule of L. The elimination rules concatenate the terms in the premisses in a
way that respects the location of the argument term (to the left or to the
right of the functor). The introduction rules say that if a term contains a

103 The Lambek Calculus and Lambek Grammar

subterm s that originated from a hypothesis, then the functor term in the
conclusion is labeled by the result of removing the hypothesized term.

Chapter 13

Propositional and First-order
Logics

13.1 Positive Intuitionistic Propositional Logic

The system of Positive Intuitionistic Propositional Logic (PIPL) is like linear
logic (LL, Chapter 11) except that it has more connectives, more axioms,
and more rules. The PIPL connectives are the 0-ary connective T (read
true), and the three binary connectives → (intuitionistic implication), ∧
(conjunction), and ∨ (disjunction).

With the addition of negation, PIPL can be extended to intuitionistic
or classical propositional logic, depending on what rules are adopted for
negation. These in turn can be extended to first-order logics with the addition
of universal and existential quantifiers and corresponding rules. PIPL also
underlies the type system of typed lambda calculus (TLC, Chapter ??) and
higher order logic (HOL, Chapter ??), which are widely used for theorizing
about meaning, and in curryesque categorial frameworks for theorizing about
phenogrammar.

13.1.1 Axioms and Rules

Like LL, PIPL has the Hypothesis schema

A ` A ,

but it additionally has the True axiom

` T .

104

105 Propositional and First-order Logics

Intuitively, T is usually thought of corresponding to an arbitrary necessary
truth. The True axiom can also be thought of as a nullary introduction rule
for T.

The natural deduction rules for PIPL include both introduction and
elimination schemas for implication, conjunction, and disjunction. There are
also two structural rules, called Weakening and Contraction, which affect
only the contexts of sequents. Contexts in PIPL modeled not multisets but
rather just sets, and consequently the comma in contexts like Γ, A represents
ordinary set union. Sequents, theorems, and proof trees in PIPL are defined
in the same way as for linear logic (Chapter 11).

The rules for implication are given in Figure 13.1, and are essentially
identical to the LL rules Modus Ponens and Hypothetical Proof except that
(is replaced with →. The rules for conjunction, in Figure 13.2 include two

Γ ` A→ B ∆ ` A →E
Γ,∆ ` B

Γ, A ` B
→I

Γ ` A→ B

Figure 13.1: PIPL rules for implication.

elimination rules ∧E1 and ∧E2 (for eliminating the left and right conjunct
respectively). The rules for disjunction (Figure 13.3) include two introduction

Γ ` A ∧B ∧E1
Γ ` A

Γ ` A ∧B ∧E2
Γ ` B

Γ ` A ∆ ` B ∧I
Γ,∆ ` A ∧B

Figure 13.2: PIPL rules for conjunction.

rules ∨I1 and ∨I2 (for introducing the left and right disjunct respectively).
The rules for introducing disjunction just say that a deduced formula can

106 Propositional and First-order Logics

Γ ` A ∨B A,∆ ` C B,∆ ` C
∨E

Γ,∆ ` C

Γ ` A ∨I1
Γ ` A ∨B

Γ ` B ∨I2
Γ ` A ∨B

Figure 13.3: PIPL rules for disjunction.

be disjoined with any formula. The elimination rule is a bit different from
the elimination rules for the other connectives we have seen so far because
nothing from the major premiss A ∨ B survives in the conclusion. This
rule just says that if some formula C can either be deduced from a set of
premisses containing A or one containing B, and if one of A or B must be
true (i.e., A ∨B has been proved), then C’s deducibility does not depend on
a proof of A or a proof of B.

The PIPL structural rules, which are given in Figure 13.4, affect the
contexts of a sequent but not the statement. The rule of Weakening (also

Γ ` A
W

Γ, B ` A

Γ, B,B ` A
C

Γ, B ` A

Figure 13.4: PIPL structural rules.

known as W) intuitively says that if we can prove something from certain
assumptions, we can also prove it with more assumptions. The intuition
behind the Contraction rule (C) is that repeated assumptions can be elim-
inated. Both of these rules can be seen as consequences of the fact that
contexts, in PIPL, are sets: W says that whatever can be proved from some
set of premisses Γ can also be proved from any ∆ provided that Γ ⊆ ∆; C
simply says that repetitions do not matter. The structural rules may seem

107 Propositional and First-order Logics

too obvious to be worth stating, but in fact they must be stated, because in
some logics (such as LL) they are not available!

Exercise 13.1. Give a natural deduction proof tree for the following theorem
of PIPL:

` A→ B → A

Exercise 13.2. Give a natural deduction proof tree for the following theorem
of PIPL:

` (A→ A→ B)→ (A→ B)

13.2 Extensions of PIPL

By adding two more connectives—F (false), and ¬ (negation)—and corre-
sponding rules and axioms to PIPL we get full Intuitionistic Propositional
Logic (IPL). With the addition of one more rule we get Classical Propositional
Logic (CPL). And with the addition of rules for (universal and existential)
quantification to either IPL or CPL, we get (either intuitionistic or classical)
First-order Logic (FOL).

The connective F is usually thought of as corresponding to an arbitrary
impossibility (a necessary falsehood), and negation can be defined in terms
of implication and F, as follows:

(13.1) ¬A =def A→ F

Exercise 13.3. Using just the rules for PIPL and the definition of negation
in (13.1), derive the following theorems:

F ` ¬A
A,¬A ` ¬B
A ` T

¬A,A ` F

A ` ¬(¬A)

Exercise 13.4. Using just the rules for PIPL and the definition of negation
in (13.1), derive the following rule:

Γ, A ` F

Γ ` ¬A

108 Propositional and First-order Logics

Γ ` ¬A ∆ ` A ¬E
Γ,∆ ` F

Γ, A ` F
¬I

Γ ` ¬A

Figure 13.5: IPL negation rules.

As an alternative to the definition in (13.1), negation can be given as a
basic connective, but some rules governing its use need to be stated. Those
rules, ¬-Elimination (or Indirect Proof) and ¬-Introduction (or Proof by
Contradiction) are given in Figure 13.5. The elimination rule for negation
(¬E) makes deriving a contradiction (proving both A and its denial) equivalent
to deriving F; the introduction rule ¬I lets us falsify one of the premisses
that produced a proof of F. If ¬ is defined in terms of → and F, as in (13.1),
then the rules pertaining to negation do not need to be stated—they are just
instantiations of the rule schemas for implication in Figure 13.1 with B = F.

The False axiom
F ` A

is traditionally called ex falso quodlibet (EFQ). EFQ is easily shown to be
equivalent to the following rule of F-Elimination:

Γ ` F
FE

Γ ` A
This axiom/rule encodes the principle behind ex falso quodlibet , which
translates roughly as from falsehood, anything : any formula A follows from
F.

13.2.1 Classical Propositional Logic

Classical Propositional Logic (CPL) is obtained from IPL by the addition of
any one of the following, which can be shown to be equivalent:

Reductio ad Absurdum (RAA)

Γ,¬A ` F
RAA

Γ ` A

Double Negation Elimination (DNE)

109 Propositional and First-order Logics

Γ ` ¬(¬A)
DNE

Γ ` A

Law of Excluded Middle (LEM)

` A ∨ ¬A

In IPL, each of the preceding three rules/axioms is equivalent to Peirce’s
Law, which doesn’t mention F or ¬:

` ((A→ B)→ A)→ A

Peirce’s Law is a theorem of CPL.

Exercise 13.5. Give a CPL natural deduction proof tree for Peirce’s Law.

13.2.2 First-order Logics

Rules for quantifiers can be added to either IPL or CPL to obtain either
intuitionistic or classical versions of FOL. Much of the terminology having to
do with quantification, scope, bound and free variables, etc., was introduced
in Chapter 2. As a preliminary to giving the proof rules for quantification,
we also add some new terminology pertaining to variable substitution. If
replacing every occurrence of x in A with t does not cause any of t’s free
variables to become bound, then t is free for x in A. The formula that results
form replacing all free occurrences of x in A by t is written A[x/t].

The rules for quantification, detailing in Figure 13.6, can be thought of
as counterparts of those for ∧ and ∨ where, instead of just two ‘juncts’, there
is one for each individual in the domain of quantification.

The ∀-Elimination rule ∀E, also known as Universal Instantiation, allows
the bound variable in a universally quantified formula to be replaced by any
term, with the quantification removed. Its counterpart, the ∀-Introduction
rule ∀I, is also known as Universal Generalization—it simply allows the
inference that if a formula is true then it is true for all individuals.

The rule of ∃-Elimination (∃E) says that if it can be derived from Γ
that A holds for some x, and C can be derived from a set of assumptions
∆, A[x/y], then C is provable from just Γ,∆, since C too derives from a
proof that A holds for some y. By the ∃-Introduction rule ∃I, also called
Existential Generalization, it can be concluded that ∃xA based on a proof of
A in which the term t has replaced the occurrences of x.

110 Propositional and First-order Logics

Γ ` ∀xA ∀E (t free for x in A)
Γ ` A[x/t]

Γ ` A ∀I (x not free in any B ∈ Γ)
Γ ` ∀xA

Γ ` ∃xA ∆, A[x/y] ` C
∃E (y free for x in A, y not free in A)

Γ,∆ ` C

Γ ` A[x/t]
∃I (t free for x in A)

Γ ` ∃xA

Figure 13.6: Rules for quantification.

Exercise 13.6. A first-order logic can be extended with predicates that
produce formulas by relating zero or more individuals. Letting x and y
be sets, assume that both x ∈ y and x = y are formulas corresponding to
set membership and equality, respectively, and assume the definition of ⊆
given in §2.3. Then give statements of Assumptions 1–9 in first-order logic
extended with ∈, =, and ⊆. As a shorthand, you can use x 6∈ y to abbreviate
¬(x ∈ y), and similarly for = and ⊆. You can also abbreviate the formula
(x→ y) ∧ (y → x) by (x↔ y).

Appendix A

Deferred Proofs

From Chapter 6

Theorem 6.5 (Recursion Theorem). Let X be a set, x ∈ X, and F : X → X.
Then there exists a unique function h : ω → X such that

h(0) = x, and(A.1)

For every n ∈ ω, h(suc(n)) = F (h(n)) .(A.2)

In the following proof sketch, the key idea is to define

A = {v : ω ⇀ X |
v(0) = x↔ 0 ∈ dom(v), and(a)

∀n ∈ ω(suc(n) ∈ dom(v)→ (n ∈ dom(v) ∧ v(suc(n)) = F (v(n))))(b)

}

and then define h =
⋃
A.

The proof can be broken into four parts:

1. Show that h is (at least) a partial function.

2. Show that the two clauses in the definition of A hold when h = v.

3. Show that dom(h) is inductive.

4. Show that h is the only function from ω to X that satisfies the RT
conditions.

For a full proof, see Enderton 1977.

111

112 Deferred Proofs

Sketch of part 1. Let S = {n ∈ ω | for at most one y ∈ X, 〈n, y〉 ∈ h}. The
trick is to show S is inductive and that therefor S = ω by PMI.

Sketch of part 2. We already know that h : ω ⇀ X. For (a), suppose
0 ∈ dom(h). Then by definition of h, there is a v : ω ⇀ X such that
v(0) = h(0). But v(0) = x. For (b), suppose suc(n) ∈ dom(h). By definition
of h again, there is a v : ω ⇀ X such that v(suc(n)) = h(suc(n)). But v
satisfies (b), so n ∈ dom(v) and v(suc(n)) = F (v(n)). But by definition of h
again, h(n) = v(n). So h(suc(n)) = v(suc(n)) = F (v(n)) = F (h(n)).

Sketch of part 3. We need to show that dom(h) is inductive. Then dom(h) =
ω by PMI.

Sketch of part 4. Suppose two functions h and h′ from ω to X satisfy (A.1)
and (A.2). Then we need to show that

T =
{
n ∈ ω | h(n) = h′(n)

}
is inductive, and therefore T = ω by PMI.

From Chapter 7

Theorem 7.10 (Schröder-Bernstein). For any sets A and B, if A � B and
B � A, then A ≈ B.

Proof. By definition of �, there are injections f : A→ B and g : B → A. Let
C be the unique function from ω to ℘(A) such that C(0) = A \ ran(g) and
C(n+1) = g[f [C(n)]] for all n ∈ ω; henceforth we write Cn for C(n). Now we
define h : A→ B such that h(x) = f(x) if x ∈

⋃
n∈ω Cn and h(x) = g−1(x)

otherwise; this makes sense since ran(g) = A\C0. We will show h is bijective.
To show h is injective, suppose x and x′ are distinct members of A; it

suffices to show that h(x) 6= h(x′). Since f and g−1 are one-to-one, we need
only consider the case where x ∈ Cm and x′ /∈

⋃
n∈ω Cn. Now we define

Dn =def f [Cn] for all n ∈ ω, so that Cn+1 = g[Dn]. Then h(x) = f(x), which
is in Dm; but h(x′) = g−1(x′), which is not in Dm (since otherwise we would
have x′ ∈ Cm+1). So h(x) 6= h(x′), as desired.

To show h is surjective, let y ∈ B; we will show that y ∈ ran(h). Clearly,
for each n, Dn ⊆ ran(()h). So we can assume y ∈ B \

⋃
n∈ωDn. Next, we

note that, for all n, g(y) /∈ Cn (the proof, which is inductive, is left as an
exercise). Therefore g(y) /∈

⋃
n∈ω Cn . So h(g(y)) = g−1(g(y)) = y. So

y ∈ ran(h).

113 Deferred Proofs

Theorem 7.11. If A is infinite, then ω � A.

Proof. Let c be a choice function for A, and let h be the unique function
from ω to ℘(A) such that h(0) = ∅ and h(n + 1) = h(n) ∪ {c(A \ h(n))}
for all n ∈ ω. Note for future reference that for any m,n ∈ ω with m < n,
h(m+ 1) ⊆ h(n). Also define g : ω → A by g(n) =def c(A \h(n)), so that, for
each n ∈ ω, h(n+ 1) = h(n)∪{g(n)}, and consequently also g(n) ∈ h(n+ 1).
Clearly, for all n ∈ ω, g(n) /∈ h(n), since g(n) = c(A \ h(n)) ∈ A \ h(n).

To complete the proof, we will show g is injective. So let m and n be
distinct natural numbers; without loss of generality we can assume that
m < n. Then g(m) ∈ h(m+ 1), and so g(m) ∈ h(n). But we already showed
that g(n) /∈ h(n), so g(m) 6= g(n); this shows g is injective as required.

Bibliography

Abian, Alexander. The Theory of Sets and Transfinite Arithmetic. Saunders,
London, 1965.

Aczel, Peter. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford, California,
1988.

Curry, Haskell. Some logical aspects of grammatical structure. In R. Jakobson,
editor, Structure of Language and its Mathematical Aspects, number 12 in
Proceedings of Symposia in Applied Mathematics. American Mathematical
Society, Providence, Rhode Island, 1961. doi:10.1090/psapm/012/9981.

de Groote, Philippe. Towards abstract categorial grammars. In Asso-
ciation for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference, 2001.
doi:10.3115/1073012.1073045.

Enderton, Herbert B. Elements of Set Theory. Academic Press, London,
1977.

Girard, Jean-Yves. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987. doi:10.1016/0304-3975(87)90045-4.

Lambek, Joachim. The mathematics of sentence structure. American Math-
ematical Monthly, 65(3):154–170, 1958. doi:10.2307/2310058.

Martin, Scott. The Dynamics of Sense and Implicature. Ph.D. thesis, Ohio
State University, 2013.

Martin, Scott and Carl Pollard. A dynamic categorial grammar. In G. Morrill,
R. Muskens, R. Osswald, and F. Richter, editors, Proceedings of the
19th Conference on Formal Grammar, number 8612 in Lecture Notes in
Computer Science. Springer, 2014. doi:10.1007/978-3-662-44121-3 9.

114

http://dx.doi.org/10.1090/psapm/012/9981
http://dx.doi.org/10.3115/1073012.1073045
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.2307/2310058
http://dx.doi.org/10.1007/978-3-662-44121-3_9

115 Bibliography

Muskens, Reinhard. λ-grammars and the syntax-semantics interface. In
R. van Rooy and M. Stokhof, editors, Proceedings of the 13th Amsterdam
Colloquium, 2001.

Muskens, Reinhard. Separating syntax and combinatorics in categorial
grammar. Research on Language and Computation, 5(3):267–285, 2007.
doi:10.1007/s11168-007-9035-1.

Pentus, Mati. Lambek grammars are context free. In Proceedings of the
Eighth Annual IEEE Symposium on Logic in Computer Science, pages
429–433, 1993.

Russell, Bertrand. Letter to Frege, pages 124–125. In van Heijenoort 1967,
1902.

Shieber, Stuart M. Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8(3):333–343, 1985.

van Heijenoort, J., editor. From Frege to Gödel: A Source Book in Mathemati-
cal Logic, 1879-1931. Harvard University Press, Cambridge, Massachusetts,
1967.

http://dx.doi.org/10.1007/s11168-007-9035-1

Index

Symbols
∗

closure, 48
languages, 64

+
arithmetic, 43, 44
closure, 48
languages, 64
sets, 14

/
languages, 67

0
languages, 67
set, 9, 10

1
set, 9, 10

2
set, 9, 10

<, 42, 47
=

sets, 8
A-language, see language
A-string, see string
�

function, 35
♦, 64
♦

function, 35⋃
, 10

�, 31
�, 50
≈, 52

⊥
logic, 69

•
languages, 71

•
languages, 67

·
arithmetic, 44

∪
languages, 71

∅
empty set, 9

ε, 64
≡, 36
η

languages, 64
_

strings, 64
_

strings, 67
∈, 6
∩, 12
t

order, 33
∧, 16, 69
↔, 17, 69
≤, 29, 39, 42, 46, 48
∨, 16, 69
u

order, 33
¬, 17
ω, 46, 64

116

117 Index

ω, 42
⇀, 36
℘, 10
≺, 54
�, 54
�, 54
\

languages, 67
sets, 12

/
sets, 30

∼
logic, 17, 69

?
exponentiation, 45

⊂, 8
⊆, 8
(, 8
suc, 43
⊃

logic, 16, 69
×

cartesian product, 13
→

languages, 73
logic, 16

>
logic, 69

∪, 10
`, 90
s, 41

successor, 10
(pre)chain, 29
(pre)order anti-isomorphism, 39
(pre)order isomorphism, 39
(pre)order-isomorphic, 39

Numbers
0, 10, 14
1, 14, 25, 35, 36, 64

2, 34

A
abstract syntax, 89
accessible

graph, 59
pointed graph, 59

addition, 35, 44
associativity, 44
commutativity, 44

admit
context-free grammar, 85

algebra, 65
algebraic, 101
antecedent, 17
antifoundation

assumption of, 61
antifoundation axiom, 57
antisymmetric, 26
antitonic, 39
apg, see accessible pointed graph
argument, 34
arithmetic, 35
arity, 19, 21
arrow, 35, 63
associative, 65
associativity, 89
assumption schema, 11
assumptions, 90
asymmetric, 26
asymmetric interior, 31
at

function, 34
autosegmental-metrical, 70
axiom, 91
axiom of infinity, see natural numbers
axiom of regularity, see foundation
axiom schema, 91
axioms, 7

118 Index

B
base case, 43
basic syntactic type

Lambek grammar, 97
belongs (to a set), see membership
biconditional, 17
biimplication, 17
bijection, see function, 52
binary condition, 19
bottom, 29
bound, 19, 29

C
canonical picture, 61
cardinality, 54
cartesian coproduct, 14

canonical injections, 36
cofactors, 14
copowers, 14

cartesian product, 13
factors, 13
powers, 13, 25
projections, 36

categorial grammar, 28, 89
CFG, see context-free grammar
CG, see categorial grammar
chain, 46, 48
characteristic function, 37, 52
child

graph, 59
choice

assumption of, 55
choice function, 55
Classical Propositional Logic, 107
classical propositional logic[, 104
closed, 19
closure

reflexive, 27, 32, 42
reflexive transitive, 48
transitive, 48, 49

codomain, 35, 63
collection, 88
combinatory categorial grammar, 95
comparable, 26
complement, 12

relative, 12
component, 12
composition, 25
computational linguistics, 3
concatenation, 96

strings, 64
conclusion, 91
concrete syntax, 89
condition, 19
conditional, 17
conjunct

first, 16
second, 16

conjunction, 16
conjunctive, see conjunction
connective, 88
connex, 26
consequent, 17
contained (in a set), see membership
context, 90

of a sequent, 90
context-free grammar, 72, 77

trees generated by, 85
context-free language, 76
continuous, 3
Contraction, 105
coordinate structure, 100
corollary, 42
correlative comparative, 40
countable, 55
countably infinite, see countable
covered by, 31
covering relation

induced by a preorder, 31
CPL, see Classical Propositional Logic

119 Index

D
decoration, 60
Dedekind infinite, 45, 53
deducibility, 90
deducible, 88
denial, 18
denumerable, 55
denumerably infinite, see countable
derivability, 90
derivable, 93
derived rule, 93
directed graph, 58
discrete, 3
disjoint, 12

pairwise, 12
disjoint union, see cartesian coprod-

uct
disjunct

first, 16
second, 16

disjunction, 16
inclusive, 16

disjunctive, see disjunction
domain, 26, 64
dominance, 28
dominate, 83
dominated, 54
down, 33

E
edge, 58
EFQ, see ex falso quodlibet
element (of a set), see membership
eliminate, 92
empirical hypotheses, 1
empty, 21
empty set, 9

assumption of, 8
empty string, 64, 67
entailed, 3

entailment, 28
equals, 18
equinumerous, 52
equivalence class, 30

representatives of, 30
equivalence relation, 30, 33, 52, 64

induced by a preorder, 31
ex falso quodlibet, 108
existential, 19
Existential Generalization, 109
existential quantifier, 19
existentially quantified, 19
exponential, see also arrow, 35
exponentiation, 35, 45
extension

of a relation, 23
extensionality

assumption of, 8

F
falsifiability, 1
final boundary tones, 71
finite, 45
finite multisets, 88
first-order languages, 16
First-order Logic, 107
first-order logic, 104
FOL, see First-order Logic
follow

proofs, 68
formal grammars, 66
formal language, 65
formal proofs, 7
formalize, 7
formula, 88

basic, 88
of propositional logic, 68

foundation
assumption of, 10, 57

free, 19

120 Index

of a variable, 109
function, 3, 34

bijective, 36
composition, 37
embedding, 36
injective, 36
partial, 36
surjective, 36
total, 34

functional condition, 49
functional name, 21
fusion

languages, 67

G
generate

context-free grammar, 85
glb, see greatest lower bound
graph, 3, see also arrow, 35
greatest, 29
greatest lower bound, 33

H
Hasse diagram, 50, 80
hypotheses, 90
Hypothetical Proof, 91

I
identity, 102

algebraic, 65
identity relation, 24
image

function, 39
immediately dominate, see dominate
implication, 16
implicative, 17
in (a set), see membership
included in (a set), see inclusion
inclusion, 8
incomparable, 26
independence

of assumptions, 55
Indirect Proof, 108
inductive, 41
inductive hypothesis, 43
inductive step, 43
inference rule, 91
infinite, 45, 52, 53
infinite A-sequence, 64
informal proofs, 7
injection, see function, 64

canonical, 36
injective, 45
interior

asymmetric, 31
irreflexive, 27
symmetric, 30

intermediate phrase, 71
intermediate-phrase final boundary

tones, 71
intersect, 12
intersection, 12
into

exponential, 35
intonation phrase, 71
intransitive, 26
introduce, 92
Intuitionistic Propositional Logic, 107
intuitionistic propositional logic, 104
inverse image, see preimage
IPL, see Intuitionistic Propositional

Logic
irreflexive, 26
irreflexive interior, see interior

J
judgment, 90

K
kernel, 37
Kleene closure, 67, 71

121 Index

positive, 68, 71

L
label, 101
labeled trees, 80
labeling function

of a tree, 85
labels, 80
Lambek calculus, 95
Lambek grammars, 95
language

decidable, 69
left residual, 67
recursively enumerable, 69
regular, 70
right residual, 67
singleton, 67, 71

Law of Exponents, 45
least, 29
least upper bound, 33
lemma, 42
length, 56
less than, 24, 42
less than or equal to, 42
lexical entries, 72
lexical entry

Lambek grammar, 97
license

context-free grammar, 85
linear implication, 89
linear order, 29, 42
linear precedence, 29
linearly precede, 84
linguistic theory, 2
lower, 29
lub, see least upper bound

M
map

function, 34

Mathese, 15
maximal, 29
member (of a set), see membership
membership, 6, 10
minimal, 29
mirror image

language, 66
string, 66

model, 2
logic, 3

model theory, 88
Modus Ponens, 91
monoid, 65, 101
monotonic, 39
morphology, 3
mother, 83
multiplication, 35, 44

associativity, 45
commutativity, 45
distributivity over addition, 45

multiset, 96
multiset union, 96

N
natural deduction, 87
natural number, 41, 45, 52, 64
natural numbers

assumption of, 42
necessary condition, 20
negation, 17, 18

verb, 18
negative, 18
node, 83

graph, 58
nodes, 80
nondenumerable, see uncountable
nondenumerably infinite, see uncount-

able
nonempty powerset, see powerset
nonterminals, 72

122 Index

nonwellfounded, 61
null string

seeempty string, 67, 71
nullary condition, 19

O
on

relation, 24
one-to-one, see function
one-to-one correspondence, see func-

tion, 45
onto, see function
open, 19
operation, 36

binary, 65
nullary, 64
total, 36

order, 28, 33
linear, 29, 42
total, 29

order-preserving, see monotonic
order-reversing, see antitonic
ordered pair, 12
ordered pairs, 23
ordered tree, 84
ordered triple, 13

P
PA, see pitch accents
pairing

assumption of, 9
pairwise disjoint, see disjoint
parser, 77
partition, 30, 64
path

graph, 59
phenogrammar, 89
phonology, 3
phrase structure, 85
phrase structure rules, 72

picture, 60
PIPL

seePositive Intuitionistic Propo-
sitional Logic, 104

pitch accents, 71
PMI, see Principle of Mathematical

Induction
point, 59
pointed graph, 59
Positive Intuitionistic Propositional

Logic, 104
powerset, 10, 52

assumption of, 10
nonempty, 55

predicate
logic, 110

preimage
function, 39

premiss, 91
major, 92
minor, 92

preorder, 28, 33
preterminal, 83
Principle of Mathematical Induction,

42
projection, 36
proof, 28, 77
Proof by Contradiction, 108
proof theory, 68, 87, 88
proper subset, see subset
proper subset inclusion, 24
properly dominate, 83
proposition, 42
propositional letters, 69
propositional logic, 68
propositions, 28, 68
provability, 90
PSR, see phrase structure rules

Q

123 Index

quotient, 30

R
range, 26
recognizer, 77
Recursion Theorem, 43
recursive, 43
reflexive, 26
reflexive closure

seeclosure, 27
reflexive transitive closure, see closure

of a relation, 48
relation, 23, 24, 34

binary, 25
inverse, 25
nullary, 25
ternary, 25
unary, 25

replacement
assumption of, 49

representation, 2
restriction, 39
return

function, 34
root

of a tree, 83
RT, see Recursion Theorem
Russell set, see Russell’s Paradox
Russell’s Paradox, 11

S
schema, 49
Schröder-Bernstein Theorem, 55
scope

of a quantifier, 19
of negation, 18

semantics, 3, 68
separation

assumption of, 11
sequent, 90

set, 6
set difference, see complement
set membership, see membership
set theoretic arrow, 35
set theory, 6, 7
singleton, 9, 21, 22
sister, 83
situation semantics, 57
SRT, see Strong Recursion Theorem
statement

of a sequent, 90
strictly between, 31
strictly dominated, see also dominated
string, 3, 63, 96
strings, 56, 65
strings of length n, 63
strong generative capacity, 85
Strong Recursion Theorem, 50
structural rule, 105
subset, 8, 10, 21

assumption of, 58
proper, 8, 45

subset inclusion, see inclusion, 24
successor, 10, 22, 35, 41
sufficient condition, 20
surjection, see function
symmetric, 26
symmetric interior, 30
syntactic calculus, see Lambek calcu-

lus
syntactic categories, 72
syntactic category

Lambek grammar, 97
syntactic combinatorics, 89
syntax, 3

T
take

function, 34
tecto, 89

124 Index

tecto types, 89
tectogrammatical structure, 89
terminal, 83
terminal yield, 85
terminals, 72
ternary condition, 19
theorem, 42
theorems, 7
tied, 31, 50
tones, 70
top, 29
total order, 29
trace, 91
transitive, 26
transitive closure, see closure

of a relation, 48
transitivity

sets, 45
tree, 3, 28, 83

phrase structure, 85
tree diagrams, 80
trees, 80
truth function, 37
turnstile, 90
two-sided identity, see identity
type system, 104
typed lambda calculus, 104

U
unanalyzed primitives, 7
unary condition, 19
uncountable, 55
union, 10

assumption of, 9
universal, 19
Universal Instantiation, 109
universal quantifier, 18
universally quantified, 19
up, 33
upper, 29

utterance, 71

V
vacuous, 19
vacuously true, 20
value, 34

W
weak generative capacity, 85
Weak Recursion Theorem, see Recur-

sion Theorem
Weakening, 105
well-ordering, 29, 42, 46, 48
word

Lambek grammar, 97

Z
Zermelo-Fraenkel set theory, 10, 58
ZF, see Zermelo-Fraenkel set theory
ZF−, 58
ZFC, 58
ZFC−, 58

	Introduction
	I Fundamentals
	Sets
	Sets and Membership
	Basic Assumptions about Sets
	Russell's Paradox and Separation
	Ordered Pairs and Cartesian (Co-)Products

	Mathese
	Introduction
	`Logicky' expressions
	Variables
	Sentence-level expressions
	Quantificational expressions

	Defining Predicates
	Defining Names
	Functional Names

	Relations
	Introduction
	Inverting and Composing Relations
	Special Properties of Relations

	Preorders and Equivalences
	Orders and Preorders
	Equivalence Relations
	Least Upper Bounds and Greatest Lower Bounds

	Functions
	Basic Properties
	Composing Functions
	Restrictions and Images
	Monotonicity and Antitonicity

	Induction and Recursive Definition
	The Natural Numbers
	Induction and Recursive Definition
	Arithmetic
	Addition
	Multiplication
	The Infinitude of the Natural Numbers
	The Well-Ordering of the Natural Numbers

	Transitive Closure and Reflexive Transitive Closure
	Replacement and Strong Recursion
	Hasse Diagrams

	Infinities
	Equinumerosity
	Dedekind Infinity
	Domination, Countability, and Choice

	Varieties of Set Theory
	Zermelo-Fraenkel Set Theory and Variants
	Antifoundation
	Preliminaries

	Introduction to Formal Languages
	Strings
	Formal Languages
	Operations on Languages
	Regular Languages
	Context-free Languages
	Intuitions
	Informal Definition
	Spelling It Out Formally Using Simultaneous Recursion

	Trees
	Informal Motivation
	Trees
	Technical Preliminaries
	Trees
	Ordered Trees

	Trees in Syntax

	II Proof Theory
	Linear Propositional Logic and Natural Deduction
	Proof theory
	Finite multisets
	Formulas in linear logic
	A linguistic application: tectogrammar
	Contexts, Sequents, and Provability

	(Pure) linear logic
	Axioms and rules
	Theorems and proof trees
	Derived rules

	The Lambek Calculus and Lambek Grammar
	Proof Theory of L
	Lambek Grammars Defined
	Syntactic Categories of a Lambek Grammar

	Empirical Predictions of Lambek Grammars
	Extending L with Monoidal Terms

	Propositional and First-order Logics
	Positive Intuitionistic Propositional Logic
	Axioms and Rules

	Extensions of PIPL
	Classical Propositional Logic
	First-order Logics

	Deferred Proofs
	Bibliography
	Index

