
The Dynamics of Sense and Implicature

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Scott Martin, B.A., M.A.

Graduate Program in Linguistics

The Ohio State University

2013

Dissertation Committee:

Carl Pollard (co-advisor)

Craige Roberts (co-advisor)

Michael White

Copyright c© by

Scott Martin

2013

Abstract

This thesis is a both a descriptive and theoretical examination of implica-
tures, parts of the contextual meanings of utterances that are separate from
their sense, their main point. The empirical taxonomy I describe draws
on the work of Grice (1975), but fleshes out two important subcategories
of implicature that he did not discuss in detail. One of these subcate-
gories is the conventional implicatures, which contains definite anaphora,
iterative adverbs, honorifics, and Potts’s (2005) “CIs”: nominal apposi-
tives, nonrestrictive relative clauses, as-parentheticals, and expressives. The
other is the nonconventional implicatures apart from Grice’s conversational
implicatures, which contains lexical items often construed as bearing pre-
suppositions, such as so-called factive verbs, aspectuals, and achievements.
I offer evidence that what distinguishes the class of anaphora from other
conventional implicatures is that the use of a definite must be anchored to
the speaker, since it bears the implication that an antecedent is retrievable
in the discourse context.

This new characterization of the landscape of implicatures holds sig-
nificant consequences for semantic theory. The notion of contextual felicity
usually assumed to apply to presuppositions is generalized to a mechanism
that accounts for the (in)felicity of all conventional implicatures on the
basis of whether their content conflicts with entailments present in the
discourse context. For the nonanaphoric implicatures, the choice between
anchoring their implicature to the speaker or to an embedded perspective
is influenced in part by this new notion of contextual felicity. Since it places
nonanaphoric lexical items usually thought to be presuppositional under
the category of nonconventional implicatures, the terms presupposition and
anaphora become synonymous. As a corollary, the process of presupposition
accommodation (Lewis, 1979) takes on a more limited role than is usually
thought.

i

Abstract ii

I formalize insights from this new taxonomy of implicatures in a dy-
namic semantics that follows on the work of Heim (1982), Beaver (2001),
and de Groote (2006), among others. This formal theory is dynamic in the
sense that utterances are modeled as both updating the discourse context
and depending on it for their own interpretation. It is also compositional in
Montague’s (1973) sense: meanings of phrases are built up based on the
meanings of their component lexical items and the way they are syntacti-
cally combined. Rather than the single meaning level usually assumed by
semantic theories, the dynamic semantics developed here uses a two-level
scheme for separating the sense of expressions from their implicatures, fol-
lowing Karttunen and Peters (1979). This dynamic semantics is embedded
within a categorial grammar that separates word order from combinatorics,
based on ideas originally due to Curry (1961). The grammar is in turn built
upon the solid, well-understood, mainstream mathematical foundations of
dependent type theory and linear logic.

I then apply this semantics to build a robust account of anaphora
that adopts the perspective that definites give rise to an implication of
retrievability of their antecedent, rather than bearing presuppositions, as
they are usually treated. The notion of anaphoric accessibility common
to dynamic theories is extended by implementing Roberts’s (2003) weak
familiarity in the account, broadening its empirical coverage to instances
in which a definite’s antecedent is merely entailed to exist, but not overtly
mentioned. The semantics is then extended to handle both the weak and
strong readings of determiners in a contextually dependent way. Potts’s
(2005) CIs are also modeled by using essentially the same mechanism as the
one that captures the implicatures associated with anaphora. I show how
the formal theory I develop here represents a considerable advance with
respect to Potts’s, due largely to a more empirically adequate treatment of
anaphoric links between CIs and the discourse in which they are situated.

I argue that the theory I develop in this thesis compares favorably with
other attempts to treat similar phenomena. In addition to clarifying the
empirical status of implicatures through a new meaning taxonomy that
extends Grice’s original, its formal rigor provides an explicit scientific
theory of conventional implicature that is falsifiable, in the sense of mak-
ing predictions to which counterexamples could in principle be given. I
speculate about how the theory might be extended to account for even
more phenomena, and argue that it is very well suited to computational
implementation for various applications.

To Robin, Vera, and Xavier

iii

Acknowledgments

It has been said that doing a Ph.D. is a monastic experience. While I
think there is some truth in that statement, I also now have a deeper
understanding of what John Donne meant when he said that no man is an
island. I am deeply indebted to everyone who helped and influenced me
along the way. I hope I can eventually offer more in return than this small
gesture of thanks.

First and foremost, I am humbly and enduringly grateful to my wife
Robin and our two amazing kids. There are significant risks and hardships
that go along with writing a dissertation, and I know that to whatever
extent these affected me, they affected you in equal measure. Your love and
support kept me going, and dinners with you were a nightly reminder of
what’s really important.

I was honored to receive a dissertation year presidential fellowship from
the Ohio State University graduate school, which I gratefully acknowledge.
Without it, this thesis would not have been possible in its current form. I
owe thanks to Chris Barker, David Beaver, Philippe de Groote, Jirka Hana,
Jungmee Lee, Reinhard Muskens, Julia Papke, Carl Pollard, Craige Roberts,
Anastasia Smirnova, and Bridget Smith for the role they played in helping
me get the presidential. I am also thankful to have been the recipient of
generous funding from the OSU linguistics department to present early
versions of my thesis work at various conferences.

I trace the origins of this project to my presentation of Muskens’s (1996)
paper Combining Montague Semantics and Discourse Representation Theory
to Carl Pollard’s seminar in the spring of 2009. That fall, Carl, Craige
Roberts, Elizabeth Smith and I started meeting informally as the Findlay
working group, so named because Findlay, Ohio is about halfway between
Columbus and Ann Arbor, Michigan, where Craige was visiting that term—
and because Upper Sandusky was thought too verbose. I benefited greatly

iv

Acknowledgments v

from those early Findlay discussions, and had fun too. Our collaboration
convinced me that this entire effort was worth undertaking.

It almost goes without saying that I owe a great deal to my committee
members, all of whom strongly influenced both my education in linguistics
and this thesis, and all of whom I am honored to call colleagues. I first
got into this line of work after taking Carl Pollard’s course in formal
foundations when I arrived at Ohio State. I was intrigued to see how
formal methods could be applied to linguistic analysis, even though I
found the course itself so challenging at the time that I would not have
imagined eventually becoming the grader for it. I have been profoundly
influenced by Carl’s view that in science, formal methods are not just
valuable but indispensable. Carl spent many long afternoons with me at
various coffee shops near campus, filling up legal pads with detailed notes,
poring over the problems I was struggling with, and almost always giving
pointers that aimed in the right direction. In addition to finding numerous
errors and inconsistencies in my work, he was open minded enough to
really listen to my ideas while maintaining the honesty to force me to
confront the facts head on. I benefited greatly from Carl’s ability to ask
questions no one else had thought of forthrightly and without pretense.

I met Craige Roberts in her semantics course in the winter of 2007.
In many ways, it was this class, which she co-taught with David Dowty
and Judith Tonhauser, that got me interested in semantics as a focus of
inquiry. From the beginning, it was heartening to find an area of linguistics
where formal methods have a strong influence. But I have also been
consistently impressed by Craige’s seemingly limitless persistence in the
face of complications, confusions, and unknowns. Her intimate awareness
of the core issues in semantics is truly monumental, and her willingness
to pose tough questions is admirable. It was often Craige who prompted
me to get clear about not just what I was trying to do and how, but also
ask why, and consider how it fit into the larger scheme of things. Since I
started my thesis, Craige has really made an effort to bring me into the
fold of semantics research, and I continue to be inspired by her view that
semantics, at its best, is a science that tries to get at what people do when
they communicate.

If not for Mike White, I probably would never have come to Ohio State
in the first place. It seems that he, more than anyone else, thought it wise
to gamble on admitting a bored software engineer with a background in
languages. With a more computational focus, Mike often raised questions

Acknowledgments vi

that defied comfortable assumptions I had made. He was also observant
enough to notice several pretty serious errors in my work that had eluded
everyone else, including me. I could always count on him to offer unflinch-
ing, incisive comments that cut to the heart of the matter. I also have Mike
to thank for helping me secure several research assistantships during my
time at Ohio State, without which I would not have been able to explore
the computational side of linguistics at anywhere near the same level of
detail. Collaborating on software projects and research with him has been a
welcome confirmation that my work in semantics, though distantly related,
is rooted in some kind of practical reality.

Along the way I have had the privilege of sharing my ongoing work
with audiences in a number of different venues. I thank Philippe de Groote
and Sylvain Pogodalla for inviting Carl Pollard and me to give a talk at
the CAuLD Workshop on Logical Methods for Discourse in 2009. There I
benefited from many stimulating discussions, not only with Philippe and
Sylvain, but also with David Beaver, Joey Frazee, Oleg Kiselyov, Florent
Pompigne, Ken Shan, and others. Itamar Francez and Marcin Morzycki
pointed out some oversights and oversimplifications in an early version
of this work that I presented at the Semantics Workshop of the American
Midwest and Prairies in 2010. Some helpful pointers on my presentation
to the 2011 Formal Grammar conference made their way into this thesis,
and thanks are due to Philippe de Groote, András Kornai, Sylvain Salvati,
and Thomas Ede Zimmermann for their suggestions and for a lively and
entertaining conference dinner. I had long and interesting talks with Chris
Barker at Semantics and Linguistic Theory in 2012, not only about the work
I presented there with Greg Kierstead, but also about the state of linguistics
as a field. At that same conference, I also had good conversations with Dan
Lassiter, who fortunately warned me to avoid Pullum’s (1989) boojum.

Rough and overly dense drafts of these presentations were delivered to
the OSU discussion groups on logic, language, information and computa-
tion (a.k.a. Commies), syntax and semantics (a.k.a. Synners), and pragmatics,
which unfortunately lacks a cute nickname. Thanks to all who endured
these presentations and offered suggestions for how they might be im-
proved, especially to Jefferson Barlew, Greg Kierstead, Andy Plummer,
Alex Wein, and Murat Yasavul, for criticism that was sometimes pointed
and usually insightful. Over the years, I also benefited from conversa-
tions with Adriane Boyd, Jon Dehdari, Manjuan Duan, Dominic Espinosa,
Jirka Hana, Dave Howcroft, Dahee Kim, Yusuke Kubota, Bob Levine, Det-

Acknowledgments vii

mar Meurers, Rajakrishnan Rajkumar, Liela Rotschy, Marty van Schijndel,
William Schuler, Oxana Skorniakova, Anastasia Smirnova, Bridget Smith,
Elizabeth Smith, and Abby Walker, among others. Some of you were stu-
dents, some were colleagues or mentors who gave me good advice at a
time when I needed to hear it, and I am grateful.

Friends and family helped keep me grounded during this project. Bill
and Laurie Franz were beyond generous, in ways large and small, and
I am glad I had the chance to get to know them well. I enjoyed many
nights of animated discussions about linguistics, academic life, and almost
anything else with Vedrana Mihaliček and Chris Worth, both of whom
started graduate school the same year as me. Always being at the same
point in our graduate careers, grappling with many of the same issues at
about the same time, helped build a camaraderie between us that I truly
value. The Harnettys were my constant companions. They were gracious
and open enough to really share their lives with me, and made me feel
almost like family. The Franzes, Gorelovs, Willamans, and FORS made the
holidays times to remember, and I still look forward to Memorial weekends
at Lake Hope with the Fomins and Shepards. I was also lucky enough
to live in a place where neighbors became friends, and I enjoyed many
birthday parties, block parties, Derby parties, Halloweens and hangouts
with the Tibet Road social club, and with all of the other Clintonville
neighbors I had the good fortune to get to know.

I thank my colleagues at Nuance’s natural language understanding
and artificial intelligence laboratory, which I am fortunate to have joined.
Ron Kaplan and Joel Tetreault afforded me the space and time to defend
my thesis, and after a presentation of my thesis work to our research
group, Chris Brew and Dick Crouch delivered an unvarnished critique
that helped me be much better prepared for my defense. Valeria de Paiva
graciously took the time to read a draft of appendix A, offering many
helpful suggestions.

Lastly, I am grateful to my parents, Donna and John Martin, my grand-
parents, Bea and Bob Buck and Ragnheiður and Robert Martin, and my
brothers Mike and Todd, for instilling in me a sense that I could do what-
ever I wanted if I just kept at it, worked hard, and never got discouraged.
Without this self-confidence and persistence, I would never have dared to
set such a distant and difficult goal for myself, and I doubt it would have
been possible to achieve it.

Vita

M.A. in Linguistics, The Ohio State University, 2011.
B.A. cum laude in French and Philosophy, Florida State University, 1995.
Presidential Fellow, The Ohio State University, 2012–2013.
Graduate Research Associate, The Ohio State University Department of
Linguistics, 2006–2012.
Graduate Teaching Associate, The Ohio State University Department of
Linguistics, 2007–2011.

Publications

Journal Articles

Scott Martin and Carl Pollard. A higher-order theory of presupposition.
Studia Logica, 100(4):727–751, 2012. doi:10.1007/s11225-012-9427-6.

In Peer-Reviewed Proceedings

Gregory Kierstead and Scott Martin. A multistratal account of the projective
Tagalog evidential ‘daw’. In Proceedings of the 22nd Conference on Semantics
and Linguistic Theory. CLC Publications, 2012.

Kapil Thadani, Scott Martin, and Michael White. A joint phrasal and
dependency model for paraphrase alignment. In Proceedings of the 24th
International Conference on Computational Linguistics, 2012.

Scott Martin. Weak familiarity and anaphoric accessibility in dynamic
semantics. In Philippe de Groote and Mark-Jan Nederhof, editors, Formal
Grammar, number 7395 in Lecture Notes in Computer Science, pages 287–
306. Springer, 2012. doi:10.1007/978-3-642-32024-8_19.

viii

http://dx.doi.org/10.1007/s11225-012-9427-6
http://dx.doi.org/10.1007/978-3-642-32024-8_19

Vita ix

Scott Martin and Carl Pollard. Hyperintensional dynamic semantics: An-
alyzing definiteness with enriched contexts. In Philippe de Groote and
Mark-Jan Nederhof, editors, Formal Grammar, number 7395 in Lecture Notes
in Computer Science, pages 114–129. Springer, 2012. doi:10.1007/978-3-642-
32024-8_8.

Scott Martin and Michael White. Creating disjunctive logical forms from
aligned sentences for grammar-based paraphrase generation. In Proceed-
ings of the Workshop on Monolingual Text-to-text Generation. Association for
Computational Linguistics, 2011.

Scott Martin, Rajakrishnan Rajkumar, and Michael White. Grammar en-
gineering for CCG using Ant and XSLT. In Proceedings of the Workshop
on Software Engineering, Testing, and Quality Assurance for Natural Language
Processing. Association for Computational Linguistics, 2009.

D.J. Hovermale and Scott Martin. Developing an annotation scheme for
English language learner spelling errors. In Proceedings of the 5th Midwest
Computational Linguistics Colloquium, 2008.

Scott Martin. A proof-theoretic approach to French pronominal clitics.
In Proceedings of the 13th European Summer School in Logic, Language and
Information Student Session, 2008.

Michael White, Rajakrishnan Rajkumar, and Scott Martin. Towards broad
coverage surface realization with CCG. In Proceedings of the Workshop on
Using Corpora for Natural Language Generation: Language Generation and
Machine Translation, 2007.

Fields of Study

Major Field: Linguistics.

http://dx.doi.org/10.1007/978-3-642-32024-8_8
http://dx.doi.org/10.1007/978-3-642-32024-8_8

Contents

Abstract i

Acknowledgments iv

Vita viii

List of Tables xiv

List of Figures xv

1 Introduction 1
1.1 Thesis Outline . 4
1.2 Some Conventions . 8

2 The Empirical Domain 11
2.1 An Overview of Implicatures 12
2.2 Conventional Implicatures . 20

2.2.1 Obligatory Speaker Commitments 21
2.2.1.1 Definite Anaphora 21
2.2.1.2 Iterative Adverbs 26
2.2.1.3 Possessives 28
2.2.1.4 Honorifics 31

2.2.2 Variable Speaker Commitment Status 32
2.2.2.1 Descriptive Content 32
2.2.2.2 Supplements and Expressives 35

2.3 Nonconventional Implicatures 39
2.3.1 Aspectuals . 39
2.3.2 Achievements . 41
2.3.3 Factives . 43

x

Contents xi

2.4 Taking Stock . 47
2.4.1 Felicity, Accommodation, and Variability 49

3 Curryesque Categorial Grammar 55
3.1 A Logic of Signs . 56

3.1.1 Signs, Contexts, and the Lexicon 58
3.1.2 Grammar Rules . 59
3.1.3 Axiomatizing the Pheno Logic 61
3.1.4 An Agnostic Semantic Theory 62

3.1.4.1 Two Notable Sects 67
3.2 A Small Fragment of English 69

3.2.1 Quantifier Scope Ambiguity 76
3.2.2 Peripheral and Medial Extraction 81

3.3 Summary . 86

4 Dynamic Categorial Grammar 88
4.1 Motivation for a Dynamic Approach 89
4.2 A Compositional Dynamic Semantics 91

4.2.1 Preliminaries . 91
4.2.1.1 Contexts, Contents, and Updates 92

4.2.2 Dynamicizing a Static Semantics 96
4.2.2.1 Dynamic Connectives and Quantifiers . . . 99
4.2.2.2 Dynamic Entailment and Definiteness . . . 107

4.3 A Dynamic Fragment . 109
4.3.1 Dynamic Quantifier Scope 115
4.3.2 Donkey Anaphora . 118

4.4 Grammar Rules for Modeling Discourse 123
4.5 Summary and Comparison with Other Theories 127

5 Anaphora 129
5.1 Extending Dynamic Categorial Grammar 131

5.1.1 Redefining the Dynamic Logic 132
5.2 Anaphora in a Two-Level Setting 134

5.2.1 Generalized Definiteness 136
5.2.1.1 Possessives 142

5.2.2 A Broader Notion of Contextual Felicity 145
5.2.3 The Iterative Adverb ‘Too’ 149

5.3 Generalized Familiarity and Accessibility 153

Contents xii

5.3.1 Implementing Weak Familiarity 156
5.4 Determiner Strength . 166

5.4.1 Strong and Weak Readings of Determiners 166
5.4.2 Kanazawa’s Tonicity-Based Approach 168
5.4.3 Chierchia’s Dynamic/E-Type Account 169
5.4.4 A Synthesized Dynamic Proposal 171

5.4.4.1 Weakening Dynamic Determiners 172
5.5 Summary and Comparison with Other Theories 180

6 Variable Conventional Implicatures 183
6.1 Supplements . 184

6.1.1 Analyzing Supplements 185
6.1.1.1 Stacking . 195

6.2 Expressives . 199
6.3 The Interaction between Sense and Implicature 204
6.4 Variable Conventional Implicatures and Contextual Felicity 216
6.5 The Binding Problem Revisited 218

6.5.1 A Dynamic Analog of the Binding Problem? 219
6.5.2 An Alternative Analysis 222
6.5.3 The Problem of Quantified Supplements 223
6.5.4 Potential Solutions . 225

6.6 Summary . 229

7 Conclusions and Future Directions 231
7.1 Persistent Entailments in DyCG 233
7.2 Towards an Account of Anchoring 235
7.3 Computational Considerations 237
7.4 In Sum . 240

A Tensor-Implication Logic 243
A.1 Syntax . 243

A.1.1 Proof Theory . 244
A.2 Algebraic Semantics . 245

B Type Theory with Cartesian Products 251
B.1 Syntax . 251

B.1.1 Term Identification and Reduction 255
B.1.2 Term Normalization 259
B.1.3 Proof Theory . 260

Contents xiii

B.2 Semantics . 263

C Dependent Typing with Sums 267
C.1 An Enriched Typing Ontology 268
C.2 Syntax . 269

C.2.1 Proof Theory . 271
C.3 Applications . 278

C.3.1 Von Neumann-style Natural Numbers 278
C.3.2 Vectors as n-ary Cartesian Products 280
C.3.3 Bit Vector Selection . 285

C.4 Extending Pure Type Systems with Dependent Sums 287

Bibliography 290

Index of Citations 305

List of Tables

2.1 Summary characterization of implicatures 48

xiv

List of Figures

2.1 Taxonomic graph of implicatures. 49

3.1 Grammar rules of Curryesque Categorial Grammar 60
3.2 Full derivation of Lance rode a bike 75

4.1 Dynamic Categorial Grammar grammar rule for discourse . 123

6.1 Nonlogical rule converting generalized quantifiers to pred-
icatives . 188

A.1 Inference rule schemas for tensor-implication logic 244

B.1 Inference rule schemas for type theory 261
B.2 Structural rule schemas for type theory 262

C.1 Inference rule schemas for λPΣ 272
C.2 Inference rules for pure type systems 288

xv

Chapter 1

Introduction

Grice (1975) is well known for having investigated conversational implicatures,
aspects of the contextual meanings of utterances that are not explicitly
stated but are in some sense determined by the discourse context itself in
combination with the interlocutors’ goals and intentions. In fact, Grice is so
well known for his work on conversational implicatures, the central focus
of his 1975 paper, that the term Gricean implicature is sometimes found in
the semantics literature, referring strictly to the conversational implicatures
he explores.

But as Potts (2005) and others have recognized, there is much more to
the Gricean story about implicature than just the conversational subcategory.
Grice himself mostly just sketches a description of what I contend to be a
very important subcategory of implicatures, the conventional implicatures.
The following passage contains almost all of what Grice has to say regarding
them:

In some cases the conventional meaning of the words used will
determine what is implicated, besides helping to determine
what is said. If I say (smugly), “He is an Englishman; he is,
therefore, brave,” I have certainly committed myself, by virtue
of the meaning of my words, to its being the case that his
being brave is a consequence of (follows from) his being an
Englishman. But while I have said that he is an Englishman,
and said that he is brave, I do not want to say that I have said
[. . .] that it follows from his being an Englishman that he is
brave, though I have certainly indicated, and so implicated, that
this is so. I do not want to say that my utterance of this sentence

1

Chapter 1 Introduction 2

would be, strictly speaking, false should the consequence in
question fail to hold. So some implicatures are conventional . . .
(Grice, 1975, page 167 in Martinich 2001)

He later follows with the following hint about how the conventional sub-
category of implicatures is to be distinguished from the conversational
one:

The presence of a conversational implicature must be capable
of being worked out; for even if it can in fact be intuitively
grasped, unless the intuition is replaceable by an argument, the
implicature (if present at all) will not count as a conversational
implicature; it will be a conventional implicature.
(Grice, 1975, page 170 in Martinich 2001)

This thesis takes Grice’s pointers about conventional implicatures as
its starting point. Based first on the distinction between conventional and
nonconventional implicatures, I develop a more fully fleshed out taxonomy
of implicature that is rooted in Grice’s (1975) work. This taxonomy adds the
additional distinction of anchoring to a point of view, either the speaker’s or
otherwise, as discussed by Potts (2005), Amaral, Roberts, and Smith (2007),
and Harris and Potts (2009). I make an effort to link this taxonomy with
recent work on projective meanings, which escape the effects of semantic
operators like negation and modals, due mainly to Roberts, Simons, Beaver,
and Tonhauser (2009), Simons, Roberts, Beaver, and Tonhauser (2010), and
Pollard and Smith (2011).

The result is that, starting from Grice’s intuitions about implicatures, an
empirical categorization of implicatures is possible in which the meaning
types usually called presupposition, anaphora, and Potts’s (2005) “CIs” can be
subsumed under more general categories. This characterization sheds light
on some old and important topics in semantics, such as the presuppositional
nature (or lack thereof) of so-called factive verbs, aspectuals like stop, and
achievements like win, and the role of contextual felicity, as conceived of by
Stalnaker (1978), Lewis (1979), and Heim (1982), in discourse interpretation.

One upshot of this way of organizing implicatures is that there is no
longer a place for the term presupposition separate from anaphora, as I argue
at length that the nonanaphoric lexical items that are sometimes classified
as presuppositions actually belong to a separate class, the nonconventional
implicatures, which may or may not give rise to certain entailments. Another

Chapter 1 Introduction 3

is that the taxonomy I explore here presents a challenge to two of the central
aspects of Potts’s (2005) account: his idea that conventional implicatures
should be forbidden from interacting with other types of content, and
his claim that no lexical item can contribute to both the implicature of an
expression and to its main point.

Still another implication of the generalized taxonomy I describe is
that infelicity for anaphora, for example, when a definite is used without a
proper antecedent, is modeled by exactly the same mechanism that captures
infelicity for other instances of conventional implicatures, such as a nominal
appositive whose content conflicts with entailments already present in
the discourse context. This generalization of the mechanism by which
(in)felicity is determined has implications for the notion of presupposition
accommodation (Lewis, 1979): since many lexical items long thought to be
presuppositional are reclassified as simply nonconventional implicatures,
accommodation takes on a far more limited role than usually assumed.
For lexical items that can take on a nonspeaker point of view, the threat
of infelicity is also taken to inform the choice between anchoring to the
speaker or to a nonspeaker perspective.

In the interest of making these empirical claims more concrete, I then
give a compositional, dynamic semantics that makes formally explicit many
of the factors distinguishing implicatures that I explore in the taxonomy
I develop. My main aims for this formal semantics are twofold. First, I
intend it to serve as a scientific theory in the sense of yielding predictions to
which counterexamples could be provided, that is, a falsifiable theory. And
second, its formal rigor is designed with the prospect of computational
implementation in mind, with the goal of impacting a wide range of tasks
in natural language processing and understanding, especially ones that
involve or are influenced by aspects of discourse.

The dynamic semantics I pursue in this thesis is situated in the tradition
of discourse semantics that runs through Karttunen (1974), Heim (1982),
and Beaver (2001), but is also informed in large part by related formalisms,
such as those due to Kamp (1981) and Groenendijk and Stokhof (1990, 1991)
and their descendants: Chierchia (1995), Muskens (1994, 1996), Blackburn
and Bos (1999), Bos (2003), de Groote (2006), and van Eijck and Unger (2010),
among others. It uses a categorial syntax made up of two parts, an abstract
syntactic component that models combinatorics, and a concrete syntax for
modeling word order. In this way, it is similar to other frameworks that

1.1 Thesis Outline 4

adopt Curry’s (1961) notion of the division between phenogrammar and
tectogrammar, such as the work of de Groote (2001) or Muskens (2001, 2007).

I then extend this dynamic semantics equipped with a categorial syntax
to a two-level semantics, following on ideas chiefly due to Karttunen and
Peters (1979) but also developed in a different direction by Potts (2005). One
level of the semantics captures the sense of expressions, their main point,
and the other captures their implicatures. I show that this way of setting
up a dynamic semantics allows a robust, explicit account of both anaphora
and Pottsian “CIs” like nominal appositives, parentheticals, nonrestrictive
relatives, and expressives. This semantics has the desirable attribute of
allowing anaphora to interact with other kinds of conventional implicatures
in a very free manner, while still maintaining a separation between their
contributions to the sense and to the implicature of expressions. I end
this thesis by speculating about how nonconventional implicatures and
anchoring to a point of view might be modeled in the formal theory
I investigate for the conventional subclass of implicatures. I also offer
promising pointers to ways in which the grammatical and semantic theory
I develop in this thesis might be realized computationally.

In the rest of this chapter, I provide an outline of the chapters and
appendices (§1.1), and in §1.2, I spell out some of the notational conventions
used throughout the thesis.

1.1 Thesis Outline

The remainder of this thesis is organized as follows, with the main content
given in chapters 2 through 7.

Chapter 2: The Empirical Domain makes a case for an extension of
Grice’s (1975) taxonomy of implicatures that more fully describes both
the conventional and nonconventional subclasses. To help distinguish the
senses of expressions from their implicatures, I discuss (§2.1) two diag-
nostics for persistence, a notion related to Simons et al.’s (2010) projection,
and also make the case that point of view anchoring distinguishes between
types of implicatures.

I then explore the taxonomy in more detail, discussing the subclass of
conventional implicatures in §2.2. The descendants of this class are divided
into

1.1 Thesis Outline 5

1. The obligatorily speaker-oriented (§2.2.1), such as definite anaphora
(§2.2.1.1), iterative adverbs (§2.2.1.2), possessives (§2.2.1.3), and hon-
orifics (§2.2.1.4), and

2. Those with variable orientation (§2.2.2), like the descriptive content
implication (§2.2.2.1) and Potts’s “CIs” (§2.2.2.2).

In §2.3, I delve into the nonconventional implicatures besides the conversa-
tional implicatures: aspectuals (§2.3.1), achievements (§2.3.2), and factives
(§2.3.3). Finally, §2.4 sums up the empirical characterization and discusses
some of its implications for the way persistent meanings are usually con-
ceived of, including the notions of contextual felicity and accommodation, and
the variability in persistence of certain implicatures (§2.4.1).

Chapter 3: Curryesque Categorial Grammar begins the effort to explic-
itly state some of the empirical generalizations from chapter 2. The gram-
matical theory developed in this chapter embodies Curry’s (1961) idea that
syntax is best modeled by separating the underlying combinatorics from
the surface form. In §3.1, I formally devise the grammar, building it on
three separate logics, two for the syntax and a third for a (static) seman-
tics. Some foundational notions are defined in §3.1.1, and §3.1.2 gives the
rules of the grammatical system. The concrete syntax, or phenogrammar, is
axiomatized in §3.1.3, and the semantics itself (§3.1.4) is very general, built
straightforwardly on a logic of propositions that has only the usual connec-
tives and quantifiers, but without making a commitment on the way the
notion of possible worlds should be implemented, following Plummer and
Pollard (2012). Then, in §3.2, a minimal fragment demonstrating some of
the grammar’s core capabilities is given, discussing several basic examples,
quantifier scope ambiguity (§3.2.1), and extraction (§3.2.2). A summary of
Curryesque Categorial Grammar is given in §3.3.

Chapter 4: Dynamic Categorial Grammar expands the grammar from
chapter 3 to one with a dynamic, rather than a static, semantics, first
motivating the dynamic approach in §4.1. The dynamic semantics itself
is laid out in §4.2, and I show in §4.2.2 how it is essentially generated
by a mapping from the generic static semantics in chapter 3. Next, §4.3
demonstrates how the new dynamic semantics works on some basic exam-
ples, and then shows that the treatment of quantifier scope from chapter

1.1 Thesis Outline 6

3 is maintained (§4.3.1). In §4.3.2, I show how the dynamic semantics
can handle the familiar cases of donkey anaphora that motivated the early
dynamic theories of Kamp (1981) and Heim (1982). The grammar rules of
Curryesque Categorial Grammar are extended for modeling discourse in
§4.4, along with a straightforward example of how they are used to put
a discourse together from its component utterances. Lastly, the dynamic
semantics is compared with some other approaches in §4.5.

Chapter 5: Anaphora deals with the conventional implicatures associated
with anaphora. First (§5.1) the dynamic theory from chapter 4 is extended
to have two meaning levels rather than a single one, with a level for the
sense of an expression and a level for any implicatures it gives rise to,
following Karttunen and Peters (1979).

I then offer a novel modeling of anaphora in the two-level setting in §5.2,
with a generalized notion of definiteness as implicature (5.2.1), an account
of possessives (5.2.1.1), and a generalized notion of felicity in context (5.2.2).
I also offer an account of the iterative adverb too in §5.2.3. An implementa-
tion of Roberts’s (2003) weak familiarity is explored in §5.3. Then, in §5.4,
a treatment of the weak and strong readings of determiners in a dynamic
setting that blends some insights by Kanazawa (1994) and Chierchia (1995).
Kanazawa’s approach is discussed in §5.4.2, and Chierchia’s in §5.4.3. Then
§5.4.4 proposes a way of thinking about determiner strength that synthe-
sizes some aspects of the two approaches, along with a way of formally
redefining the Dynamic Categorial Grammar determiners (§5.4.4.1). To
wrap up, §5.5 reflects on my approach to anaphora and compares it to
some other theories.

Chapter 6: Variable Conventional Implicatures demonstrates how the
two-level extensions to the dynamic semantics explored in chapter 5 are
general enough to also capture the implicatures associated with Potts’s
(2005) “CIs,” starting with supplements (§6.1). Beginning with an analysis
of supplements in §6.1.1, I show that the theory developed in this chapter
can handle stacked supplements in §6.1.1.1, which an alternative to Potts’s
theory due to Nouwen (2007) is incapable of. Expressives are then treated
in §6.2. I next show how this theory correctly allows sense content to
interact with implicature content in §6.3, which Potts explicitly disallows.

1.1 Thesis Outline 7

In §6.4, I discuss how the formal definition of contextual felicity given
in §5.2.2 in the context of an account of anaphora also generalizes to
the case of the conventional implicatures for which nonspeaker point of
view anchoring is possible, such as supplements and expressives. The
binding problem of Karttunen and Peters (1979) is discussed in §6.5, and
in §6.5.1, I show how no analog of the binding problem arises for this
two-level dynamic semantics. An alternative analysis is then proposed
in §6.5.2, in which the problem also does not arise. In §6.5.3, I turn to
the problem of supplements with quantificational anchors, offering some
potential solutions in §6.5.4. A summary of the chapter is given in §6.6.

Chapter 7: Conclusions and Future Directions wraps up the thesis, re-
visiting its main themes. I sketch an account of the nonconventional
implicatures associated with persistent entailments (discussed in chapter 2)
in §7.1, and then a sketch of an account of anchoring to a point of view
is given in §7.2. In §7.3, some promising possibilities are discussed for
implementing the dynamic theory developed here as software for practical
applications to natural language processing, and some related applications
are discussed (Blackburn and Bos 1999, Bos 2003, van Eijck and Unger
2010). Finally, §7.4 summarizes the thesis’s contributions.

I then provide three appendices (A, B, and C) as technical background
that is not centrally relevant to the thesis itself.

Appendix A: Tensor-Implication Logic describes a subsystem of Girard’s
(1987) linear logic that uses only the tensor product ⊗, its unit 1, and its
residual(. The syntax of this system is given in §A.1, along with a natural
deduction proof theory (§A.1.1). An algebraic semantics following Troelstra
(1992) and de Paiva (2002) is provided in §A.2.

Appendix B: Type Theory with Cartesian Products lays out a version of
Church’s (1940) simple theory of types, as elaborated by Henkin (1950, 1963)
and Andrews (2002). It is extended straightforwardly with a unit type 1
and product types built with the constructor × in addition to the usual
implicative types built with →. Its syntax and proof theory is given in
§B.1, along with a discussion of term reduction and normalization (§B.1.1

1.2 Some Conventions 8

and §B.1.2) and a proof theory (§B.1.3). An extension to Henkin’s (1950)
semantics for the case of product types is given in §B.2.

Appendix C: Dependent Typing with Sums extends the type theory in
appendix B to a system using dependent types based on the system λP
discussed by Barendregt (1991, 1992), and extended with dependent sum
types, which generalize the product types of simple type theory, following
Aspinall and Hofmann (2005). The enhancements to the type system are
introduced in §C.1, and then the extended syntax is discussed in §C.2, along
with an elaborated proof theory (§C.2.1). Several example applications are
then given in §C.3: an implementation of a type of natural numbers in the
style of Von Neumann (§C.3.1), type constrained vectors (§C.3.2), and the
type of a selection function for bit vectors (§C.3.3). Finally, I describe an
adaptation of the extended dependent type system to the setting of pure
type systems (Barendregt, 1992) in §C.4.

A bibliography is given, as usual. For convenience, I also provide an
index of citations after the bibliography. I have made an effort to make the
references in this thesis a useful tool for future research, providing digital
object identifiers (DOIs) in the bibliography where available.

1.2 Some Conventions

Special typographic conventions are observed to signal that terminology is
being used. Specifically, when a term is being used in this thesis for the
first time that does not originate elsewhere, or is being used in a different
way from previous usage, it is set in boldface. Terms that are well known,
or originate from another source, are set in italics, and usually have an
accompanying reference, especially if it is the first time the term occurs.

Numbered linguistic examples are given in the text in the following
form:

(2.5) Lance, a cyclist, is from Texas.

The number 2.5 signals that this is the fifth example in the second chap-
ter. Because this thesis uses a large number of equations, examples and
equations are numbered using the same numbering scheme and sequence.
This means that, for example, no equation can be numbered 2.5, because

1.2 Some Conventions 9

an example has already used that number, and vice versa. Unnumbered
examples or pieces of linguistic data that occur inline in the text are set in
italics. Judgments about examples are expressed by prefixing symbols to
the example in question, according to the following scheme:

* syntactic ungrammaticality

infelicity in the given context, or if no context is given, infelicity in any
context

? the example is questionable in terms of felicity

Examples are sometimes accompanied by a context, either numbered or
unnumbered, that signals the discourse context in which the example in
question occurs for the purposes of the discussion. I also sometimes use
subscripts in examples to disambiguate the intended reading, as in

(2.3) A womani walked in, and then shei bought a ticket,

where the subscripts indicate that the pronoun she should be interpreted as
being anteceded by A woman.

Mathematical definitions, lemmas, propositions, theorems, and exam-
ples are numbered using the same scheme as for linguistic examples and
equations, for example ‘Theorem 3.13,’ except that they use their own
numbering sequence. Various shorthands for the different mathematical
formalisms used in this thesis are given where those formalisms are defined.
For linear logic and type theory, they are discussed in the appendices; for
the formal semantic theory that is a central subject of the thesis, they are
discussed mainly in chapters 3 and 4.

References to an author are cited as ‘Higginbotham (2013),’ with the
year in parentheses following the author’s name. If the work itself is being
referenced, rather than the author, the citation takes the form ‘Higgin-
botham 2013,’ with no parentheses. If a work has three or more authors,
they are all listed the first time the work is referenced, for example, ‘Hig-
ginbotham, Snicklefritz, and Snodgrass 2013.’ Subsequent references to a
work with more than two authors abbreviate the author list, as in ‘Higgin-
botham et al. 2013.’ References to sections are abbreviated from ‘section
9.3’ to ‘§9.3.’ The format of references to axioms, examples, equations,
and proofs is to write the number in parentheses, for example, ‘(3.11)’.
References to definitions, lemmas, propositions, and theorems use only the
number, without parentheses, as in ‘lemma 4.11.’ In the digital version of

1.2 Some Conventions 10

this thesis, references to appendices, axioms, bibliography entries, chapters,
contexts, definitions, equations, examples, figures, lemmas, pages, proofs,
propositions, sections, tables, and theorems are hyperlinked, pointing to
the item they refer to. Also, digital object identifiers in the bibliography
are hyperlinked to a web service that resolves the object they point to.

Chapter 2

The Empirical Domain

Much has been written in the semantics literature on those components
of the meaning of an utterance that are not central to its main point. In
this chapter, I bring into focus some subclasses of these non-main-point
implications, which are called implicatures, following Grice (1975). These
implications have been variously described as backgrounded (Roberts et al.,
2009), as not-at-issue (Potts, 2005; Roberts et al., 2009; Simons et al., 2010),
as implicatures (Roberts, 2012e), and, by Pollard and Smith (2011), as the
part of utterance meaning that is not proffered for acceptance or rejection,
in the sense of Roberts (1996, 2012c). As I discuss in detail below, the
implicatures form a more general class of meanings that includes what are
usually called presuppositions, but implicatures in general do not require
that their truth-conditional content be an entailment of the interlocutors’
mutual knowledge prior to the utterance in which they occur.

One subclass of implicatures, the conventional implicatures, in turn
subsumes two meaning classes that are traditionally categorized separately,
and are distinguished by their status as speaker commitments, propositions
whose truth the speaker is committed to in the context of interpretation.
The class of obligatorily speaker-anchored conventional implicatures includes
phenomena usually referred to as anaphora, while the class of variable con-
ventional implicatures, which are not necessarily speaker-anchored, includes
Potts’s (2005) “CIs.” Here I reclaim the term conventional implicature from
Potts, generalizing it to the sense used by Grice (1975) and Karttunen and
Peters (1979), which also contains the subclass of anaphora.

Another subclass, the nonconventional implicatures, is characterized
by the property that the ability of its members to persist as mutually ac-

11

2.1 An Overview of Implicatures 12

cepted information in a discourse is variable and contextually conditioned.
Instances of nonconventional implicatures include the implications some-
times associated with verbs that are usually described as factive, aspectuals,
and achievements with a preparatory phase.

Before launching into a discussion of my classification of implicatures
and how it should be accounted for, I first give some general background
on the topic.

2.1 An Overview of Implicatures

Frege’s (1892) Kepler example is perhaps the first illustration of the phe-
nomenon of content bearing a persistent implication, and it is certainly
among the best known.

(2.1) Kepler
{

died
did not die

}
in misery.

(Frege, 1892)

Frege noted that for both the negated and nonnegated variants of (2.1),
“there is a presupposition that the name ‘Kepler’ designates something.”
In more modern parlance: by the use of the name Kepler, the speaker
is implicating that the discourse context contains an antecedent discourse
referent that is entailed to have the property of being named ‘Kepler.’

This simple example demonstrates the two most basic facts about
persistent implications. The first fact is that natural language utterances
often have more than a single associated implication. Frege’s example bears
(at least) an implication about Kepler’s state of mind upon his death as well
as the implication that Kepler has a suitable antecedent in the context of
interpretation. The second fact that (2.1) illustrates is that not all utterance
implications are interpreted in the same way: the implication that Kepler
was in a miserable state at the end of his life is sensitive to negation, while
the implication that there is an antecedent corresponding to Kepler is not,
and so it is said to persist through the negation.

I will call the main point of an utterance, the portion targeted by
semantic operators like negation, its sense, and the portion not targeted by
operators its implicature. Thus senses, as defined here, correspond to what
is said in Grice’s (1957) terminology. Simons et al. (2010) offer a compelling
explanation of the sense/implicature distinction in terms of the at-issue
nature of the content in question. Here I examine the distinction between

2.1 An Overview of Implicatures 13

these two meaning types in great detail, but leave open the question of
explaining the divide.

A standard empirical diagnostic for identifying presupposition persis-
tence is the family of sentences tests. The name “family of sentences” is from
Chierchia and McConnell-Ginet 1990, but as Roberts et al. (2009) note, the
tests themselves have been in use at least since Langendoen and Savin
1971. In these diagnostics, a sentence that is suspected of containing a
subexpression with a persistent implication (called the triggering expression
or just the trigger) is altered so that the suspected trigger is embedded in
the scope of an entailment-modifying operator.1 Importantly, these tests
apply to atomic sentences, which contain no semantic operators or attitude
predicates, in order to provide a more clear diagnostic of persistence.

Persistence Diagnostic 2.1 (Family of Sentences). An implication m of an
atomic sentence s associated with a potential trigger t persists if m remains
an utterance implication of minimal variants of s with t embedded in the
following contexts:

• Negation.

• Interrogation.

• A modal.

• The antecedent of a conditional.

If c is a family of sentences context and m persists when embedded in c,
then m persists through c in s.

To demonstrate, the persistence tests are applied to Frege’s Kepler example
in (2.2):

(2.2) a. Kepler did not die in misery.

b. Did Kepler die in misery?

c. Maybe Kepler died in misery.

d. If Kepler died in misery, pursuing an academic career seems
foolish.

1Elsewhere in the literature, the term entailment-canceling operator is used with the same
sense as here; I prefer the term entailment-modifying because the resulting entailments are
based on the entailments in the scope of the operator.

2.1 An Overview of Implicatures 14

The procedure for applying these tests to the suspected trigger Kepler in
(2.1) is to examine each of the four associated minimal variants in (2.2),
asking for each whether the implication associated with Kepler that it must
designate something is retained. Since this requirement holds in each case,
Kepler is deemed to persist by the family of sentences tests.

The implications associated with pronominal anaphora exhibit similar
behavior under the persistence tests as do those associated with proper
names, as demonstrated in the following example.

(2.3) A womani walked in, and then shei bought a ticket.

Applying the four tests to (2.3) show that the pronoun she persists in each
of them, since on the intended reading,2 the implication that she has a
suitable antecedent survives for every test case:

(2.4) A woman walked in.

a. She didn’t buy a ticket.

b. Did she buy a ticket?

c. Maybe she bought a ticket.

d. If she bought a ticket, the train must be leaving soon.

Note that the relevant implication remains in effect whether or not (2.3) is
read so that A woman is interpreted as the antecedent of she, and so the
persistent behavior of she is not contingent on where its antecedent is found,
just on whether one is available at all.

The family of sentences regime was first designed for detecting persis-
tence associated with presuppositions, defined as felicity constraints on
the context of interpretation (Karttunen, 1974; Stalnaker, 1978; Lewis, 1979;
Heim, 1983b). But it also conclusively diagnoses persistence for (2.5), an
instance of a CI in the sense of Potts (2005). In (2.5), the use of the nominal
appositive a cyclist, a supplement in Potts’s (2005) terminology, gives rise to
the implication that Lance is one.

(2.5) Lance, a cyclist, is from Texas.

Applying the persistence diagnostic to (2.5) shows that the appositive
persists:

2As I discuss in §1.2, examples in this thesis follow the convention, used in (2.3), that
anaphoric relations are signaled by subscripting the anaphor and its antecedent with the
same index variable, here i.

2.1 An Overview of Implicatures 15

(2.6) a. Lance, a cyclist, is not from Texas.

b. Is Lance, a cyclist, from Texas?

c. Maybe Lance, a cyclist, is from Texas.

d. If Lance, a cyclist, is from Texas, I’ll bet he lives in Austin.

In each of the four cases in (2.6), the implication that Lance is a cyclist
survives, and the appositive a cyclist is considered persistent.

The family of sentences tests diagnose persistence because they examine
whether an implication survives embedding a trigger beneath operators
that modify entailments. However, they are not useful in diagnosing
persistence when no entailment-modifying operator is present. While the
tests in (2.6) show conclusively that a cyclist persists in each of the family of
sentences contexts, they have nothing to say about the unembedded case in
(2.5). All the persistence tests reveal about (2.5) itself is that the appositive
would persist if the sentence was altered so that the appositive is embedded
under an entailment-modifying operator. And so persistence, as defined
here, refers to the potential to persist in case the implication is embedded.
To diagnose the capability to persist even when a suspected trigger is not
embedded beneath any operator, a separate diagnostic is needed.

Persistence Diagnostic 2.2 (Direct Denial). An implication m of an atomic
sentence s associated with a potential trigger t persists past t if m survives
the immediate, direct denial of an utterance of s.

Because it asks whether an implication survives direct denial, there is a
sense in which this diagnostic is a variation on the family of sentences
variant using negation in which the negation is external to the sentence
under test. It successfully diagnoses persistence for both (2.3) and (2.5) as
follows.

(2.7) a. A woman walked in, and then she bought a ticket.

b. No, she didn’t. She asked for a train schedule.

(2.8) a. Lance, a cyclist, is from Texas.

b. No, that’s not true—he’s actually from northeast Arkansas.

As the example of the direct denial diagnostic in (2.7) shows, directly
denying (2.3) has no effect on the implication associated with she that a
suitable antecedent is available. And for (2.8), the implication that Lance is
a cyclist persists even if (2.5) is directly denied.

2.1 An Overview of Implicatures 16

Direct denial is useful as a diagnostic because implications that have a
tendency to persist must be denied using other means, namely via indirect
rejection (Roberts et al., 2009).

(2.9) Lance, a cyclist, is from Texas.

a. # No, he’s not. He’s actually a radon mitigation specialist.

b. Hold on a second. Lance might be from Texas, but he’s
definitely not a cyclist.

In (2.9a), the attempt to negate the implication associated with a cyclist
results in infelicity, whereas the use of negation to deny that Lance is from
Texas is perfectly acceptable, as (2.8) shows. To deny the content of the
appositive, an indirect rejection like (2.9b) must be used instead.

However, consideration of a broader range of examples exposes a major
limitation of both the family of sentences tests and the direct denial test for
diagnosing persistent content more generally. As stated, neither diagnostic
applies to utterances, but instead to sentences. Since context is not accounted
for, both testing regimes make indeterminate diagnoses when a suspected
trigger has an implication that persists in some contexts but not in others.
For example, the aspectual verb stop has been taken to presuppose that at
some past time its complement property applied to its subject, that is, as
imposing a felicity condition that prior context must entail that its subject
has the relevant property.

(2.10) Kim stopped smoking.

In (2.10), the suspected persistent implication, called the pre-state implication,
is that Kim used to smoke.

Applying the persistence tests to (2.10) suggests that this implication
does persist in some cases but not in others:

(2.11) a. Kim didn’t stop smoking.

b. Did Kim stop smoking?

c. Maybe Kim stopped smoking.

d. If Kim stopped smoking, then I won’t ask her for a cigarette.

The inconclusive results are best seen by considering how the persistent
implication associated with stop in (2.10) behaves in the following contexts.

Context (2.12): It is mutual knowledge to the interlocutors that Kim is well
known to be a lifelong smoker.

2.1 An Overview of Implicatures 17

Context (2.13): It is unknown to the addressee whether Kim has ever smok-
ed before.

Context (2.12) entails the purported pre-state implication that Kim smoked
at some prior time. But note that, since (2.10) is acceptable in context
(2.13), it cannot be characterized as imposing a felicity condition on the
discourse context because Kim’s status as a smoker is unknown to the
addressee. Interpreted in context (2.13), the pre-state implication does not
hold for any of the four tests. For (2.11a), it may be the case that Kim did
not stop smoking simply because she never started. A similar situation
holds for (2.11b): the answer may be No, she never started. And neither
of (2.11c) or (2.11d) require Kim to have previously smoked, since both
express hypotheticals. In context (2.12), the utterance of (2.11b) or (2.11c)
might, for example, be taken as speculation about the reason Kim seems so
out of sorts.

As the variability observed for the variant in (2.11a) implies, the results
are parallel for the direct denial diagnostic.

(2.14) a. Kim stopped smoking.

b. No, that’s not true.

The denial of (2.10) in (2.14) negates the proposition that Kim stopped
smoking, but makes an indeterminate diagnosis with respect to stop’s pre-
state implication. In context (2.12), the pre-state implication that Kim used
to smoke persists, but in context (2.13), it does not.

So both the family of sentences and the direct denial testing regimes
clearly diagnose persistence in the case of proper names, pronouns, and
Potts’s (2005) CIs, but are unable to provide a reliable diagnosis for the as-
pectual stop, because the persistence of the pre-state implication additionally
depends on the discourse context. In his early work on presupposition per-
sistence, Karttunen invokes persistence variability to distinguish between
the factive and semi-factive verbs (1971), and also notes stop’s persistence
variability in certain contexts (1973). More recently, Abusch (2010) discusses
this contextually-conditioned variability observed for certain implicature
triggers, which she calls soft triggers.

Both persistence tests are so useful for diagnosing persistence because
they identify triggers as not being targeted by operators that modify entail-
ments. Together, they help distinguish between persistent content, which is
not targeted by entailment-modifying operators because it is not intended

2.1 An Overview of Implicatures 18

by the utterance’s author to figure into the compositional calculation of
its meaning, and the sense content whose entailments are modified by
these operators. Even when the diagnostics are inconclusive, they still
provide the information that the trigger in question can persist in some
circumstances, just not in all. So the term persistent refers to implications
that have the ability to persist.

For the purposes of this thesis, I define persistent implications as those
implications that are persistent as determined by either of the persistence
diagnostics. The complement of this class, the sense implications, are those
implications that are not found to persist by the diagnostics, that is, the
implications that are targeted by operators. This distinction captures the fact
that conversational participants actively place content in the background
by choosing to construct utterances in a certain way, as opposed to other
alternatives. Importantly, as the variation observed for (2.11) in different
contexts shows, an implication’s being persistent does not necessarily imply
that it persists in a given utterance in a given context of interpretation. A
persistent implication may persist only in certain contexts or only past
certain operators.

The differing results observed for the persistence diagnostics with
respect to certain triggers also suggest an empirical distinction. Following
Pollard and Smith (2011), I note that examples (2.1), (2.3) and (2.5), for which
the persistence diagnostics are conclusive, share the common property that
their implicature content is conventionally signaled. This contrasts with
example (2.10), where the persistence of the pre-state implication is not
part of stop’s conventional meaning, and for which the diagnostics give a
different verdict depending on the context.

A separate distinction between implicatures that cross-cuts the con-
ventional/nonconventional divide has to do with whether or not they are
required to be speaker commitments. Amaral et al. (2007) first pointed
out that CIs are not invariably speaker-anchored, contrary to the claims in
Potts 2005, and Harris and Potts (2009) give compelling evidence that CIs
can indeed be anchored to nonspeaker points of view. Unfortunately, as
(2.15) shows, giving a simple diagnostic for anchoring is difficult because
detecting nonspeaker anchoring can necessitate the construction of a rich
context of interpretation.

2.1 An Overview of Implicatures 19

(2.15) Joan believes that her chip, which she had installed last month,
has a twelve year guarantee.
(Amaral et al., 2007, example 27)

In some contexts, the nonrestrictive relative clause which she had installed last
month is interpreted as being anchored to the point of view of the speaker.
But consider (2.15) in the following context:

Context (2.16): Joan is crazy. She’s hallucinating that some geniuses in
Silicon Valley have invented a new brain chip that’s been installed in her
left temporal lobe and permits her to speak any of a number of languages
she’s never studied.
(Amaral et al., 2007, example 25)

Interpreted in context (2.16), the proposition that Joan had her chip installed
last month is part of the belief attributed to Joan, and not the speaker.

An example of a CI that must be a speaker commitment is the nominal
appositive a cyclist in (2.17).

(2.17) Dana believes that Lance, a cyclist, is not a cyclist.

In (2.17), the appositive is interpreted as anchored to the speaker’s point
of view rather than to Dana’s because otherwise it would attribute incon-
sistent beliefs to Dana. Compare this anchoring variability for CIs with
the persistent implication associated with Kepler in (2.1), above. In Frege’s
Kepler example, the implication that Kepler has an antecedent in prior dis-
course is necessarily a speaker commitment about the state of the discourse
context. This commitment is simply built into the conventional meaning of
the proper name Kepler.

Finally, the phenomenon of modal subordination (Roberts, 1989) demon-
strates why the distinction between implicatures based on their status as
speaker commitments cannot be made simply on the basis of their (speaker
or nonspeaker) anchoring.

(2.18) If a womani walks in and shei buys a ticketj, itj’s probably for the
evening train to Cleveland.

a. Shei’ll likely be a daily commuter on this line.

b. # Itj’s in her pocket.

(2.19) Kim sure seems on edge today.

2.2 Conventional Implicatures 20

a. Maybe Kim quit smoking. Or maybe she never even started
smoking at all, and she just hasn’t yet had her coffee today.

b. # Kim quit smoking. She never started smoking at all, she just
hasn’t yet had her coffee today.

On the intended reading, the use of the pronoun It in (2.18b) is infelicitous
because its antecedent is made inaccessible: in Roberts’s (1989) terminology,
a ticket occurs as part of an utterance in nonfactual mood, while the pronoun
that purportedly references it is uttered in factual mood. The pronoun She
in (2.18a) is felicitous, because the second modal can be taken to have a
domain restriction that makes an antecedent for the pronoun available.
Both pronouns, however, bear an associated speaker commitment to the
effect that a suitable antecedent can be found in the discourse context.

This behavior shows a strong contrast with (2.19). In (2.19a), the pre-
state implication of stop that Kim used to smoke is clearly not a speaker
commitment because it is uttered in nonfactual mood. Factual mood is
used in (2.19b), with the result that the speaker is necessarily committed to
stop’s pre-state implication, which is simply an entailment. The infelicity of
(2.19b) then results from the fact that the entailment of the pre-state of the
first sentence contradicts the denial in the first clause of the second. The
point is that, since both (2.19a) and (2.19b) are anchored to the speaker’s
point of view, felicity hinges on whether the speaker is committed to an
implication and not to which point of view the implication is anchored.

In the following two sections, I explore in greater detail the hetero-
geneity between implicatures evidenced by the persistence tests and their
status as speaker commitments. Then, in §2.4, I draw some taxonomic
distinctions between persistent content based on persistence variability and
the conditions under which they result in infelicity.

2.2 Conventional Implicatures

The class of conventional implicatures, which Pollard and Smith (2011)
call warrants, comprises all those persistent implications that are conven-
tionally signaled as part of the meaning of their corresponding trigger.
Among others, this class contains certain implications associated with
anaphora (though not all, as I explain below in §2.2.2) and honorifics, as
well as those associated with nominal appositives, nonrestrictive relative
clauses, expressives, parentheticals, all instances of “CIs” in Potts’s (2005)

2.2.1.1 Definite Anaphora 21

sense. Though anaphora and CIs are often treated as both empirically and
conceptually separate (see, for example, Potts 2005; Roberts et al. 2009;
Tonhauser, Beaver, Roberts, and Simons 2013, among others), I argue that
their associated persistent implications have more in common than not.

2.2.1 Obligatory Speaker Commitments

2.2.1.1 Definite Anaphora

The phenomenon of (definite) anaphora occurs when a discourse referent
(Karttunen, 1976) is introduced and interpreted as the antecedent to a later
definite: a proper name, demonstrative, pronoun, possessive, or a noun
phrase whose determiner is the. Heim (1982, chapter 3) describes this
behavior in the form of a condition on the felicitous use of an (in)definite
noun phrase, called the Extended Novelty-Familiarity-Condition. This condi-
tion requires that when a definite is used, its antecedent must be familiar
(already available in prior discourse). By contrast, the discourse referent
introduced by the use of an indefinite comes with the condition of being
novel (not familiar).

(2.20) a. A donkeyi walked into a bar. Iti brayed.

b. # Iti brayed. A donkeyi walked into a bar.

The example in (2.20b) is simply (2.20a) with the order of its sentences
reversed, and yet the use of the definite it is infelicitous in (2.20b) because
no discourse referent is available yet to serve at its antecedent. Example
(2.20b) is also unacceptable for another reason: on the intended reading,
the indefinite A donkey attempts to introduce a discourse referent that has
already been referenced by it. Thus for Heim, these stipulations for the use
of definites and indefinites constitute a felicity condition on their context of
interpretation.

Carl Pollard (personal communication) points out the existence of
examples like the following.

(2.21) A donkeyi walked into a bar. Iti brayed. So
{

Iti
a donkey

}
brayed.

Big deal.

Example (2.21) seems to present a counterexample to the novelty condition,
because the indefinite a donkey is apparently used to refer to a previously
mentioned donkey. I would argue that there actually is a difference between

2.2.1.1 Definite Anaphora 22

the variant of (2.21) with Iti and the one with the indefinite. In the It variant,
it is more clear that what the speaker is stating to be a big deal is the fact
that the donkey mentioned before brayed. But for the variant with the
indefinite, it seems that what the speaker takes to be a big deal is the fact
that some donkey brayed, and the fact that the previously mentioned one,
in particular, brayed is irrelevant.

The novelty of indefinites is an instance of a conventional implicature,
because novelty is a part of the conventional meaning of an indefinite but it
is persistent. As far as I am aware, the empirical characterization I give here
is the first to classify novelty for indefinites as a conventionally signaled
implication. The persistence of this novelty implication is illustrated in
the following tests.

(2.22) A donkey walked into a bar.

a. A donkey didn’t bray.

b. Did a donkey bray?

c. Maybe a donkey brayed.

d. If a donkey brayed, it probably wants bourbon.

In each of the family of sentence variants in (2.22), the second instance
of the indefinite a donkey cannot be interpreted as introducing the same
discourse referent as the one introduced by the prelude A donkey walked
into a bar.

Note that the novelty implication is separate from the lifespan of the
discourse referent introduced by an indefinite. It has been observed at
least since Karttunen (1976), and formalized as early as Kamp (1981) and
Heim (1982), that discourse referents introduced in certain contexts are
only accessible within those contexts.

(2.23)
{

A
No

}
donkeyi walked into a bar. Iti brayed.

(2.24) If a donkeyi walks into a bar, iti says hello to everyone before
sitting down. # Iti brayed.

(2.25) A donkeyi walked into a bar. Every farmer bought a donkey#i a
drink.

Basic accessibility is illustrated in (2.23), in which the negated variant with
No creates a context that bounds the accessibility of the discourse referent
introduced by No donkey. A more complex case is given in (2.24): the

2.2.1.1 Definite Anaphora 23

discourse referent introduced by a donkeyi in the antecedent of the if -clause
is available to the pronoun in its consequent, but not in the subsequent
utterance. But (2.25) shows that even discourse referents within limited
accessibility contexts (here, Every) still bear the novelty implication: the
donkey that every farmer bought a drink for cannot be construed as the
same donkey that walked into a bar.

The persistence diagnostics can be used to detect the persistent implica-
tion associated with it in a way similar to that used for (2.3). Applying the
family of sentences tests to the second sentence of (2.20a) gives (2.26); the
direct denial test for (2.20a) is illustrated in (2.27).

(2.26) A donkey walked into a bar.

a. It didn’t bray.

b. Did it bray?

c. Maybe it brayed.

d. If it brayed, it probably wants bourbon.

(2.27) a. A donkey walked into a bar. It brayed.

b. No it didn’t. Donkeys don’t behave that way in bars.

In each case, what persists from the variants in (2.26) is the familiarity
implication (Heim, 1982) that an antecedent is available in prior discourse.
Similarly, in (2.27), the familiarity implication of a suitable antecedent for
It survives direct denial. The familiarity implication is not only persistent,
but arises as part of the conventional meaning of definites. Note that the
familiarity implication, as defined here, is not a commitment to the existence
of an entity in the world, but to the availability of discourse referent in
prior context. As Tonhauser et al. (2013) discuss, the existence commitment
can take on an embedded point of view, but since it is a commitment about
the state of the discourse context, the familiarity implication cannot—it
must be anchored to the speaker.

Example (2.28) clarifies the additional complication for familiarity, dis-
cussed above in connection with (2.23), that the familiar discourse referent
must be available in the local context of interpretation.

(2.28)
{

A
No

}
farmer owned a donkeyi. Iti brayed.

The pronoun It in (2.28) bears the familiarity implication that its antecedent
is available in prior context. In the indefinite variant, this implication

2.2.1.1 Definite Anaphora 24

is satisfied, because the discourse referent introduced by a donkey is still
accessible. But the variant with No provides no such discourse referent.
For the No case, the accessibility of the discourse referent corresponding to
a donkey is closed off, and so no accessible antecedent for It is available. I
have more to say about accessibility in chapter 4, where I discuss a formal
account of anaphora in dynamic semantics.

As evidence that the familiarity implication persists not just for pro-
nouns but for definites more generally, consider (2.29).

(2.29) The donkey brayed.

The persistence tests show that the definite The donkey bears the same
persistent familiarity implication as observed for the pronoun it in (2.20).

(2.30) A donkey walked into a bar.

a. The donkey didn’t bray.

b. Did the donkey bray?

c. Perhaps the donkey brayed.

d. If the donkey brayed, the horse probably just arrived.

(2.31) a. A donkey walked into a bar. The donkey brayed.

b. No, it couldn’t have. It would’ve gotten kicked out for that.

Here again, the testing regime shows that the implication that an antecedent
exists for The donkey survives both embedding and denial, and so it is
persistent.

Heim (1982) and Roberts (2003), among others, maintain that for an
addressee to be able to retrieve the intended antecedent of a definite, it
must bear the definite’s descriptive content in the sense that the context of
interpretation must entail that the antecedent has the property associated
with its descriptive content. More recently, it has been pointed out that
this requirement is too strong (Pollard and Smith, 2011; Roberts, 2012d;
Tonhauser et al., 2013). Definites give rise to a persistent implication that the
context is consistent with the antecedent having the definite’s descriptive
content, but this implication is not a presupposition imposing a felicity
constraint on the discourse context (see the discussion of (2.55), below). This
descriptive content implication that the antecedent has suitable descriptive
content is actually a separate implication from the familiarity implication,
as I discuss below in connection with (2.50) and (2.51).

2.2.1.1 Definite Anaphora 25

However, the descriptive content implication is insufficiently fine grain-
ed to rule out cases where the requisite property is predicated of more than
one discourse referent:

(2.32) A farmer bought a brown donkeyi and a gray donkeyj.
Iti/j
The donkeyi/j

The gray donkey#i/j

 snorted.

(Martin and Pollard, 2012a, example N)

In (2.32), neither of the definite noun phrases it or the donkey are specific
enough to disambiguate which of the brown or gray donkey is supposed
to be associated with the antecedent.

Roberts (2003) calls this additional requirement the presupposition of
informational uniqueness because the antecedent must be the only one in
the context to bear the descriptive content associated with the definite
it antecedes, a stronger requirement than Heim’s familiarity. Stone and
Webber (1998) contend that the requirement is even more general: that the
antecedent must be the most plausible one with the descriptive content
in question. Roberts’s informational uniqueness is distinguished from
Russell’s (1905) referential uniqueness because it requires only that the
antecedent be unique among the discourse referents in the context of inter-
pretation, not a unique semantic entity in the world, to bear the relevant
property. Finally, as Roberts (2005) argues, the intended antecedent must
be salient to the addressee to a degree determined in part by the richness
of its descriptive content.

In more recent work, Roberts (2010, 2012d) characterizes the familiarity,
informational uniqueness, and salience implications associated with the use
of a definite as being derivable from a notion of retrievability, which is in
turn based on more general ideas about the nature of meaning and intention
in cooperative conversation (Grice, 1957, 1975). Following Roberts, I adopt
the term retrievability implication to refer to the combined implications
of familiarity, informational uniqueness, and salience. The retrievability
implication that the use of a definite gives rise to is the implication that
a familiar, salient discourse referent is available that is informationally
unique in the sense that the relevant descriptive content is not in conflict
with what the context entails for the referent in question.

Example (2.33) serves as evidence that the retrievability implication is a
speaker commitment.

2.2.1.2 Iterative Adverbs 26

(2.33) Kim doesn’t know that there’s a donkeyi over there. She doesn’t
hear iti braying.

Here, a discourse referent is introduced into the context of interpretation by
a donkey that, on the intended reading, is later used as the antecedent of the
pronoun it. But since (2.33) makes it clear that Kim is unaware the donkey
in question exists, the pronoun it must be interpreted as a commitment
by the speaker that its antecedent is retrievable given the current context
of interpretation. The retrievability implication is necessarily a speaker
commitment because retrievability is an implication about the discourse
context itself, which is constructed as part of the cooperative conversational
enterprise between the speaker and the addressees.

2.2.1.2 Iterative Adverbs

Iterative adverbs like too and again also have persistent implications that
are similar to those associated with definite anaphora.

(2.34) a. Sam is having dinner in New York tonight, too.
(Kripke, 2009, example 14, emphasis as in original)

b. Sam is having dinner in New York tonight, too.

c. Sam is having dinner in New York tonight, too.

In each example in (2.34), the persistent alternative implication associated
with too implicates that an alternative related to the intonationally focused
part of the sentence (indicated by boldface) is familiar in the discourse
context. This implication is too’s analog of the familiarity implication for
definites. For (2.34a), the implication is that someone other than Sam is
dining in New York. For (2.34b), that Sam is doing something other than
dining in New York. And for (2.34c), that he is dining somewhere other
than New York as well.

Heim (1990b) makes a similar observation for (2.35).

(2.35) John went to Harvard too.
(Heim, 1990b, example 14)

Heim notes that for (2.35), nearly any imaginable felicitous discourse
context will have the required entailment that someone other than John
attended Harvard. Heim’s story about too, which is formalized by Beaver

2.2.1.2 Iterative Adverbs 27

(2001, definition D17), is that too requires that the context of interpreta-
tion must entail that some accessible discourse referent bears the relevant
property.3

The following tests provide solid evidence for the persistence of too’s
alternative implication.

(2.36) a. It’s not true that Sam is having dinner in New York tonight, too.

b. Is Sam having dinner in New York tonight, too?

c. It’s possible that Sam is having dinner in New York tonight,
too.

d. If Sam is having dinner in New York tonight, too, then his plane
must have already arrived.

(2.37) a. Sam is having dinner in New York tonight, too.

b. No, he’s not. I saw him on his way to the airport this morning.

Regardless of how the intonation is placed, each of the family of sentence
variants in (2.36) maintains the implication of a familiar alternative, as does
the direct denial in (2.37).

One difference between definites and too is that there is no analog of
the informational uniqueness implication associated with definites:

(2.38) Kim and Sandy are both having dinner in New York tonight.
Robin is having dinner in New York tonight, too.

In (2.38), both Kim and Sandy fulfill the alternative implication associated
with too. So unlike the antecedent of a definite, informational uniqueness
is not required for too’s antecedent.

Several authors (Kripke, 2009; Roberts et al., 2009; Roberts, 2010; Ton-
hauser et al., 2013) have pointed out that there is more to this story, since
iterative adverbs like too also bear an implication that is similar to the
salience implication of definites. This implication, which is obligatorily
speaker-oriented in addition to being conventional and persistent, is the
requirement that a salient alternative be established in the discourse context.
Clearly, this salience implication must persist since the alternative impli-
cation does (see the persistence tests in (2.36) and (2.37)). Example (2.39)

3This is a simplification, since maximal salience is required in addition to accessibility.
But since salience is arguably at least partly determined by pragmatics, I will make no
effort to encode it in the formal theory of discourse pursued here. Chapter 5 offers more
discussion on this point.

2.2.1.3 Possessives 28

gives evidence that the salience implication is also a necessary speaker
commitment.

(2.39) Sam is having dinner in New York tonight. Dana is unaware that
anyone is having dinner in New York tonight, and so Dana is
unaware that Sandy is having dinner in New York tonight, too.

In this example, it cannot be Dana that is committed to the implication of
salience of an alternative because she is unaware of any such alternative, as
is explicitly stated. Rather, the salience implication in (2.39) is interpreted
as being a proposition that the speaker is committed to.

In accordance with the data, I define the retrievability implication for
too somewhat differently than for definite anaphora. For too, retrievability is
the implication that a familiar, salient alternative to the relevant implication
is available in the discourse context. As for the retrievability implication
for definites, the commitment to the existence of an alternative may be
anchored to an embedded point of view, but the implication that there is
an alternative available in the discourse context cannot be. The familiarity
and salience implications for definites and for too differ in that for definites,
there is an additional requirement of informational uniqueness that is
not required for too, as (2.38) shows. However, just as for definites, the
retrievability implication associated with too is an implication made by the
speaker about the state of the discourse context, and as such must be a
speaker commitment.

2.2.1.3 Possessives

The situation is slightly more complicated for possessives than for other
definites. Notice that (2.40) is felicitous even if uttered in a context where
the hearer has no knowledge that the speaker owns any cat.

(2.40) I can’t come to the meeting—I have to pick up my cat at the
veterinarian.
(Stalnaker, 1998, example 1)

For Stalnaker (1998), as for von Fintel (2008), who discusses the same
example, (2.40) is a straightforward instance of accommodation in Lewis’s
(1979) sense. However, notice the difference between the following variants
of (2.40):

2.2.1.3 Possessives 29

(2.41) I can’t come to the meeting—I have to pick

it
? the cat

one of my cats
a cat of mine

up at the veterinarian.

The definites it and the cat in the relevant variants of (2.41) are much more
difficult, perhaps even impossible, to accommodate than my cat in (2.40).

On the other hand, either of the two indefinites one of my cats and a
cat of mine are perfectly good stand-ins for paraphrasing (2.40), unless it
is already common knowledge that the speaker only has a single cat. As
a further empirical gauge of the definiteness of possessives, consider the
following context.

Context (2.42): It is unknown to any of the participants at a meeting whether
Kim, who was supposed to attend the meeting but has not shown up yet,
has a cat.

Then the tests can be applied to a variant of (2.40) as follows:

(2.43) a. Kimi doesn’t have to pick up hisi cat.

b. Does Kimi have to pick up hisi cat?

c. Maybe Kimi has to pick up hisi cat.

d. If Kimi has to pick up hisi cat, hei won’t be here on time.

(2.44) a. Kimi has to pick up hisi cat.

b. No, that can’t be why he’s late. He doesn’t have a cat!

If interpreted in context (2.42), none of the tests in (2.43) require a discourse
referent for his cat to be retrievable in prior context the way that the cat or it
would, nor does the direct denial test in (2.44), although they all do commit
the speaker to the belief that Kim has a cat.

I argue that in light of the discrepancy in the availability of accommo-
dation for possessives as opposed to other definites, the similarity of (2.40)
with variants using an indefinite in place of my cat, and the persistence
tests for possessive definiteness, placing possessives on a par with other
definites is unwarranted. For Barker (1991) and Pollard and Smith (2011),
the different behavior observed for possessives serves as evidence that
possessives can be used both as definites and indefinites.

2.2.1.3 Possessives 30

Context: A driver has just picked up a hitchhiker. In the context of asking
where the hitchhiker would like to be dropped off, the driver is describing
the errands she is in the process of running.

(2.45) I can drop you on Summit. I have to go over there anyway to pick
up my ferret from the vet.
(Pollard and Smith, 2011)

Given the context of utterance, specially concocted to force the interlocutors
to have no mutual conversational history, the hitchhiker cannot be assumed
to have prior knowledge that the driver owns a ferret. Instead, the noun
phrase my ferret in (2.45) simply introduces a discourse referent just as an
indefinite in the same position would.

Pollard and Smith also point out the following case in which a posses-
sive behaves in a way inconsistent with characterization as a definite.

Context: Ten-year old Timmy is jealous of older brother Eddie who is real
cool and has a motorcycle. Now he has something else to be jealous about
and complains to Mom.

(2.46) a. How come I don’t get to skip a month of school like Eddie?

b. Timmy, you didn’t crash your bike and break your neck.
(Pollard and Smith, 2011)

In (2.46), interpreted in the intended context, the possessive your bike cannot
refer to the motorcycle that Timmy is known to have, since Timmy is only
ten years old. Instead, its meaning could be paraphrased by Timmy, there’s
no bike you own such that you crashed that bike and broke your neck. That is, the
possessive in (2.46) seems to be an instance of an existential quantification
that is outscoped by the negation associated with didn’t.

Although he does not use the term retrievability, Barker (2000) explains
this apparent difference between possessives and other definites by linking
the retrievability implication of the possessive as a whole to the retriev-
ability of the possessor. I agree with Barker’s characterization: as the
diagnostics in (2.43) show, the retrievability implication that is in effect for
possessive pronouns does not extend to the entire possessive noun phrase.
In fact, the implication associated with possessives that the possessed bears
a certain property is similar to a variable conventional implicature, a topic
I turn to in section §2.2.2. This story needs to be extended, however, to
account for examples like the following:

2.2.1.4 Honorifics 31

Context: The utterance in (2.45) occurred at the beginning of the exchange,
and the hitchhiker is preparing to get out.

(2.47) Thanks for the ride! I hope your ferret is OK.

In this case, the possessive your ferret does seem to invoke the ferret men-
tioned at the beginning. So it seems that a condition is needed in which
possessives behave as definites when possible, and as indefinites otherwise.
I discuss this point in greater detail in §5.2.1.1 and §5.2.2.

It also bears acknowledging some ways in which the retrievability
implication associated with definites is more subtle than it may seem at
first blush. Roberts (2003, 2005) argues that Heim’s novelty-familiarity
condition is too strong, and suggests a generalized, more empirically
adequate characterization of familiarity based on entailment. Then there is
the problem of anaphoric accessibility, which dynamic theories have long
grappled with (for example Kamp, 1981; Heim, 1982, 1983a; Groenendijk
and Stokhof, 1990, and their descendants). Accessibility is the problem
of saying how discourse referents sometimes have a limited “lifespan”
(Karttunen, 1976) as antecedents for definite anaphora. Also, as Rooth
(1987) first pointed out, the unselective binding approach to quantificational
noun phrases in Kamp’s and Heim’s theories leads to empirical predictions
that are too coarsely grained. Kanazawa (1994) and Chierchia (1995) offer
attractive solutions to this problem, but neither of their accounts is without
its own problems. I postpone these and other related issues until chapter 4,
where I lay out a formal account of anaphora.

2.2.1.4 Honorifics

Potts (2005) characterizes Japanese honorifics among his “CIs” because
they have the properties of being persistent (not-at-issue, in his terminology)
and being obligatorily speaker-anchored. But the taxonomy I investigate
here recognized the fact that Pottsian CIs are not all invariably anchored to
the speaker, as pointed out by Amaral et al. (2007) and acknowledged by
Harris and Potts (2009). As a result, the honorifics are separated from the
other Pottsian CIs because they do have the property of obligatory speaker
anchoring, as the following example shows for the French honorific tu.

(2.48) Est-ce
Is it

que
that

tu
you.fam

as
have

mangé?
eaten

Did you eat?

2.2.2.1 Descriptive Content 32

In (2.48), the gloss of tu indicates that it is the familiar variant of the French
counterpart of English you; there is also a formal variant, vous. In this
example, the implication that the speaker believes that she is on familiar
terms with the addressee is a speaker commitment. And this commitment
status holds up under embedding beneath an attitude predicate, as (2.49)
shows.

(2.49) Bernard
Bernard

croît
believes

que
that

tu
you.fam

as
have

mangé.
eaten

Bernard thinks you ate.

As for (2.48), the implication of familiarity in (2.49) cannot be attributed to
Bernard, but only to the speaker, as it was the speaker’s choice to use the
familiar variant tu rather than vous.

2.2.2 Variable Speaker Commitment Status

2.2.2.1 Descriptive Content

In addition to the retrievability implication, the use of it in (2.20) also
implies that the retrieved referent must not be entailed by the context to be
human, as the following variant of (2.3) shows.

(2.50) A womani walked in, and then it#i bought a ticket.

This descriptive content implication extends from pronouns to definites
more generally, as in (2.51).

(2.51) A mulei walks in. The

creaturei
mammali
equinei
donkey#i

 brays.

In this example, an indefinite introduces a discourse referent and ascribes
the property of being a mule to it. Then, in one variant, the definite the
donkey purportedly takes the introduced referent as its antecedent, but this
is an impossible interpretation because being a donkey and being a mule
are mutually exclusive properties. The other variants are intended to show
that descriptive content that does not conflict with the property of being a
mule is perfectly fine.

The descriptive content implication is clearly persistent, since for each
case of (2.52) the implication remains in effect, just as it does for the denial
in (2.53).

2.2.2.1 Descriptive Content 33

(2.52) A donkey walked into a bar.

a. The donkey didn’t bray.

b. Did the donkey bray?

c. It’s possible that the donkey brayed.

d. If the donkey brayed, it must be hungry.

(2.53) a. A donkey walked into a bar. The donkey brayed.

b. No way, that’s just impossible.

But the descriptive content implication cannot simply be rolled into the
retrievability implication, because the descriptive content implication is
not obligatorily a speaker commitment, as Tonhauser et al. (2013) point
out for English demonstratives and the Paraguayan Guaraní third-person
pronoun.

(2.54) Sandy thinks a horsei behind her house is a donkey, and she

thinks
{

the horsei
the donkeyi

}
keeps her up all night braying.

Example (2.54) shows that the descriptive content implication is not neces-
sarily a speaker commitment. In the variant with the horse as the definite,
the descriptive content implication is a speaker commitment. But for the
variant that uses the donkey, it is a belief attributed to Sandy, since the
speaker makes clear that the donkey is actually a horse, and is only con-
sidered to be a donkey in Sandy’s embedded perspective. This contrasts
with the retrievability implication, which must be a speaker commitment,
as example (2.33) in §2.2.1.1 shows.

Zeevat (1992) also notices this difference between the retrievability impli-
cation and the descriptive content implication. Zeevat’s “resolution triggers”
are those that require a suitable discourse referent as an antecedent, while
“lexical triggers” are preconditions in a more general sense.

A prime example [of lexical triggers] seems to be sortal infor-
mation associated with verbs and nouns. The meaning of these
words can typically be divided into a part which identifies the
type of entity referred to and a part which actually describes
the entity.
(Zeevat, 1992, page 397)

2.2.2.1 Descriptive Content 34

For Zeevat, a definite is both a resolution trigger requiring that it must
be resolved to a familiar discourse referent, and also a lexical trigger that
makes a further descriptive content requirement of whichever referent the
resolution trigger locates as the definite’s antecedent.

In addition to Tonhauser et al. (2013), who discuss both English and
Guaraní data in their investigation, Pollard and Smith (2011) also provide
evidence that the descriptive content implication is separate from the
retrievability implication by noting that a pronoun’s descriptive content
can be new information, as in the following example.

(2.55) A copi just walked over to my car. Shei wrote me a ticket for my
busted tail light!

Since the information that the cop in question is female may be new to
the hearer, it does not figure into the retrievability implication associated
with the use of the pronoun She in (2.55). All that is required is that the
pronoun’s descriptive content not conflict with what the context entails
about the antecedent discourse referent:

(2.56) A copi just walked over to my car. The guyi didn’t care that I was
speeding. # But shei wrote me a ticket for my busted tail light!

Example (2.56) clearly shows that the pronoun she cannot be interpreted as
taking an antecedent that is already entailed to be male.

Taken together, (2.52), (2.53) and (2.54) demonstrate that the descriptive
content implication associated with definites is conventionally signaled,
persistent, and displays variability with respect to its status as a speaker
commitment. Finally, there is also an analog of the descriptive content im-
plication for possessives, which (2.57) shows also has speaker commitment
variability.

(2.57) Chris believes that Kimi’s dogj is a cat, and that Kimi has to pick

up hisi

{
dogj
catj

}
.

As for (2.54), on the intended interpretation of (2.57), either of dog or cat
can be used to specify the descriptive content of the possessed associated
with his. Since the pet Kim has to pick up is only believed to be a cat by
Chris, the use of cat to specify the relevant descriptive content must be
Chris’s commitment and not the speaker’s. For a similar reason, dog must
be interpreted as a speaker commitment: Chris thinks Kim’s pet is a cat,
not a dog.

2.2.2.2 Supplements and Expressives 35

2.2.2.2 Supplements and Expressives

As discussed in connection with (2.6), (2.15) and (2.17) in §2.1, above,
nominal appositives share the same properties as the descriptive content
implication: the persistent implication of a nominal appositive is part of its
conventional meaning, but it is not required to be a speaker commitment.
In fact, the descriptive content implication has these properties in common
with Potts’s class of “CIs” as a whole.

The following are examples of an expressive and two supplements: a
nonrestrictive relative clause, and an as-parenthetical.

(2.58) That socialist Obama got re-elected.

(2.59) The votes from Florida’s election, which was held earlier this
month, are still being counted.

(2.60) The state of Ohio, as the Associated Press is now reporting, has
been called for President Obama.

In (2.58), the expressive That socialist conventionally bears the implication
that Obama’s politics are viewed negatively from the point of view the
expressive is anchored to. The commas in (2.59) and (2.60) demarcate the
boundaries of the content set apart by comma intonation, which has the effect
of making the demarcated content persistent as part of its conventional
meaning (Potts, 2005). For (2.59), the persistent implication is that Florida’s
election was held earlier this month. For (2.60), the implication that the
Associated Press is now reporting that Ohio has been called for Obama is
made to persist.

The tests in (2.61)–(2.66) show that these implications are all indeed
persistent. First, the expressives:

(2.61) a. That socialist Obama didn’t get re-elected.

b. Did that socialist Obama get re-elected?

c. It’s likely that that socialist Obama got re-elected.

d. If that socialist Obama got re-elected, it’s time to move to a
country that respects liberty.

(2.62) a. That socialist Obama got re-elected.

b. No he didn’t. The media has just misconstrued the results.

In each of the tests in (2.61) and (2.62), the implication that the speaker is
not fond of the putative leftward tilt of Obama’s politics is present, just as
it is for (2.58). Next, consider nonrestrictive relative clauses.

2.2.2.2 Supplements and Expressives 36

(2.63) a. The votes from Florida’s election, which was held earlier this
month, are not still being counted.

b. Are the votes from Florida’s election, which was held earlier
this month, still being counted?

c. Maybe the votes from Florida’s election, which was held earlier
this month, are still being counted.

d. If the votes from Florida’s election, which was held earlier
this month, are still being counted, then Florida should allow
international election monitors next time.

(2.64) a. The votes from Florida’s election, which was held earlier this
month, are still being counted.

b. No they aren’t. They finished counting yesterday, and Obama
won narrowly.

Similarly to the tests for expressives, the nonrestrictive relative implicating
that Florida’s election was held earlier this month survives embedding in
all of the family of sentences tests in (2.63), as it does for the denial test in
(2.64). Lastly, the as-parentheticals:

(2.65) a. The state of Ohio, as the Associated Press is now reporting, has
not been called for President Obama.

b. Has the state of Ohio, as the Associated Press is now reporting,
been called for President Obama?

c. Perhaps the state of Ohio, as the Associated Press is now report-
ing, has been called for President Obama.

d. If the state of Ohio, as the Associated Press is now reporting, has
been called for President Obama, then the election is effectively
decided.

(2.66) a. The state of Ohio, as the Associated Press is now reporting, has
been called for President Obama.

b. That can’t be right. This guy Karl is on Fox News saying it’s
way too early to call Ohio.

The as-parenthetical as the Associated Press is now reporting has its effect un-
touched by each of the variants of (2.60) used in the persistence diagnostics
(2.65) and by the denial test in (2.66). These tests provide strong evidence
that the class of constructions Potts calls “CIs” really is persistent.

2.2.2.2 Supplements and Expressives 37

The following examples show that these implications can represent
speaker commitments.

(2.67) Kim actually thinks that socialist Obama is not a socialist!

(2.68) Sandy believes that Florida’s election, which was held earlier this
month, actually took place two months ago and the votes are still
being counted.

(2.69) Karl thinks that Ohio—which, as the Associated Press is now
reporting, has been called for Barack Obama—has not yet been
called.

In each of (2.67)–(2.69), the persistent implication is a speaker commitment
because the embedded point of view is inconsistent with it. In (2.67), Kim
does not think Obama is a socialist. Similarly, for (2.68), Sandy cannot
simultaneously believe that Florida’s election was held two months ago
and that it was held earlier this month. In (2.69), finally, the content of the
as-parenthetical cannot be anchored to Karl’s point of view because Karl
does not think Ohio has been called by anyone.

After a detailed effort at describing the behavior of these constructions in
various contexts, Potts (2005) concludes that they are all invariably anchored
to the speaker’s point of view on the basis of examples like (2.70).

(2.70) Ed said, as Sue predicted, it is raining. # But in fact Sue didn’t
predict rain.
(Potts, 2005, example 2.47)

Countering Potts’s claim, Amaral et al. (2007) give convincing counterex-
amples that appositives, expressives, and nonrestrictive relative clauses can
all have nonspeaker anchoring given the right context. Harris and Potts
(2009) follow on Amaral et al.’s work, confirming that supplements and
expressives can be anchored to an embedded point of view as part of an
in-depth experimental study of the relative frequency of speaker-anchored
and nonspeaker-anchored readings.

For both Amaral et al. and Harris and Potts, the process for showing that
these implications can be anchored to a nonspeaker point of view involves
concocting a discourse context with just the right features to prompt a
nonspeaker-anchored reading, similar to context (2.16), above. Beginning
with a variant of the expressive in (2.58):

2.2.2.2 Supplements and Expressives 38

Context (2.71): The speaker was unaware of the outcome of the election
until he walked past a tea party rally where the dejected participants were
complaining about the result.

(2.58′) Apparently, those tea partiers are upset that that socialist Obama
got re-elected.

Assuming that the speaker is not herself a tea partier, and assuming that
the speaker does not herself believe Obama to be a socialist, her utterance
of (2.58′) in the context (2.71) cause the expressive’s implication of dissatis-
faction with Obama’s purported location on the political spectrum to be
interpreted as anchored to the tea partiers rather than to the speaker.

Next, a context capable of causing the anchoring of (2.59) to be different
than the speaker’s point of view.

Context (2.72): Kim is aware that Florida’s election was actually held several
months in the past. She is describing her friend Robin, who is delusional
and believes that it is currently November of the year 2000.

(2.59) The votes from Florida’s election, which was held earlier this
month, are still being counted.

In context (2.72), the nonrestrictive relative clause which was held earlier this
month in (2.59) must be interpreted as anchored to the delusional Robin,
since Kim does not believe Florida’s election was held earlier this month.

Finally, a context that causes the as-parenthetical in (2.60) to be anchored
not to the speaker but instead to Karl.

Context (2.73): The speaker has not heard of any reports from the Associated
Press regarding the election. Karl believes that the Associated Press has
called Ohio for Obama.

(2.60) The state of Ohio, as the Associated Press is now reporting, has
been called for President Obama.

Since the speaker of (2.60), interpreted in context (2.73), does not know
Ohio has been called, the content of the parenthetical as the Associated Press
is now reporting must be anchored to Karl’s point of view.

Based on the persistence tests applied to the examples in (2.5) and (2.58)–
(2.60), together with the evidence in contexts (2.15) and (2.71)–(2.73) that
their anchoring is sensitive to context, there is a solid case for categorizing
supplements and expressives as conventional implicatures that are not
necessarily speaker commitments.

2.3.1 Aspectuals 39

2.3 Nonconventional Implicatures

As its name implies, the class of nonconventional implicatures is made up
of those implicatures that result not solely from the conventional meaning
of their trigger, but by a process of inference based on the entailments
present in the discourse context along with those resulting from the trigger.
Their nonconventional nature is the reason that this class of implicature
displays some variability with respect to whether their associated persistent
implication persists or not.

The nonconventional implicatures I discuss here does not include the
conversational implicatures of Grice (1975). This meaning class corresponds
roughly to Abusch’s (2010) “soft triggers,” Simons et al.’s (2010) and Ton-
hauser et al.’s (2013) “class C” persistent contents, and to Pollard and
Smith’s (2011) “persistent entailments.” Unlike certain conventional im-
plicatures, none of the members of this class are required to be speaker
commitments, which has implications for persistence variability, as I discuss
below.

The nonconventional implicatures include the so-called factive implica-
tions of verbs like know, realize and regret, aspectual verbs like continue, quit,
start, stop and switch to, and verbs signaling achievements with a prepara-
tory phase, such as graduate and win. Much of the early literature on these
verbs construes them as presuppositional, as imposing a constraint that
the context of interpretation must entail the relevant persistent implication
(Karttunen, 1974; Stalnaker, 1978; Lewis, 1979; Heim, 1983b). But in this
thesis, I follow a countervailing trend in the literature of treating them as
persistent but not necessarily as imposing felicity constraints, exemplified
by Boër and Lycan (1976), Abbott (2000), Simons (2001), Gauker (2008),
Beaver (2010), and Roberts et al. (2009), Simons et al. (2010), among others.

2.3.1 Aspectuals

As the tests in (2.11) and (2.14) demonstrate, the aspectual verb stop can
have a persistent implication, namely that its pre-state holds. In (2.74), the
pre-state implication of

(2.10) Kim stopped smoking.

is explicitly negated by the speaker, but (2.10) is felicitously embedded
beneath the predicate thinks, with the associated belief attributed to Robin.

2.3.1 Aspectuals 40

(2.74) Kim has never smoked in her life, but Robin thinks Kim stopped
smoking.

In this example, the addressee infers that Robin thinks Kim used to smoke
because it is not possible for Robin to think Kim stopped smoking without
also thinking that she started smoking at some point. That is, Robin’s
thinking Kim used to smoke arises because it is an entailment of Robin
thinking Kim stopped smoking.

Importantly, though, aspectuals do not impose any requirement that
the context must entail their pre-state. As an example, consider (2.75).

(2.75) I wonder why Kim is so on edge lately. Maybe she stopped
smoking, or something.

If an interlocutor responded with Yes, and she’s having a tough time with
it, the speaker of (2.75) would be justified in inferring that Kim smoked
before. But if the response instead was No, that can’t be it—she’s never
smoked in her life, the inference of stop’s pre-state is not warranted. Thus the
persistence of stop’s pre-state implication is at least partly determined by
context, and therefore not part of the conventional meaning of stop, as it
is for the retrievability implication associated with definites or the comma
intonation signaling a nominal appositive.

The pattern these verbs demonstrate is that they have a persistent
implication whose persistence is not dictated entirely by their conventional
meaning, and that they can be anchored to an embedded, nonspeaker
perspective. To take another example, consider switch to in the following.

(2.76) Maybe Kim switched to drinking decaf.

(2.77) If Kim switched to drinking decaf, she might be interested in
getting rid of her caffeinated coffee supply.

The associated prior state in (2.76) is that there is some previous time at
which Kim drank caffeinated coffee. But similarly as for (2.75), (2.76) is
used in nonfactual mood, perhaps to offer an explanation for why Kim has
seemed so much less on edge lately. That is, (2.76) is perfectly felicitous
in contexts where nothing is known about her prior coffee consumption
habits. The same is true of (2.77): the speaker may only be interested in
obtaining some caffeinated coffee, and may have no knowledge of whether
or not Kim ever drank it.

It is also felicitous to use switch to in contexts where her having previ-
ously consumed caffeinated coffee is known to be false, as (2.78) shows.

2.3.2 Achievements 41

(2.78) Why is Kim so relaxed? Well, she’s not a coffee drinker, so it’s not
because she switched to drinking decaf.

The examples in (2.76)–(2.78) show that switch to does not strictly require
its pre-state to be entailed by the discourse context as a presuppositional,
because the pre-state implication could be new information or suppressed
by the context.

Like start, stop, and continue, the pre-state implication of the verb switch
to is both persistent and capable of being anchored to a nonspeaker point
of view.

(2.79) a. Kim didn’t switch to drinking decaf.

b. Did Kim switch to drinking decaf?

c. It’s possible Kim switched to drinking decaf.

d. If Kim switched to drinking decaf, she’ll probably be in a better
mood.

(2.80) a. Kim switched to drinking decaf.

b. No she didn’t. But she did quit smoking recently.

Just as in (2.11), for each of the tests in (2.79) and (2.80) the addressee may
infer the pre-state implication that Kim used to drink caffeinated coffee as
long as the context does not conflict with it. And switch to can clearly take
on an embedded perspective, since in (2.81) the pre-state implication is
necessarily anchored to Robin because the speaker makes clear it is false.

(2.81) Kim never drank caffeinated coffee, but Robin believes that Kim
switched to drinking decaf.

Importantly, the pre-state implication of switch to does not persist for (2.81)
because it conflicts with the speaker’s assertion. Thus switch to sometimes
persists, but its persistence is not part of its conventional meaning, and it is
not necessarily a speaker commitment.

2.3.2 Achievements

Verbs like win and graduate are associated with a prior period of time called
a preparatory phase. They give rise to a preparatory phrase implication
related to this prior time period that is similar to the pre-state implication
for the aspectual verbs. For example, in (2.82), Lance’s having participated
in the Tour de France is entailed by his having won it.

2.3.2 Achievements 42

(2.82) Lance won the Tour de France.

Just as aspectuals do not presuppose their pre-state, achievements do
not presuppose their preparatory phase, as the tests in (2.83) and (2.84)
demonstrate for win.

(2.83) a. Lance didn’t win the Tour de France.

b. Did Lance win the Tour de France?

c. Maybe Lance won the Tour de France.

d. If Lance won the Tour de France, he’ll be doing the talk show
tour when he gets back home.

(2.84) a. Lance won the Tour de France.

b. No, he didn’t—he was disqualified for doping.

The behavior of win is similar to that observed for the aspectual verb switch
to: just as for the aspectuals, an addressee hearing (2.82) may infer that
the preparatory phase is implicated by the speaker. And (2.85) shows that
achievements like win can have a nonspeaker anchoring, since the speaker
of (2.85) negates the relevant preparatory phase.

(2.85) Lance didn’t participate in the Tour de France, but Sandy believes
Lance won the Tour de France.

For (2.85), the preparatory phase implication must be Sandy’s belief and
not the speaker’s, and therefore it is not a speaker commitment. And
similarly to (2.81), Lance’s having participated in the Tour is not a persistent
implication of (2.85) because it is contradicted by the speaker.

In a direct parallel to (2.10), consider (2.83a) in the following contexts:

Context (2.86): A sports website wants to run biographical pieces about
participants in recent high-profile cycling races. One of the editors thinks
the race winners would be the most amenable candidates.

Context (2.87): A sports website wants to interview winners of recent high-
profile cycling races about doping in the sport. It is mutual information
that Lance has retired from professional cycling.

In context (2.86), win’s preparatory phase in (2.83a) may persist because
it is inferable by the interlocutors. By contrast, in context (2.87), the
preparatory phase does not persist for the simple reason that the common

2.3.3 Factives 43

ground already entails its denial. Interpreting (2.83a) in these two contexts
shows that nonspeaker anchoring is not the only reason that aspectuals
and achievements fail to persist. They also fail to persist whenever their
persistent implication is not consistent with entailments already present in
the discourse context.

2.3.3 Factives

In the literature, the so-called factive verbs have often been characterized
as presuppositional, constraining the context of interpretation to entail
their complement. I adopted such a stance toward the emotive factive suck
in Martin and Pollard (2012a). But at least since Karttunen (1971), who
identifies a semi-factive subclass of factive verbs, it has been recognized that
the persistent implications associated with many factive do not persist as
rigidly as the implications associated with definites, for example.

Consider (2.89) in the following (veridical) context.

Context (2.88): It is not known whether the Riemann hypothesis, a famous
open conjecture in mathematics, is true or false.

(2.89) Louie doesn’t
{

know
realize

}
the Riemann hypothesis is true, he

only thinks he does.
(Pollard and Smith, 2011)

In (2.89), the complement of know does not persist when know is embedded
under negation, and so is not presuppositional, although interlocutors
may sometimes infer that the truth of its complement (called its factive
implication) is part of what is being implicated.

More generally, the complement of a factive is not even conventionally
implicated, in addition to not being presupposed.

(2.90) Sandy doesn’t know Kim quit smoking, because he knows Kim
never even started smoking in the first place.

(2.91) # Sandy doesn’t know Kim, who he believes to have previously
been a smoker, quit smoking, because he knows Kim never
even started smoking in the first place.

These examples serve to contrast nonconventional implicatures from the
conventional ones. In (2.90), the pre-state implication associated with quit

2.3.3 Factives 44

does not persist because it conflicts with the information that Sandy knows
Kim never started smoking. But in (2.91), in which the pre-state implication
is explicitly stated as a nonrestrictive relative, the situation is different:
Sandy’s conflicting knowledge gives rise to infelicity.

A similar example from Boër and Lycan 1976 shows that, in the case of
know, the interlocutors may even know nothing about the factive comple-
ment.

Context: The interlocutors have no knowledge of the whether the Goldbach
conjecture is true or false.

(2.92) John doesn’t know that Goldbach’s conjecture is false.
(Boër and Lycan, 1976, example 92)

In (2.92), interpreted in the intended context, the addressee is not required
to know that Goldbach’s conjecture is false, or even to infer it after hearing
(2.92) uttered.

Simons (2001) discusses this kind of persistence failure in connection
with “explicit ignorance contexts,” in which it is obvious to the interlocutors
that a purported presupposition cannot be entailed by the context.

Context: The interlocutors are eating at a restaurant. At the neighboring
table is a couple in a heated argument.

(2.93) Perhaps she just discovered that he’s having an affair.
(Simons, 2001, example 8)

Similarly to know in (2.89), the complement of the factive discover cannot be
presupposed as mutual prior knowledge in (2.93), as the interlocutors are
not acquainted with the arguing couple and have no idea what they are
arguing about.

This behavior contrasts with that of realize, which, in addition to being
anchored to the speaker rather than to Louie in (2.89), is infelicitous in a
context that entails that the Riemann hypothesis is anything other than
true. As the following tests show, the factive prove, like know, displays
persistence variability in certain constructions.

(2.94) a. No one proved the Riemann hypothesis.

b. Did someone prove the Riemann hypothesis?

c. Perhaps someone proved the Riemann hypothesis.

2.3.3 Factives 45

d. If someone proved the Riemann hypothesis, we should publish
the proof.

(2.95) a. Someone proved the Riemann hypothesis.

b. That’s not true. If that had happened, I would’ve heard about
it.

Just as for know in (2.89), the use of the verb proved in (2.94d) is completely
acceptable in contexts that do not entail the truth of the Riemann hypoth-
esis. The denial test in (2.95) illustrates similar behavior: the Riemann
hypothesis’s truth does not persist.

(2.96) a. Louie doesn’t realize the Riemann hypothesis is true.

b. Does Louie realize the Riemann hypothesis is true?

c. Maybe Louie realizes the Riemann hypothesis is true.

d. If Louie realizes the Riemann hypothesis is true, I’d like to see
his proof.

(2.97) a. Louie realizes the Riemann hypothesis is true.

b. No way. If he did, he would have attempted to publish a proof
by now.

The tests in (2.96) and (2.97) point to another important distinction between
factives. Notice that for each of the tests involving realize, the truth of the
Riemann hypothesis is implicated. This contrasts with (2.98a), where the
reason Louie does not know the Riemann hypothesis to be true may well be
that it is an open conjecture, or false (for example, in a context like (2.88)).

(2.98) a. Louie doesn’t know the Riemann hypothesis is true.

b. Does Louie know the Riemann hypothesis is true?

c. Maybe Louie knows the Riemann hypothesis is true.

d. If Louie knows the Riemann hypothesis is true, I’d like to see
his proof.

(2.99) a. Louie knows the Riemann hypothesis is true.

b. No he doesn’t, he only thinks he does.

The behavior of realize also different from the behavior exhibited by know
in all of the tests in (2.98) and (2.99), none of which implicate that the
Riemann hypothesis is true.

It is important to note the difference between the stative realize in (2.89)
and its inchoative relative:

2.3.3 Factives 46

(2.100) If Louie someday realizes the Riemann hypothesis is true, I’m
sure he’ll be thrilled.

The inchoative realization in (2.100) is taking place in the future, and
therefore what is being realized (the truth of the Riemann hypothesis) is
not entailed. Inchoative realize is synonymous with find out, discover, come
to know, etc.

As the tests (2.96) and (2.97) demonstrate, the reason for the discrepancy
between stative realize and the other factives (including inchoative realize) is
that, when it is anchored to the speaker’s point of view, stative realize always
attributes belief in the truth of its factive implication to the speaker. That
is, when speaker-anchored, the proposition expressed by stative realize’s
complement is necessarily a speaker commitment. This contrasts with know
and prove, for example, which can be interpreted as attributing belief in the
relevant factive implication to an embedded perspective.

The following example further illustrates this contrast.

(2.101) It’s not raining. But Dana

thinks
believes
is under the impression
is convinced
just knows

realizes

that it’s

raining.

Even in the variant of (2.101) that uses knows, since the discourse context
already contains the information that it is not raining, an addressee can
interpret the belief that it is raining as anchored to Dana and the use of know
in particular as ironically signaling her stubbornness. But the nonspeaker-
anchored interpretation is simply not possible for realize, whose factive
implication is always interpreted as a speaker commitment when realize is
itself speaker-anchored.

However, when stative realize occurs in the scope of an attitude predicate
or in a modal subordination context (Roberts, 1989), different behavior is
observed.

(2.102) Louie thinks the Riemann hypothesis is true, but that no one
realizes it is.

(2.103) It might be that the Riemann hypothesis is true, but that no one
realizes it is.

2.4 Taking Stock 47

Interpreted in context (2.88), in which the Riemann hypothesis has the
status of a mere conjecture, belief in the factive implication of realize in
(2.102) cannot be attributed to the speaker. Rather, the truth of the Riemann
hypothesis is taken to be believed by Louie, the point of view to which
thinks is anchored. Similarly, the use of the modal It might be in (2.103)
in the given context requires that the speaker not believe the Riemann
hypothesis is true.

Importantly, though, the factive implication of realize is not presupposed
as part of its conventional meaning, in the sense of imposing a required
entailment on the context of interpretation. This is illustrated in (2.102),
because clearly, given the context, the speaker does not take the truth of the
Riemann hypothesis to be mutual information. But realize does not require
a presupposition of the truth of its complement even in unembedded cases,
as the following example shows.

Context: A driver has just picked up a hitchhiker, who has a gum wrapper
in his hair. They have not yet spoken.

(2.104) Do you realize there’s a gum wrapper in your hair?

If (2.104) is uttered in the indicated context, the use of realize cannot be
interpreted as requiring the discourse context to entail that the hitchhiker
has a gum wrapper in his hair. For all the driver knows, the hitchhiker may
be unaware of the gum wrapper’s presence. The hitchhiker may still infer
that the gum wrapper is in his hair based on hearing (2.104), so the factive
implication can contribute new information.

Summing up, so-called factive verbs can give rise to a persistent implica-
tion, but the persistence of this implication displays variability depending
on the discourse context. It is therefore not a part of the conventional
meaning of a factive. The stative version of realize persists more rigidly
in unembedded, but what persists is an entailment related to the use of
realize, and is not a conventional implicature like anaphora, supplements,
or expressives.

2.4 Taking Stock

The members of the empirical domain of implicatures, all persistent impli-
cations, are characterized according to two criteria. The first is whether the

2.4 Taking Stock 48

Implication (Associated Trigger) Conventional Commitment
Novelty (indefinites) Yes Speaker
Retrievability (definite anaphora) Yes Speaker
Retrievability (possessor in possessive) Yes Speaker
Retrievability (too) Yes Speaker
Descriptive Content (definite anaphora) Yes Variable
Descriptive Content (possessed in pos-
sessive)

Yes Variable

Conventional Implicatures Yes Variable
Pre-state (aspectuals) No Variable
Preparatory Phase (achievements) No Variable
Factive No Variable

Table 2.1: Summary characterization of implicatures based on convention-
ality and speaker commitment status.

persistence of their associated persistent implication is a part of their con-
ventional meaning. The second is whether they must obligatorily give rise
to a speaker commitment. Table 2.1 gives a summary of the implicatures
discussed in this chapter, differentiated by these two criteria.

These criteria are useful for distinguishing implicatures because they
shed light on some important notions related to persistent content. The
taxonomic hierarchy of the implicatures investigated here, based on the
criteria of the conventionality of their persistence and their speaker com-
mitment status, is shown in figure 2.1. In this taxonomy, implicatures
are first divided based on the whether or not they persist as part of their
conventional meaning. As I discuss in §2.4.1, this distinction is important
for a more general view of contextual felicity. The class of conventional
implicatures bifurcates a second time into those that must be speaker com-
mitments and those that do not have this requirement. By contrast, none of
the nonconventional implicatures are obligatorily speaker commitments.

The top two levels of the taxonomic graph in figure 2.1 are of course
reminiscent of Grice’s (1975) taxonomy of implicatures. For Grice, implica-
tures are those implications that are not the main point of what is said, and
the class of implicatures is split into the conventional and nonconventional
implicatures, as here. I chose to reappropriate the term conventional implica-
ture from Potts (2005) in order to signal the connection between anaphora,

2.4.1 Felicity, Accommodation, and Variability 49

implicatures

conventional

speaker commitment variable

nonconventional

Figure 2.1: Taxonomic graph of implicatures.

Potts’s “CIs,” and the nonconventional implicatures, and also to connect
it to an older tradition that dates to Grice and to Karttunen and Peters
(1979). The taxonomy given here extends Grice’s original characterization
of implicatures, which did not differentiate the conventional implicatures
based on speaker commitment status, a central notion in my account.

2.4.1 Felicity, Accommodation, and Variability

One notion that this taxonomy serves to illuminate is the notion of felicity.
Ever since Langendoen and Savin (1971) first identified the “projection
problem” for presuppositions, there has been a strong tendency in the study
of persistence to treat all of it as presuppositional. In this view, persistence
occurs because a trigger imposes felicity constraints on the context of
interpretation, and these constraints survive embedding within the scope
of operators. Among many others, Karttunen (1973, 1974), Stalnaker (1973,
1978), Lewis (1979), Heim (1983b), van der Sandt (1992), Chierchia (1995),
Geurts (1999) and Beaver (2001) have all adopted this view to one degree
or another. I have also taken this stance toward persistence in my own
previous work on dynamic semantics, anaphora, and factives (Martin, 2012;
Martin and Pollard, 2012a,b).

But the traditional way of thinking about persistence has had the un-
fortunate effect that certain instances of implicatures, for example Potts’s
(2005) CIs, are characterized as existing on a separate plane from anaphora,
which figures among the implicature triggers usually considered presuppo-
sitional. Instead, characterizing anaphora and CIs as both giving rise to a
conventionally signaled, persistent implication makes clear that they have
much in common, as the parallel between (2.106) and (2.108) illustrates.

2.4.1 Felicity, Accommodation, and Variability 50

Context (2.105): There is no retrievable nonhuman antecedent.

(2.106) # It brayed.

The usual story about the unacceptability of (2.106), uttered in a context
like (2.105) with no retrievable antecedent for It, is that the infelicity results
from the speaker commitment that the addressee can retrieve a suitable
antecedent. Potts (2005, page 111) describes the unacceptability of (2.108)
as the property of CIs that their meaning is “nondeniable.”

Context (2.107): It is not known to the interlocutors whether Lance is or is
not a cyclist.

(2.108) Lance, a cyclist, is from Texas. # Lance is not a cyclist.

Similarly to the unacceptability of (2.106), the speaker’s commitment to
Lance not being a cyclist causes (2.108) to be unacceptable in the discourse
context, in which it has already been established by the preceding utterance
that Lance is a cyclist.

I would argue that both (2.106) and (2.108) constitute instances of a
single, more general phenomenon: in each case, a persistent implication
that is part of the conventional meaning of the trigger is at odds with the
discourse context. For (2.106), the offending implication is that there is a
retrievable antecedent for It. For (2.108), the nominal appositive’s content is
the proposition that Lance is a cyclist, but this conflicts with the implication
in the following utterance that, to the contrary, he is not a cyclist.

A similar parallel can be observed between the novelty implication
associated with indefinites on the one hand and what Potts (2005, page 112)
calls the “antibackgrounding” property of CI content.

(2.109) A donkeyi walked into a bar. A donkey#i ordered a sandwich.

(2.110) Lance Armstrong survived cancer. # When reporters interview
Lance, a cancer survivor, he often talks about the disease.
(Potts, 2005, example 4.46a)

On the intended reading, (2.109) is infelicitous because both indefinites give
rise to the implication that the same discourse referent is being mentioned
for the first time. In (2.110), the content of the nominal appositive a cancer
survivor is already mutual knowledge to interlocutors who have accepted
the first utterance.

2.4.1 Felicity, Accommodation, and Variability 51

And so rather than treating anaphora as having the special property
of imposing felicity constraints on the discourse context, the infelicity that
results when an anaphor’s antecedent is not retrievable is simply a result of
the way cooperative conversations are managed, in the sense of Grice (1975).
The reason that (2.106) and (2.108) are unacceptable is that both threaten
to leave the discourse context in an inconsistent state, with an implication
that cannot be validated. This idea is already represented in the work of
Karttunen (1974), Heim (1983b) and van der Sandt (1992) in the form of the
requirement that presuppositions must be consistent with the discourse
context, though they differ in how contexts are formally represented. The
unacceptability of (2.109) and (2.110) arises from the fact that in both, a
implicature trigger is used in a way that is not informative, and thus no
implicature can occur. Geurts (1999, page 59) refers to the unacceptability
of examples like (2.110) as the constraint of “informativeness” on discourse
interpretation, invoking Grice’s (1975) first maxim of quantity.

In addition to felicity, the taxonomy for implicatures I discuss above
also has implications for the related notion of accommodation originally due
to Lewis (1979). The characterization of anaphora as mere instances of the
larger phenomenon of persistent contents allows a more open perspective
on their supposed nature as constraint-imposers. Under the view held by
that all persistence is presupposition, not only are anaphors and triggers
like too construed as bearing presuppositions, but so are aspectual verbs,
achievements, and factives. The “resolution” theories due to van der Sandt
(1992) and Geurts (1999) exemplify this view, and propose that presup-
position failure is always repaired by immediately making the required
accommodation. A similar proposal is found in the treatment of names via
exception handling found in de Groote and Lebedeva 2010. For accounts in
this vein, cases like (2.104) in which the discourse context actually does not
entail these triggers’ purported presuppositions are construed as instances
of informative presupposition, a seeming oxymoron.

In accounts that treat all persistence as presuppositional, the unfulfilled
presuppositions of the class of meanings I call nonconventional implica-
tures are simply accommodated when the need arises. So theories like
these actually posit that accommodation, which is traditionally thought of
as a repair strategy that is invoked when the context becomes inconsistent
(Stalnaker, 1978; Lewis, 1979), actually happen constantly during the course
of ordinary discourse. A theory equipped with an unconstrained accommo-
dation that is always available has to face the unfortunate consequence of

2.4.1 Felicity, Accommodation, and Variability 52

being scientifically unfalsifiable (Roberts, 2012a), becoming “vacuous, since
no counterexamples could be raised against it” (Abbott, 2000, page 1426).

I would argue that it is more illuminating to simply treat implicatures as
having an associated persistent implication that persists to a certain degree
based on whether it is conventionally signaled and whether it is a speaker
commitment, but is in no way presupposed in the sense of imposing a
felicity constraint. This view of some persistent implications as not strictly
constraining the context of interpretation has some recent precedent in the
literature, see, for example, Abbott 2000, Simons 2001, Gauker 2008, Roberts
et al. 2009, Abusch 2010, Beaver 2010, Simons et al. 2010, and Pollard and
Smith 2011. Not only does this alternative empirical characterization better
match the observed facts, it has the additional benefit of not requiring a
special repair mechanism so that interpretation can take place in ordinary
discourse. It also avoids the undesirable theoretical consequence that
Karttunen (1974) called “part-time presupposition,” in which certain lexical
items purportedly have a felicity constraint built into their conventional
meaning but this constraint is frequently not observed. Under this view,
the terms presupposition and anaphora become synonyms, because there are
no triggers besides anaphora that are claimed to make constraints on the
discourse context.

Although I do not attempt an explicit formal account of accommo-
dation in this thesis, I would argue that there is still a place in a theory
of implicature for a notion of accommodation, just not exactly as Lewis
(1979) conceived of it. Theories in which accommodation comes to the
rescue any time there is a threat of infelicity clearly have too broad a notion
of accommodation. But accommodation still does occur in the course of
conversations, because speakers sometimes use expressions bearing con-
ventional implicatures that risk being interpreted as being in conflict with
the context, as the examples in (2.106) and (2.108) show.

Several authors explore a more nuanced and constrained alternative to
Lewis’s (1979) accommodation. Thomason (1990) construes accommodation
as a process in which interlocutors add missing but intended content to the
context as part of an effort to recognize the other interlocutors plans and
goals. Von Fintel (2008) characterizes an accommodation mechanism that
is more in line with what actually happens in natural language discourse.
For von Fintel, when speakers accommodate, they “try to figure out which
particular adjustment is [most] likely the one that the speaker intended”
(page 162), however, sometimes accommodation simply cannot happen, as

2.4.1 Felicity, Accommodation, and Variability 53

when a definite is used in a context lacking a suitable antecedent. The view
of accommodation as a form of goal-driven inference is also put forward
by Beaver and Zeevat (2007), as it is by Thomason, Stone, and DeVault
(2006) and Roberts (2012a), who each in different ways make a case for an
accommodation process guided by intention recognition. These theories
that are based on the interlocutors’ intentions and common goals seem to
offer a much more detailed and compelling story about accommodation
than Lewis’s original.

Finally, the taxonomy I present in this chapter also bears on persistence
variability. The class of nonconventional implicatures displays foremost
the characteristic that persistence fails when the potential persistent im-
plication conflicts with the discourse context. And similarly, conventional
implicatures like the anaphoric retrievability implication or the persistent
implication of supplements normally result in unacceptability when they
conflict with the discourse context.

The persistence variability for nonconventional implicatures and the
exceptions to unacceptability for conventional implicatures are related in
the following way. Following Roberts (2011, to appear), conventional impli-
catures that conflict with the discourse context give rise to unacceptability
only when they are speaker commitments. An otherwise unacceptable
conventional implicature can take on an embedded point of view as a
strategy for avoiding unacceptability, for example, in (2.15), in which it
cannot be the speaker who is committed to the existence of a chip behind
Joan’s ear. Nonconventional implicatures that are not consistent with the
context cannot persist except when they are speaker commitments, as the
following contrast shows:

(2.85) Lance didn’t participate in the Tour de France, but Sandy believes
Lance won the Tour de France.

(2.111) Lance didn’t participate in the Tour de France, # but Lance won
the Tour de France.

And so this taxonomy shows that unacceptability is a result of a implicature
to which the speaker is committed that is also in conflict with the context.

In terms of explaining why implicatures behave the way they do, the
story is simple. The conventional implicatures that must be speaker com-
mitments (for example, the retrievability implication of a definite) all share
the property that they are implications not about the state of the world
but about the discourse context itself. Therefore, they cannot fail to be

2.4.1 Felicity, Accommodation, and Variability 54

speaker commitments because they represent information that the speaker
is conveying to the addressee about the mutually accepted content they
share for the purposes of the conversation. It is for this same reason that
conventional implicatures that are not necessarily speaker commitments
(for example, one of Potts’s (2005) “CIs”) can sometimes conflict with the
discourse context yet not give rise to infelicity: they are not statements
about the discourse context itself, and as such can be anchored to a non-
speaker point of view under the right conditions. Then the difference
between conventional implicatures that are not speaker commitments and
the nonconventional implicatures is again simply that a nonconventional
implicature does not persist as part of its conventional meaning, and thus
persistence may sometimes fail.

It bears mentioning that I have not discussed every case of persistent
content here, having left out conversational implicatures, the persistent
implications associated with certain instances of intonational focus, clefts
and pseudo-clefts, too, even and almost, to name just a few. But the empirical
domain I delineate in this chapter represents not only a fairly large swath
of persistent contents, but also reorganizes into the same subclass some
persistent contents that are often viewed as distinct. In the ensuing chapters,
I lay out a formal theory of some of the implicatures described here, and
explore its predictions. The theory I propose is structured according to
this taxonomy of implicatures: they are modeled as implications that,
depending on whether their persistence is conventional, their status as
speaker commitments, and their consistency with prior context, may update
the context in a way that is not affected by entailment-modifying operators.

Chapter 3

Curryesque Categorial
Grammar

The grammar formalism I describe in this chapter, called Curryesque
Categorial Grammar, is a categorial grammar in the tradition of Lambek
1958, as its name suggests. The term Curryesque refers to the fact that in this
formalism, the mechanism for handling syntactic combinatorics is separate
from the one that handles surface word order, following Curry (1961).

As such, this formalism is similar to other categorial frameworks that
separate combinatorics and surface form. Two prominent examples are
de Groote’s (2001) Abstract Categorial Grammars and the λ-grammars of
Muskens (2001, 2007). It also represents an alternative to categorial frame-
works like Morrill’s (1994) Type Logical Grammar, Moortgat’s (1997) Cate-
gorial Type Logic, and Steedman’s (2000) Combinatory Categorial Grammar,
all of which handle both combinatorics and word order using a single
mechanism. The syntactic components of Curryesque Categorial Grammar
resemble recent work on similar formalisms found in Smith 2010, Mihaliček
2012, and Mihaliček and Pollard 2012. Since it is predated by Steedman’s
well-known formalism, I use the acronym CyCG to abbreviate Curryesque
Categorial Grammar. I will use the term CyCG interchangeably to refer to the
framework in a general sense and to an instance of a CyCG that describes
a particular language.

Among the positive attributes of CyCG’s grammatical division of labor
is the fact that it allows greater flexibility in writing lexical entries, since
word order and combinatorics may diverge. Another feature is that a single
CyCG syntax (word order/combinatorics pair) can correspond to multiple

55

3.1 A Logic of Signs 56

semantics, in cases where semantic ambiguity can arise, such as multiple
quantifier scope possibilities. The correspondence of a single surface word
order with multiple semantic interpretations is achieved by an adaptation
of a technique due to Oehrle (1994).

In §3.1, I discuss the motivations for the design choices behind CyCG,
along with its formal underpinnings. The notion of a sign, a context, and a
lexicon are discussed in §3.1.1, and the grammar rules of CyCG are given in
§3.1.2. Then the following two sections discuss the word order component
(§3.1.3) and semantics (§3.1.4) in more detail. Starting in §3.2, a fragment
of English is laid out that demonstrates some of CyCG’s core capabilities.
Quantifier scope ambiguities are discussed in §3.2.1, and extraction (both
peripheral and medial) in §3.2.2. Finally, §3.3 gives a summary of this
chapter.

3.1 A Logic of Signs

A CyCG is a deductive system for deriving representations of linguistic
signs for a given natural language. CyCG proofs consist of triples of parallel
proofs in the following three component systems:

1. A theory modeling the surface phonological forms of the language,
expressed in (simple) type theory. This component is referred to
interchangeably as the phenogrammar, pheno logic, or concrete syntax,

2. A tensor-implication logic of syntactic categories, called the tectogram-
mar, which captures the language’s abstract combinatorics, such as
verb subcategorization, also called the tecto logic or abstract syntax,
and

3. A theory that models the semantics of the language, expressed in type
theory like the pheno logic. This component is called the semantic
logic or simply the semantics.

Terms of the pheno and semantic logics are sometimes referred to respec-
tively as pheno terms and semantic terms, with their types respectively pheno
types and semantic types. Formulas in the tecto logic are sometimes called
tecto types.

The respective type theories for the pheno logic and the semantics
are distinct from one another in the sense that they use different sets

3.1 A Logic of Signs 57

of nonlogical types and nonlogical constants (although they inherit the
same logical type t and constants ∗ and =A from the underlying type
theory). They may also have different axioms that control the behavior
of the nonlogical constants. Appendix B contains a thorough overview of
type theory, which is similar to the typed lambda calculus except that the
relations of αβη-conversion are derived from axioms of the system rather
than being stipulated in the metalanguage.

The tecto logic is an instantiation of tensor-implication logic with an arbi-
trary set of atomic formulas corresponding to the basic syntactic categories
of the language being modeled. Tensor-implication logic, a subsystem
of what is sometimes called the multiplicative fragment of linear logic, is
described in detail in appendix A. This logic can be thought of as an ex-
pression of the syntactic calculus of Lambek 1958 in linear logic, except that
there is only a single, undirected implication (() instead of the directed
implications / and \. It can therefore be thought of as unilinear logic. Tensor-
implication logic is a related system to intuitionistic propositional logic,
but whereas a proof of the intuitionistic implication A→ B is interpreted
as a process for transforming any proof of A into a proof of B, the linear
implication A(B maps any proof of A to a proof of B that only uses A
once. Intuitionistic proofs are thought of as facts, linear proofs as pieces of
data.

I observe the notational conventions for both tensor-implication logic
and type theory that are spelled out in appendices A and B. In the tecto
logic, types formed with (are written right associatively, with A (
B (C abbreviating A ((B (C). For the pheno logic and semantics,
types formed with→ are written right-associatively but those formed with
× are written left-associatively (see §B.1). However, terms of application
types, written (f a), are left associative: (f a b) abbreviates ((f a) b). Also,
outermost parentheses in applications are often dropped. In abstractions,
parentheses are abbreviated in the usual way, so that λx:A. f is often written
instead of (λx:A f), and the typing information is often dropped when it is
available from context, so that just λx. f is written instead. Finally, multiple
variable bindings are sometimes collapsed onto a single λ, so that λxλy. f
becomes simply λxy. f . (Definition B.4 discusses term formation in type
theory.)

3.1.1 Signs, Contexts, and the Lexicon 58

3.1.1 Signs, Contexts, and the Lexicon

In this section I discuss the basic metalanguage notions of CyCG.

Definition 3.1 (Signs). A sign is represented in CyCG as a triple, written as

(3.1) a : A ; B ; c : C ,

where a : A is a declaration in the pheno logic with term a and type A, B
is a tecto type, and c : C is a semantic logic declaration of a term c having
type C.

When the types are clear from context so that no confusion can arise, I
sometimes suppress the type information and abbreviate signs of the form
in (3.1) as simply

(3.2) a ; B ; c .

When a sign is written in the form in (3.1), it is said to be in long form;
a sign with elided type information, like the one in (3.2), is said to be in
short form.

Definition 3.2 (Contexts). A context in CyCG is a (possibly empty) finite
set of signs of the form

{x1 : A1 ; B1 ; y1 : C1, . . . , xn : An ; Bn ; yn : Cn} .

The members of a CyCG context are called hypotheses. Every legal CyCG
context Γ satisfies the following conditions:

1. The pheno and semantic term of each hypothesis in Γ is a variable in
its respective instantiation of type theory, and

2. The set of variables is disjoint in the sense that each pheno variable
and each semantic variable occur at most once in all the hypotheses
in Γ.

Similarly to the contexts in type theory and tensor-implication logic, the
context Γ ∪̇ ∆ is the disjoint union of Γ and ∆, defined only if the variables
occurring in the hypotheses in Γ and ∆ are disjoint.

As for type-theoretic and tensor-implication contexts, Γ ∪̇ ∆ is written Γ, ∆,
and Γ, a : A ; B ; c : C is shorthand for Γ, {a : A ; B ; c : C}. The curly brackets
surrounding a context are very often elided.

3.1.2 Grammar Rules 59

As its name implies, a CyCG context is a combination of two type-
theoretic contexts and one tensor-implication context in the form of a set of
triples (CyCG signs). But here a conflict must be resolved: in type theory, a
context is a set of variable declarations (definition B.5), while contexts in
tensor-implication logic are multisets of formulas (definition A.2). CyCG
takes a middle path between these. Its contexts can be permuted, but
analogs of the type-theoretic structural rules of weakening and contraction
are not available because the pheno and semantic variables must be disjoint.
CyCG, as a result, keeps with the linear character of its tecto logic. In this
way, it reflects the fact that natural language syntactic combinatorics are
resource-sensitive: an English verb phrase requires exactly one subject to
form a sentence.

CyCG grammaticality judgments are reminiscent of the derivability
judgments of type theory and tensor-implication logic. They are notated in
the form

Γ ` a : A ; B ; c : C ,

and are interpreted as saying that the sign a : A ; B ; c : C is derivable in the
context Γ. As for type theory and tensor-implication logic, when Γ is empty,
the corresponding judgment is written ` a : A ; B ; c : C. If Γ is nonempty,
the judgment is said to have an undischarged hypothesis.

Definition 3.3 (Lexicons). A CyCG lexicon is a finite set of nonlogical
axioms satisfying the following:

1. The pheno term is a closed term of the pheno logic, and

2. The semantic term is a closed term of the semantic logic.

The members of a lexicon are called the lexical entries.

3.1.2 Grammar Rules

The CyCG lexicon is the starting point for the CyCG grammar rules in
figure 3.1, which allow more complex signs to be derived based on the
contents the lexicon. The Entry rule simply states that lexical entries can
be used in derivations. The Trace rule differs from Entry in that lexical
entries are nonlogical axioms, but instances of Trace introduce variables
that are stored in the context. So, for the pheno and semantic components,
Entry and Trace are just the respective CyCG analogs of the Const and Var

3.1.2 Grammar Rules 60

` a : A ; B ; c : C (Entry)

x : A ; B ; y : C ` x : A ; B ; y : C (Trace)

Γ, x : A ; B ; y : C ` d : D ; E ; f : F
(Extract)

Γ ` (λxd) : A→ D ; B(E ; (λy f) : C → F

Γ ` f : A→ B ; C(D ; g : E→ F ∆ ` a : A ; C ; b : E
(Combine)

Γ, ∆ ` (f a) : B ; D ; (g b) : F

Figure 3.1: Grammar rules of Curryesque Categorial Grammar in natural
deduction presentation. The sign in the Entry rule must be a lexical entry.
The symbols a, c, d, f , and g are metavariables over terms, x and y are
metavariables over type-theoretic variables, while A, B, C, D, E, and F
range over types.

rules from type theory. The Trace rule’s tecto component is also analogous
to the Id rule from tensor-implication logic, whereas the tecto component
of a lexical entry effectively adds an atomic type to the underlying logic,
but leaving it unmentioned in the context. The Extract rule combines the
rule→I from type theory and the rule(I from tensor-implication logic,
applying them in parallel in a way similar to the pointwise abstraction of
Muskens (2001, 2007). Similarly, the Combine rule applies a functional sign
with its argument, based on both the →E and (E rules of type theory
and tensor-implication logic, respectively. Combine resembles Muskens’s
pointwise application.

In CyCG, the definition of a proof is very similar to the way it is defined
for its component logics (see definitions A.3 and B.23). A CyCG proof of
the sign Γ ` a : A ; B ; c : C is a natural deduction proof tree in which the
root node’s label is Γ ` a : A ; B ; c : C, each leaf is an instance of either
Entry or Trace, and every mother node is derived from its daughters by one
of the rules in figure 3.1. As for type theoretic and tensor-implication proof
trees, rule labels are optional. The management of contexts most resembles
that of tensor-implication logic, since the rule of permutation is available,
but neither of the rules of weakening or contraction from type theory can
be used. CyCG contexts diverge from tensor-implication contexts in that a
CyCG context is a set of hypotheses, whereas a tensor-implication context

3.1.3 Axiomatizing the Pheno Logic 61

is a multiset of formulas (see definitions A.2 and B.5). CyCG contexts are
sets because occurrences of the same tecto formula are labeled by distinct
variables.

As figure 3.1 shows, the grammar rules for CyCG are very general and
simple. The only rules that do any real deductive work are Combine and
Extract, and these are just analogs to lambda abstraction and application
in type theory, or to(introduction and elimination in tensor-implication
logic. Note that there is no proof rule for handling products like the ones
for tensor products in tensor-implication logic (⊗I and ⊗E) or for cartesian
products in type theory (×I and ×E). However, nothing strictly rules out
the use of the connectives ⊗ and ×. For example, transitive verbs could be
modeled by the (uncurried) tecto type (NP⊗NP)(S. But since this type
is equivalent to its curried variant NP(NP(S, there is no immediate
need to introduce the added complexity of products.

All of the descriptive richness of the grammar is located in the lexicon,
where lexical entries may be arbitrarily complex as long as they can interact
with the grammar rules. Because of this, CyCG qualifies as a lexicalist theory
of grammar. With a notion of the lexicon so defined and the grammar rules,
all the ingredients required to specify a CyCG are now available. They are
as follows: a pheno logic (with nonlogical constants, types, and optional
axioms governing the constants), a set of basic types for the tecto logic, a
semantic logic (also with its own nonlogical constants, types, and axioms),
and a lexicon.

3.1.3 Axiomatizing the Pheno Logic

The phenogrammatical component, which models surface forms, is a type-
theoretic encoding of a logic of string concatenation. Accordingly, it makes
use of a single nonlogical type: the type s of phonological strings.

To handle the concatenation, some constants and axioms are needed.

Definition 3.4 (Phenogramatical Concatenation). The constant · : s→ s→
s denotes an operation that takes two strings to a third string, and the null
phonological string constant is denoted by e : s. For readability, · is written
in infix rather than prefix notation, so that for all s : s and t : s, I write
(s · t) instead of ((· s) t).1 The following axioms govern phenogrammatical

1Below, functions that are declared to be infix when they are defined are all written
analogously.

3.1.4 An Agnostic Semantic Theory 62

concatenation.

` ∀s:s∀t:s∀u:s.(s · t) · u = s · (t · u)(3.3)

` ∀s:s.(s · e) = s(3.4)

` ∀s:s.(e · s) = s(3.5)

The β-normal forms of concatenated strings are stipulated as follows.
Assuming the strings s, t, and u are in normal form, the concatenation
s · (t · u) is in normal form. The string s is the normal form of both (s · e)
and (e · s).

The first axiom, in (3.3), states that · is associative. Because of this
associativity, I usually suppress parentheses in pheno terms. The axioms
in (3.4) and (3.5) together state that e is a two-sided identity for ·, since
concatenating any string with the empty string has no effect. The pheno
logic, in essence, is an encoding of a free monoid on the set of phonological
strings (inhabitants of type s in the sense used in §B.1).

3.1.4 An Agnostic Semantic Theory

The CyCG semantics is based on the possible worlds semantics in Plummer
and Pollard 2012, which is agnostic in the following sense. It is intentionally
uncommitted with respect to whether propositions are defined as sets of
possible worlds, or vice versa, or even in some other way. And relatedly, it
is not committed to the conditions under which a proposition is true at a
given world.

By its agnosticism, this semantics generalizes both Montague’s (1973)
well-known possible worlds semantics and offers a strategy for repair-
ing some of its considerable foundational problems, which are discussed
by Thomason (1980), Muskens (2005), and Pollard (2008a,b). However,
although it is weaker than both Montague semantics and Pollard’s hyper-
intensional semantics, it remains strong enough for a theory of grammar
because neither the internals of a proposition nor its truth at a given world
is central to the task of modeling linguistic meanings.

Like the pheno logic, the semantics is an instantiation of type theory,
but its types, constants, and axioms are different. In addition to the logical
type t, the semantics additionally uses the nonlogical types e, p, and w, the
types of individuals, propositions, and worlds, respectively. An important
preliminary is the notion of meaning types and their extensions at a world.

3.1.4 An Agnostic Semantic Theory 63

Definition 3.5 (Meaning Types and Extensions). The set of meaning types is
recursively defined as follows:

1. The types 1, e and p are meaning types, and

2. If A and B are meaning types, then so are A→ B and A× B.

The extension type of a meaning type A is denoted Ext(A).

Ext(1) =def 1

Ext(e) =def e

Ext(p) =def t

Ext(A→ B) =def A→ Ext(B)

Ext(A× B) =def Ext(A)× Ext(B)

For each meaning type A, the nonlogical constant

@A : A→ w→ Ext(A) ,

called the extension function for A, denotes the extension of an inhabitant
of A at a world. The extension functions @ are written infix, similarly to
phenogrammatical concatenation, and are subject to the following axioms.

` ∀w:w.(∗@1 w) = ∗(3.6)

` ∀x:e∀w:w.(x @e w) = x(3.7)

` ∀ f :A→B∀w:w.(f @A→B w) = λx:A.(f x) @B w(3.8)

` ∀c:A×B∀w:w.(c @A×B w) = 〈(π1c) @A w, (π2c) @B w〉(3.9)

When the type is clear from context, the subscript is sometimes dropped
from the extension function @ to reduce clutter.

In the case of propositions, the type of the extension function @p is
p→ w→ t. That is, @p tests whether a proposition is true at a given world.
Note that no axiom is given corresponding to the extension function @p

for propositions. This is because, in the general case, agnostic semantics
does not take a position on how the constant @p is axiomatized, only that
it is available as part of the theory. Below, in §3.1.4.1, I discuss two possible
specializations that define @p in different ways, with important empirical
consequences.

3.1.4 An Agnostic Semantic Theory 64

Definition 3.6 (Meaning Equivalence). If A is a meaning type, two mean-
ings a : A and b : A are equivalent if they have the same extension at
every world. The relation of equivalence between meanings is written
≡A: A→ A→ t, and is subject to the axiom

(3.10) ` ∀a:A∀b:A.(a ≡A b)⇔ ∀w:w.((a @A w) = (b @A w)) .

With a constant for testing a proposition’s truth at a world, the relation
of propositional entailment can be defined.

Definition 3.7 (Entailment). Propositional entailment is encoded in the
constant entails : p→ p→ t, which is subject to the axiom

(3.11) ` ∀p:p∀q:p.(p entails q)⇔ ∀w:w.((p @ w)⇒ (q @ w)) .

And so in this semantics, as usual, a proposition p entails another proposi-
tion q if q is true at every world where p is true.

Because of the way meaning equivalence is defined, equivalence of
propositions can be characterized as mutual entailment, as the following
theorem shows.

Theorem 3.8 (Propositional Equivalence as Mutual Entailment). For all
propositions p : p and q : p, we have

` ((p entails q) ∧ (q entails p))⇔ (p ≡p q) .

Proof. The proof is straightforward based on the definitions of Meaning
Equivalence and Entailment (3.6 and 3.7), along with the Identity of Biim-
plication theorem (B.14).

The logic of propositions is then defined in terms of @p.

Definition 3.9 (Propositional Connectives and Quantifiers). The following
constants define the propositional connectives and quantifiers, where the

3.1.4 An Agnostic Semantic Theory 65

type A is a meaning type:

true : p (a necessary truth)

false : p (a necessary falsehood)

not : p→ p (negation)

and : p→ p→ p (conjunction)

implies : p→ p→ p (implication)

or : p→ p→ p (disjunction)

forall : (A→ p)→ p (universal quantifier)

exists : (A→ p)→ p (existential quantifier)

These constants are subject to the following axioms, which ensure that the
propositional connectives behave analogously to their boolean counterparts.
As above, the schematic metavariable A ranges over meaning types.

` ∀w:w.true @ w(3.12)

` ∀w:w.¬(false @ w)(3.13)

` ∀p:p∀w:w.((not p) @ w)⇔ ¬(p @ w)(3.14)

` ∀p:p∀q:p∀w:w.((p and q) @ w)⇔ ((p @ w) ∧ (q @ w))(3.15)

` ∀p:p∀q:p∀w:w.((p implies q) @ w)⇔ ((p @ w)⇒ (q @ w))(3.16)

` ∀p:p∀q:p∀w:w.((p or q) @ w)⇔ ((p @ w) ∨ (q @ w))(3.17)

` ∀P:A→p∀w:w.((forall P) @ w)⇔ ∀x:A.((P x) @ w)(3.18)

` ∀P:A→p∀w:w.((exists P) @ w)⇔ ∃x:A.((P x) @ w)(3.19)

(This axiomatization draws directly on Plummer and Pollard 2012.) I
observe the following notational shorthand for binding operators such
as the quantifiers exists and forall. For A and B types, and for all terms
O : (A→ B)→ B and λx.P : A→ B with x : A a variable,

(3.20) (Ox:A P) =def (O λx:A.P) .

This shorthand is intended to evoke the notation associated with the type-
theoretic binding operators ∀ and ∃. As for other binding operators, the
type of the bound variable is often dropped, so that simply (Ox P) is written
in place of (Ox:A P) when the type of the variable either is irrelevant or
can be reconstructed from the surrounding terms. The abbreviation for

3.1.4 An Agnostic Semantic Theory 66

abstracts that uses . in place of the outer parentheses is extended to the
shorthand in (3.20), so that Ox.P abbreviates (Ox P).

For convenience, I also define the following operations on properties.

Definition 3.10 (Operations on Properties). The property conjunction

that : (e→ p)→ (e→ p)→ (e→ p)

is defined as

that =def λPQx.(P x) and (Q x) .(3.21)

Similarly, property negation, whose type is

non : (e→ p)→ (e→ p)

gives the negated form of a specified property:

non =def λPx.not (P x)(3.22)

The property conjunction that is written infix, while property negation
non is written prefix like other unary operators.

Due to the axioms in (3.12)–(3.19), together with the axiomatization
of entails in (3.11), the type of propositions is interpreted as forming a
preboolean algebra. Importantly, the interpretation of propositions does
not form a full boolean algebra because the entails relation is not necessarily
antisymmetric. So mutually entailing propositions do not have to be
identical, although this may be the case in a particular instantiation of
agnostic semantics (see §3.1.4.1, below).

Finally, the logic of propositions in definition 3.9 also implies that the
set of propositions that are true at a given world is maximal consistent.
(Here, and below, I do not distinguish between sets and their corresponding
characteristic functions.)

Definition 3.11 (Facts at a World). The facts at a world w, denoted by the
constant facts : w→ p→ t, are simply the propositions true at w:

(3.23) ` ∀w:w.(facts w) = λp:p.p @ w

3.1.4.1 Two Notable Sects 67

Definition 3.12 (Maximal Consistency). The properties of being closed
under entailment (ec) and conjunction (ac) are lambda-definable for a given
set of propositions, as is the property of being the ultimate arbiter (ua).

ec =def λs:p→t∀p:p∀q:p.((s p) ∧ (p entails q))⇒ (s q)

ac =def λs:p→t∀p:p∀q:p.((s p) ∧ (s q))⇒ (s (p and q))

ua =def λs:p→t∀p:p.((s p) ∨ (s (not p))) ∧ ¬((s p) ∧ (s (not p)))

Here, characteristic functions of sets of propositions, of type p→ t, are used
in place of the sets themselves. The ua property says of a set of propositions
that for any proposition p, it has either p or its denial as a member, but not
both. The property of maximal consistency, written maxcons, is defined as
the conjunction of these three:

(3.24) maxcons =def λs:p→t.(ec s) ∧ (ac s) ∧ (ua s)

Then we have the following:

Theorem 3.13 (Maximal Consistency of Facts). For any world w, we have

` maxcons (facts w) .

That is, the set of facts at w is maximal consistent.

Proof. The properties of closure under entailment and propositional con-
junction are immediate consequences of the axioms in (3.11) and (3.15).
The property that for some world w, the set (facts w) is the ultimate arbiter
for all propositions follows from the axiomatization of not in (3.14) and the
fact that the term logic of the underlying type theory is classical.

Theorem 3.13 implies that the set (facts w) for some w is interpreted as an
ultrafilter on the preboolean algebra of propositions.

3.1.4.1 Two Notable Sects

Plummer and Pollard (2012) also show two possibilities for strengthening
the agnostic semantics discussed above by defining the extension func-
tion @p that says which propositions are true at which worlds. The first
possibility is to redefine the type p as the type

p =def w→ t

3.1.4.1 Two Notable Sects 68

of sets of worlds. Then @p is defined by the montagovian axiom

(3.25) ` ∀p:p∀w:w.(p @ w)⇔ (p w) ,

which implies that a proposition p is true at a world w if and only if w is a
member of the set p.

Strengthened by the montagovian axiom, agnostic semantics becomes
the type-theoretic encoding of Montague’s (1973) possible worlds semantics
due to Gallin (1975). Because the extension function @p is essentially just
set membership, the logical connectives are interpreted as the familiar set-
theoretic binary operations and entailment as the subset inclusion relation
on the powerset of the set of worlds. As such, the entails relation gains the
property of antisymmetry, and the logic of propositions is strengthened to
a full boolean algebra. But then the semantics suffers from the well-known
granularity problem: since mutually entailing propositions are identical sets
of worlds, knowing that 2 = 2 implies knowledge of every necessary truth,
among other unwelcome implications (see Pollard, 2008b, for discussion).

An alternative is to strengthen agnostic semantics into one that does
not identify mutually entailing propositions. This is accomplished by
instead leaving p as a basic nonlogical type, and then adding axioms
ensuring that the set of worlds and the set of maximal consistent sets
of propositions is in one-to-one correspondence. The following axioms
achieve this correspondence:

` ∀v:w∀w:w.((facts v) = (facts w))⇒ v = w(3.26)

` ∀s:p→t.(maxcons s)⇒ ∃w:w.s = (facts w)(3.27)

Axiom (3.26) says that two worlds are identical if the (maximal consistent)
sets of facts associated with them are identical. The axiom in (3.27) states
that every maximal consistent set is the set of facts at some world. Note that
these two axioms, which Plummer and Pollard call the tractarian axioms,
govern the behavior of the extension function @p because facts is defined
in terms of it (see (3.23), above).

The resulting theory is essentially the hyperintensional semantics dis-
cussed by Pollard (2008a,b). The logic of propositions still functions as
desired, but entailment remains merely a preorder, and therefore the gran-
ularity problem that plagues Montague semantics does not arise.

3.2 A Small Fragment of English 69

There is one technical difference between this strengthening of agnostic
semantics and Pollard’s hyperintensional semantics. Pollard’s theory is
built on the categorical type theory in Lambek and Scott 1986, in which
subtyping is available. For Pollard, the type of worlds is defined as the
subtype of p→ t consisting of the maximal consistent sets of propositions.
Here, as for Plummer and Pollard, the underlying type theory is not
equipped with subtyping, but the tractarian axioms achieve the same result
as Pollard’s axiomatization.

3.2 A Small Fragment of English

To show how CyCG works in practice, I start by analyzing the following
simple examples:

(3.28) It snowed.

(3.29) Kim sneezed.

My aim in this section is to give some familiarity with CyCG equipped
with a basic static semantics before moving on to a more involved theory
in chapter 4. Below, §3.2.1 and §3.2.2 discuss quantifier scope ambiguity
and some slightly more complicated instances of extraction.

The CyCG for handling (3.28) and (3.29), and the other examples in this
section, is specified following §3.1.3 and §3.1.4, above, with a tecto logic
that has the basic types NP, N, and S of noun phrases, common nouns, and
sentences, respectively. The pheno logic has the single nonlogical type s of
strings, along with the axiomatization of the concatenation operator · in
definition 3.4. The semantic theory is the agnostic semantics discussed in
§3.1.4 above, with nonlogical types e, p, and w, and the logic of propositions
as described in definition 3.9.

For (3.28), the lexicon needs to contain entries for both It and snowed.
First, the basic type It is added to the tectogrammar, corresponding to the
pleonastic it in English. Using this new type instead of the type NP of noun
phrases avoids allowing the ungrammatical * There rains.

` λ f . f it : (s→ s)→ s ; (It(S)(S ; λP.P ∗ : (1→ p)→ p(3.30)

` λs.s · snowed : s→ s ; It(S ; λu.snow : 1→ p(3.31)

This lexicon models the pleonastic It as having the empty semantics ∗,
the only inhabitant of the type-theoretic unit 1. Then snowed is treated

3.2 A Small Fragment of English 70

semantically as expecting a single argument of the unit type to yield the
proposition snow. With the CyCG proof rules in place, this lexicon allows
the following derivation of (3.28):
(3.32)
` λ f . f it ; (It(S)(S ; λP.P ∗ ` λs.s · snowed ; It(S ; λu.snow

(Co)
` ((λ f f it) λs.s · snowed) ; S ; ((λPP ∗) λu.snow)

The root of this proof β-reduces to the normal form

` it · snowed : s ; S ; snow : p .

Note also that, since the tecto type of snowed is It and its semantics is
λu.snow : 1→ p, not just any noun phrase will do as the subject argument
to snowed; it must be a CyCG sign that is tectogrammatically a pleonastic it
and semantically the unit constant ∗.

The lexicon for Kim sneezed is also appropriately simple. The proper
name Kim corresponds to the lexical entry

` Kim : s ; NP ; k : e ,

where Kim and k are nonlogical constants in their respective logics. Then
the lexical entry for the intransitive verb sneezed is

` λs.s · sneezed : s→ s ; NP(S ; sneeze : e→ p .

(Here the semantic term sneeze is in η-reduced form; see theorem B.15).
With this lexicon, CyCG can generate a sign corresponding to (3.29) as

follows, using the short form for signs described in (3.2).

(3.33)
` λs.s · sneezed ; NP(S ; sneeze ` Kim ; NP ; k (Co)

` ((λss · sneezed)Kim) ; S ; (sneeze k)

This proof introduces the notational convention for proof labels that Co is
written as an abbreviation for Combine. After performing β-reduction on
the pheno term of the derived sign, the long normal form of the root label
is

` Kim · sneezed : s ; S ; (sneeze k) : p .

In this analysis, the string in (3.29) is derived with the tecto type S of
sentences, expressing the proposition that Kim sneezed, as desired.

3.2 A Small Fragment of English 71

Getting slightly more complicated, consider

(3.34) Lance rode a bike.

Similar to Kim and sneezed, above, the lexical entries corresponding to the
proper name Lance and the common noun bike are as follows:

` λ f . f Lance : (s→ s)→ s ; NP ; λP.(P l) : (e→ p)→ p

` bike : s ; N ; bike : e→ p

Here, Lance is treated semantically as being type raised, applying a property
to the constant l : e, with the semantic type of a generalized quantifier, like
other noun phrases will be handled in CyCG. The transitive verb rode takes
two NP arguments to form a sentence, so its lexical entry is

` λst.t · rode · s : s→ s→ s ; NP(NP(S ; rode : e→ e→ p ,

with the semantics rode in η-normal form. Lastly, a is semantically a
generalized determiner, taking the denotation of a common noun to form a
generalized quantifier (Barwise and Cooper, 1981), defined by analogy to
Montague 1973 for the agnostic setting.

(3.35) a =def λPQ.existsx.(P x) and (Q x) : (e→ p)→ (e→ p)→ p

Here, the shorthand existsx is as defined in (3.20). Writing

QP =def (NP(S)(S

to abbreviate the combinatorial type of a generalized quantifier, the lexical
entry for a is
(3.36)
` λs f . f (a · s) : s→ (s→ s)→ s ; N(QP ; a : (e→ p)→ (e→ p)→ p .

This is in essence the same treatment of generalized determiner word order
found in Oehrle 1994, in which the pheno of a generalized quantifier is
‘lowered’ into a λ-bound position in some function from strings to strings.

For readability, I split the proof corresponding to (3.34) into two parts:
first the pheno, and then the tecto and semantics (but see figure 3.2 on page
75 for the entire proof with all three components). The pheno part of the

3.2 A Small Fragment of English 72

proof starts by forming the phonology for the generalized quantifier a bike:

(3.37)
` λs f . f (a · s) : s→ (s→ s)→ s ` bike : s

(Co)
` λ f . f (a · bike) : (s→ s)→ s

Here, and in the proofs that follow, I engage in the mild notational abuse
that β-reduction is performed whenever possible, with the reduced form
replacing its corresponding redex.

Because a bike needs to quantify into the verb’s object position, the verb
rode is first combined with a variable representing its object. The following
proof shows this step.

(3.38) ` λst.t · rode : s→ s→ s s : s ` s : s (Co)
s : s ` λt.t · rode · s : s→ s

The sign derived in (3.38) is of the right type to be taken as a bike’s argument,
however, making this combination would result in a bike becoming the
subject of rode, not the object. So the next proof step is to provide rode with
a variable representing its subject. Next, the object argument is extracted
so that a bike can take the proper scope.

(3.39)

(3.38)
...

s : s ` λt.t · rode · s : s→ s t : s ` t : s (Co)
s : s, t : s ` t · rode · s : s (Ex)

t : s ` λs.t · rode · s : s→ s

(Here the notational convention for proof labels is extended, with Ex
abbreviating Extract.) Then a bike is quantified in.
(3.40)

(3.37)
...

` λ f . f (a · bike) : (s→ s)→ s

(3.39)
...

t : s ` λs.t · rode · s : s→ s
(Co)

t : s ` t · rode · a · bike : s

3.2 A Small Fragment of English 73

Then the subject argument is extracted so that Lance can be incorporated.
(3.41)

` λ f . f Lance : (s→ s)→ s

(3.40)
...

t : s ` t · rode · a · bike : s (Ex)` λt.t · rode · a · bike : s→ s
(Co)` Lance · rode · a · bike : s

This proof yields the surface form of (3.34).
Turning to the corresponding tecto and semantic parts of the proof, we

start with the generalized quantifier a combining with its common noun
argument bike, as before.
(3.42)
` N(QP ; a : (e→ p)→ (e→ p)→ p ` N ; bike : e→ p

(Co)
` QP ; (a bike) : (e→ p)→ p

Here, as above, the tecto type QP is an abbreviation for the generalized
quantifier type (NP(S)(S. Next rode is passed its object argument.
(3.43)
` NP(NP(S ; rode : e→ e→ p NP ; x : e ` NP ; x : e

(Co)
NP ; x : e ` NP(S ; (rode x) : e→ p

And then its subject argument is provided, before an abstract is formed
using the variable in object position.
(3.44)

(3.43)
...

NP ; x : e ` NP(S ; (rode x) : e→ p NP ; y : e ` NP ; y : e
(Co)

NP ; x : e, NP ; y : e ` S ; (rode x y) : p
(Ex)

NP ; y : e ` NP(S ; λx.(rode x y) : e→ p

Next the generalized quantifier a bike takes scope (here the semantic type
(e→ p)→ p of a bike is omitted to save space).
(3.45)

(3.42)
...

` QP ; (a bike)

(3.44)
...

NP ; y : e ` NP(S ; λx.(rode x y) : e→ p
(Co)

NP ; y : e ` S ; (a bike)x.(rode x y) : p

3.2 A Small Fragment of English 74

Finally, the subject trace is extracted so that Lance can take the resulting
abstract as argument. In the following proof, the rule labels and the
semantic type (e→ p)→ p of Lance are elided as a space-saving measure.

(3.46)

` QP ; λP.(P l)

(3.45)
...

NP ; y : e ` S ; (a bike λx.(rode x y)) : p
` NP(S ; λy.(a bike)x.(rode x y) : e→ p

` S ; (a bike)x.(rode x l) : p

This proof shows that, as required, the combinatorial type of (3.34) is S.
This proof derives correct truth conditions for (3.34), since after expand-

ing the definition of a and performing β-reduction, the term in the root
label of (3.46) reduces to

` existsx.(bike x) and (rode x l) : p .

The full derived CyCG sign analyzing (3.34) combines the pheno (3.41)
and tecto/semantic (3.45) portions of the proof:

(3.47) ` Lance · rode · a · bike : s ; S ; (a bike)x.(rode x l) : p

This sign, which is in β-reduced form, has as its pheno the concatenated
string Lance rode a bike, the surface form of (3.34), which is analyzed as
having the syntactic type S of sentences and suitable truth conditions for
its semantic proposition. Figure 3.2 on page 75 shows the full, combined
CyCG proof for (3.34), which is partly β-expanded.

One thing to notice about the pheno and semantic proofs is that, since
they are both terms of type theory, the CyCG proof rules that were needed
to derive them can be reconstructed based on the structure of the terms
themselves. For example, the fully β-expanded pheno term modeling (3.34)
is

` ((λ f (f Lance)) λt.(((λs f f (a · s)) bike) λs.t · rode · s)) : s .

In this term, every application not occurring in a lexical entry term corre-
sponds to an instance of the Combine rule, while every abstraction term
that is not part of a lexical entry corresponds to an instance of Extract.
The β-expanded semantic term in (3.46) is similar, with applications corre-

3.2 A Small Fragment of English 75

`
λ

sf
.f
(a
·s
)

;N
(

Q
P

;a
`

bi
ke

;N
;b

ik
e

(C
o)

`
λ

f.
f(

a
·b

ik
e)

;Q
P

;(
a

b
ik

e)

`
λ

st
.t
·r

od
e
·s

;N
P
(

N
P
(

S
;r

o
d

e
s;

N
P

;x
`

s;
N

P
;x

(C
o)

s;
N

P
;x
`

λ
t.t
·r

od
e
·s

;N
P
(

S
;(

ro
d

e
x)

t;
N

P
;y
`

t;
N

P
;y

(C
o)

s;
N

P
;x

,t
;N

P
;y
`

t·
ro

de
·s

;S
;(

ro
d

e
x

y)
(E

x)
t;

N
P

;y
`

λ
s.t
·r

od
e
·s

;N
P
(

S
;λ

x.
ro

d
e

x
y

`
λ

f.
fL

an
ce

;N
P

;λ
P

.P
l

. . .
`

λ
f.

f(
a
·b

ik
e)

;Q
P

;(
a

b
ik

e)

. . .
t;

N
P

;y
`

λ
s.t
·r

od
e
·s

;N
P
(

S
;λ

x.
ro

d
e

x
y

(C
o)

t;
N

P
;y
`
((

λ
f
f(

a
·b

ik
e)
)

λ
s.t
·r

od
e
·s
)

;S
;(

a
b

ik
e)

x.
(r

o
d

e
x

y)
(E

x)
`

λ
t.(

λ
f
f(

a
·b

ik
e)
)

λ
s.t
·r

od
e
·s

;S
;λ

y.
(a

b
ik

e)
x.
(r

o
d

e
x

y)
(C

o)
`
((

λ
f
fL

an
ce
)

λ
t.(

λ
f
f(

a
·b

ik
e)
)

λ
s.t
·r

od
e
·s
)

;S
;(
(λ

P
P

l)
λ

y.
(a

b
ik

e)
x.
(r

o
d

e
x

y)

Fi
gu

re
3.

2:
Fu

ll
de

ri
va

tio
n

of
(3

.3
4)

,i
n

pa
rt

ia
lly

β
-e

xp
an

de
d

sh
or

tf
or

m
.T

he
pr

oo
f

tr
ee

is
sp

lit
in

to
th

re
e

su
bt

re
es

to
ec

on
om

iz
e

ho
ri

zo
nt

al
sp

ac
e,

w
it

h
th

e
to

p
m

os
t

p
ro

of
as

in
(3

.3
7)

an
d

(3
.4

2)
,a

nd
th

e
m

id
d

le
on

e
as

in
(3

.3
9)

an
d

(3
.4

4)
.A

s
ab

ov
e,

th
e

te
ct

o
ty

pe
Q

P
is

an
ab

br
ev

ia
ti

on
fo

r
(N

P
(

S)
(

S.

3.2.1 Quantifier Scope Ambiguity 76

sponding to Combine and nonlexical abstractions to Extract:

` ((λP(P l)) λy.exists λx.(bike x) and ((λx(rode x y)) x)) : p

The tecto logic, however, has no terms, and so no analogous reconstruction
is available. Accordingly, for the remaining examples I sometimes show
only tecto logic proofs, providing only the term structure as a reflection of
the pheno and semantic proofs. Also, labels for proof rules are suppressed
in what follows, since it is always possible to tell which rule was used: if
the rule application is unary, it is an instance of Extract; the only binary
rule application is the Combine rule.

Note that there is an alternative scoping for (3.34), one in which the
subject trace is withdrawn first and Lance takes scope before a bike. But this
other scoping produces the same sign as in (3.47), and is therefore not a
true instance of ambiguity. I turn to quantifier scope ambiguities, in which
a single syntax is paired with multiple semantics, in the next section.

3.2.1 Quantifier Scope Ambiguity

Consider the quantifier scope ambiguity in

(3.48) Every cyclist rode a bike.

This example is like (3.34), except that there are two possible truth condi-
tions, depending on whether it is interpreted as saying each cyclist rode
the same bike, or if the bike was possibly different for each one. As a
preliminary, the generalized determiner Every is defined, like a, above, as
an agnostic analog to Montague’s (1973) definition.

(3.49) every =def λPQ.forallx.(P x) implies (Q x) : (e→ p)→ (e→ p)→ p

Then the additional lexical entries needed to analyze (3.48) are

` λs f . f (every · s) ; N(QP ; every(3.50)

for Every, and

` cyclist : s ; N ; cyclist : e→ p(3.51)

for cyclist. In these lexical entries, again, the tecto type QP abbreviates the
combinatorial generalized quantifier type (NP(S)(S, and the semantic

3.2.1 Quantifier Scope Ambiguity 77

terms are in η-normal form. Also, to save horizontal space, the types for
the pheno and semantic terms of Every in (3.50) are not shown, but they
are the same as the types for the generalized determiner a in (3.36), above.

These type definitions allow a derivation that proves (3.48) has the tecto
type S. Starting again with the pheno, as above for (3.34), the transitive
verb rode first takes its two trace arguments, and then its object trace is
extracted.

(3.52)

` λst.t · rode · s : s→ s→ s s : s ` s : s
s : s ` λt.t · rode · s : s→ s t : s ` t : s

s : s, t : s ` t · rode · s : s
t : s ` λs.t · rode · s : s→ s

Next the generalized quantifiers are formed. The pheno proof for a bike is
in (3.37), and the proof for Every cyclist is as follows.

(3.53)
` λs f . f (every · s) : s→ (s→ s)→ s ` cyclist : s

` λ f . f (every · cyclist) : (s→ s)→ s

Then the generalized quantifier pheno term corresponding to a bike takes
the object-extracted verb phrase as its argument, and the subject trace is
extracted.
(3.54)

(3.37)
...

` λ f . f (a · bike) : (s→ s)→ s

(3.52)
...

t : s ` λs.t · rode · s : s→ s
t : s ` t · rode · a · bike : s
` λt.t · rode · a · bike : s→ s

Lastly, the generalized quantifier every takes scope.
(3.55)

(3.53)
...

` λ f . f (every · cyclist) : (s→ s)→ s

(3.54)
...

` λt.t · rode · a · bike : s→ s
` every · cyclist · rode · a · bike : s

It is also possible to derive the surface form of (3.48) by inverting the order
of the proofs in (3.53) and (3.53), extracting the subject trace first, rather
than the object, and combining every cyclist with the subject-extracted verb
phrase pheno before a bike takes the object-extracted pheno as its argument.

3.2.1 Quantifier Scope Ambiguity 78

Either proof strategy is equivalent with respect to the derived β-normal
pheno term because the positions of the subject and object are fixed in the
pheno corresponding to rode, but as I discuss below, the scoping order has
implications in the semantics.

In the tecto/semantic proof, rode is first provided with its two arguments,
just as for the pheno. In the following proof, the semantic type e→ e→ p
of rode is omitted to save horizontal space.
(3.56)
` NP(NP(S ; rode NP ; x : e ` NP ; x : e

NP ; x : e ` NP(S ; (rode x) : e→ p NP ; y : e ` NP ; y : e
NP ; x : e, NP ; y : e ` S ; (rode x y) : p

The generalized determiners then combine with their common noun ar-
guments to form generalized quantifiers, similarly to the pheno proofs in
(3.53) and (3.37). The tecto/semantic proof for a bike is given above in (3.42),
and the one for Every is below.
(3.57)
` N(QP ; every : (e→ p)→ (e→ p)→ p ` N ; cyclist : e→ p

` QP ; (every cyclist) : (e→ p)→ p

Now, there is a choice in terms of the order in which to extract the
traces in preparation for the generalized quantifiers Every cyclist and a
bike. Extracting the object-position trace gives the ‘surface scope’ reading
of (3.48), by first combining the generalized quantifier a bike with the
object-extracted verb phrase:
(3.58)

(3.42)
...

` QP ; (a bike)

(3.56)
...

NP ; x : e, NP ; y : e ` S ; (rode x y) : p
NP ; y : e ` NP(S ; λx.rode x y : e→ p

NP ; y : e ` S ; (a bike)x.rode x y : p

And then the subject is extracted so that Every cyclist can take scope.
(3.59)

(3.57)
...

` QP ; (every cyclist)

(3.58)
...

NP ; y : e ` S ; (a bike)x.rode x y) : p
` NP(S ; λy.(a bike)x.rode x y) : e→ p

` S ; (every cyclist)y.(a bike)x.rode x y : p

3.2.1 Quantifier Scope Ambiguity 79

On the other hand, extracting the subject trace first allows the ‘reverse
scope’ reading.
(3.60)

(3.57)
...

` QP ; (every cyclist)

(3.56)
...

NP ; x : e, NP ; y : e ` S ; (rode x y) : p
NP ; x : e ` NP(S ; λy.rode x y : e→ p

NP ; x : e ` S ; (every cyclist)y.rode x y : p

The object is extracted second, in preparation for a bike.
(3.61)

(3.42)
...

` QP ; (a bike)

(3.60)
...

NP ; x : e ` S ; (every cyclist)y.rode x y : p

` NP(S ; λx.(every cyclist)y.rode x y : e→ p

` S ; (a bike)x.(every cyclist)y.rode x y : p

And so the grammar proves that (3.48) has the combinatorial type of a
sentence, and generates the two possible semantic scopings, but only a
single surface form and tecto proof.

Note that in order to derive the correct surface form, the generalized
quantifiers (every cyclist) must take the abstract in which y is the λ-bound
variable. This is because the semantic variable y is paired with the pheno
variable t; the sign used in the instance of Trace in the proof that combines
all three components of the grammar is t : s ; NP ; y : e. Similarly, a bike must
take as its semantic argument an abstract in which x is bound, because
the pheno variable corresponding to x is s. The implication is that, in
order to derive the correct surface form for (3.48), the only truth conditions
that can be derived are either the ‘surface’ or ‘reverse’ scope readings
demonstrated in the proofs in (3.59) and (3.61). For example, with the
lexicon as given above, no proof for (3.48) is available whose semantics are
truth conditionally equivalent to those for A bike rode every cyclist.

Just as the tecto logic does not change depending on quantifier scope,
the pheno string derived is also the same in both cases. This partially
β-expanded pheno term corresponding to the semantic scoping in (3.59)
shows why:

` ((λ f f (every · cyclist)) λt.((λ f f (a · bike)) λs.t · rode · s)) : s ,(3.62)

3.2.1 Quantifier Scope Ambiguity 80

while the pheno term for the scoping in (3.61) is

` ((λ f f (a · bike)) λs.((λ f f (every · cyclist)) λt.t · rode · s)) : s .(3.63)

Both of these pheno terms have the same normal form

` every · cyclist · rode · a · bike : s ,

the correct analysis of the surface form in (3.48). The reason this surface
form is the only one that can be derived is the same reason only two
semantic scopings are available: the semantic variable x is paired with the
pheno variable s, and y with t.

And so the two possible CyCG signs that are derivable for (3.48) are the
following, in short form, with fully β-reduced pheno terms:

` every · cyclist · rode · a · bike ; S ; (every cyclist)y.(a bike)x.rode x y(3.64)

` every · cyclist · rode · a · bike ; S ; (a bike)x.(every cyclist)y.rode x y(3.65)

These signs point to a noteworthy difference between CyCG and categorial
frameworks in which surface form and combinatorics are combined into
a single grammar component. For CyCG, the same pheno term and tecto
proof can correspond to different quantifier scopings, whereas single-
component syntactic frameworks need two separate syntactic analyses to
get the two scopings. The reason is that, for CyCG, the only possibilities
for deriving the correct surface form involve both generalized quantifiers
Every cyclist and a bike being ‘lowered’ in to the same surface position.

I note briefly that a second proof is available for the reverse scope case
in (3.61), corresponding to the following tecto proof, where QP abbreviates
(NP(S)(S, as before.

(3.42)
...
` QP

(3.57)
...
` QP

` NP(NP(S NP ` NP
NP ` NP(S

NP ` S
` NP(S

` S

But in this proof, the first generalized quantifier to scope must be the one
corresponding to Every cyclist; otherwise, the incorrect surface form A bike

3.2.2 Peripheral and Medial Extraction 81

every cyclist rode results, which does not correspond to (3.48).2 So this
alternative tecto proof does not allow semantic ambiguity the way the
proofs in (3.59) and (3.61) do, in which traces are used to fill both of the
verb rode’s argument positions.

Note that, because CyCG quantifiers can take scope at any node whose
tecto type is NP(S, quantification in CyCG is essentially unconstrained.
An examination of whether and how the possible scopings for quantifiers
should be limited is beyond the scope of this thesis.

3.2.2 Peripheral and Medial Extraction

CyCG also handles complex noun phrases involving peripheral extraction,
such as the relative clause

(3.66) A bike that Lance rode.

For (3.66), the only extension needed to the lexicon used above for (3.48) is
for the relativizer that. To make this extension, we first define the semantics
of that to use the property conjunction defined in (3.21). The lexical entry
corresponding to that is

(3.67) ` λs f .s · that · (f e) : s→ (s→ s)→ s ; N((NP(S)(N ; that ,

where the semantic type (e→ p)→ (e→ p)→ (e→ p) of that has been
omitted to save horizontal space.

Based on this additional lexical entry, a proof for the relative clause
in (3.66) is available. The proof starts by supplying a trace for the object
argument to rode, then Lance as the subject, then extracting the trace. First,
the pheno:
(3.68)

` λ f . f Lance : (s→ s)→ s
` λst.t · rode · s : s→ s→ s s : s ` s : s

s : s ` λt.t · rode · s : s→ s
s : s ` Lance · rode · s : s
` λs.Lance · rode · s : s→ s

The tecto/semantic proof proceeds in parallel, where as before, the constant
l : e corresponds to Lance for simplicity, and Lance’s generalized quantifier

2While this surface form is incorrect for the example currently being considered, it might
be desirable if the construction in question were a reduced relative or a topicalization.

3.2.2 Peripheral and Medial Extraction 82

semantic type is elided to save space.
(3.69)

` QP ; λP.P l

` NP(NP(S ; rode NP ; x : e ` NP ; x : e
NP ; x : e ` NP(S ; (rode x) : e→ p

NP ; x : e ` S ; (rode x l) : p
` NP(S ; λx.(rode x l) : e→ p

Next, that takes bike as its first argument, and the proof term derived in
(3.69) as its second. Afterward, the generalized determiner a takes bike that
Lance rode as its argument. The pheno proof shows how the concrete syntax
assigned to that ends up passing the empty string e to the function derived
in (3.68). (Here the semantic type for that is omitted to conserve horizontal
space.)
(3.70)

` λs f .s · that · (f e) ` bike : s

` λ f .bike · that · (f e) : (s→ s)→ s

(3.68)
...

` λs.Lance · rode · s : s→ s
` bike · that · Lance · rode · e : s

And then the pheno of the indefinite determiner combines with the pheno
derived in (3.70).
(3.71)

` λs f . f (a · s) : s→ (s→ s)→ s

(3.70)
...

` bike · that · Lance · rode · e : s

` λ f . f (a · bike · that · Lance · rode · e) : (s→ s)→ s

On the tecto/semantic side, the relativizer that first combines with the
common noun bike. Here again, that’s semantic type is elided.

(3.72)
` N((NP(S)(N ; that ` N ; bike : e→ p
` (NP(S)(N ; (bike that) : (e→ p)→ (e→ p)

3.2.2 Peripheral and Medial Extraction 83

Next, the relativizer combines with the result of the proof in (3.69). The
semantic type of (bike that) is omitted here; it is (e→ p)→ (e→ p).
(3.73)

(3.72)
...

` (NP(S)(N ; (bike that)

(3.69)
...

` NP(S ; λx.(rode x l) : e→ p
` N ; (bike that λx.(rode x l)) : e→ p

And finally, the indefinite determiner, whose semantic type is elided, takes
the relativized common noun as its argument.

(3.74) ` N(QP ; a

(3.73)
...

` N ; (bike that λx.(rode x l)) : e→ p
` QP ; (a (bike that λx.(rode x l))) : (e→ p)→ p

Thus, the proof yields a sign with the tecto type QP of generalized quanti-
fiers.

With all three components derived, a β-reduced sign modeling (3.66) is
(3.75)
` λ f . f (a · bike · that · Lance · rode · e) ; QP ; a (bike that λx.(rode x l)) ,

written in short form. Recalling the discussion of normal forms in definition
3.4, the pheno component of this sign could be reduced further, to

` λ f . f (a · bike · that · Lance · rode) : (s→ s)→ s ,

while the semantics could be further β-reduced to

` λP.existsx.((bike x) and (rode x l) and (P x)) : (e→ p)→ p ,

by expanding the definition of a in (3.35).
The analysis of (3.66) is used in the CyCG treatment of the instance of

medial extraction in

(3.76) Every cyclist wanted a bike that Lance rode today.

The lexicon extensions needed to begin analyzing (3.76) are straightforward.
The transitive verb wanted is modeled similarly to rode, with the lexical

3.2.2 Peripheral and Medial Extraction 84

entry
(3.77)
` λst.t ·wanted · s : s→ s→ s ; NP(NP(S ; wanted : e→ e→ p ,

and the lexical entry corresponding to the sentential modifier today is

(3.78) ` λs.s · today : s→ s ; S(S ; λp.(today p) : p→ p .

The pheno proof in (3.68) is modified, allowing today’s pheno to be
incorporated.
(3.79)

` λs.s · today
` λ f . f Lance

` λst.t · rode · s : s→ s→ s s : s ` s : s
s : s ` λt.t · rode · s : s→ s

s : s ` Lance · rode · s : s
s : s ` Lance · rode · s · today : s
` λs.Lance · rode · s · today : s→ s

Here, Lance’s pheno type (s → s) → s and today’s pheno type s → s is
elided to save space.

Then the tecto/semantic proof in (3.69) is modified slightly to the
following, which accounts for the presence of the sentential modifier today.
First a sentence depending on the hypothesis NP ; x : e is derived. (In this
proof, the semantic types of Lance and rode are omitted.)
(3.80)

` QP ; λP.P l

` NP(NP(S ; rode NP ; x : e ` NP ; x : e
NP ; x : e ` NP(S ; (rode x) : e→ p

NP ; x : e ` S ; (rode x l) : p

And then today, whose semantic term is written in η-normal form, combines
with the derived sentence, similarly to the pheno proof in (3.79).

(3.81) ` S(S ; today : p→ p

(3.80)
...

NP ; x : e ` S ; (rode x l) : p
NP ; x : e ` S ; today (rode x l) : p

` NP(S ; λx.today (rode x l) : e→ p

The next part of the analysis is a proof resembling (3.58), with a sub-
proof like (3.72) modified to contain the subproof (3.81) instead of (3.69).

3.2.2 Peripheral and Medial Extraction 85

First, the modified subproof, with semantic types omitted:
(3.82)

` N((NP(S)(N ; that ` N ; bike

` (NP(S)(N ; (bike that)

(3.80)
...

` NP(S ; λx.(rode x l)

` N ; (bike that λx.today (rode x l))

Next the generalized quantifier a takes the whole relativized common noun
as argument.

(3.83) ` N(QP : a

(3.82)
...

` N ; (bike that λx.(rode x l))

` QP ; a (bike that λx.today (rode x l))

Finally, the following tecto proof shows the two quantifiers taking scope
in the ‘surface scope’ configuration, with Every cyclist outscoping a bike
that Lance rode today. The proof starts by scoping the generalized quantifier
derived in (3.83), then extracting the subject-position trace. Here the proof
of (wanted x y) that depends on two traces is similar to the proof in (3.56),
and the semantic term derived in (3.83) is abbreviated to save space.
(3.84)

(3.83)
...

` QP ; a (bike that · · ·)

...
NP ; x, NP ; y ` S ; (wanted x y)

NP ; y ` NP(S ; λx.(wanted x y)
NP ; y ` S ; (a (bike that λx.today (rode x l)))x.wanted x y

` NP(S ; λy.(a (bike that λx.today (rode x l)))x.wanted x y

Lastly, the generalized quantifier Every cyclist takes scope, with the term
derived in (3.84) again abbreviated to save space.

(3.85)

(3.57)
...

` QP ; (every cyclist)

(3.84)
...

` NP(S ; λy.(a (bike that · · ·))
` S ; (every cyclist)y.(a (bike that λx.today (rode x l)))x.wanted x y

And so the sentence in (3.76) has the tecto type of a sentence.
The semantic term derived in (3.85) builds on (3.75), adding in the

semantics for today, and then scoping the generalized quantifiers a bike that

3.3 Summary 86

Lance rode today and Every cyclist over the transitive verb. Depending on
the which takes scope over the verb first, two readings are available. The
first reading corresponds to the scope configuration in (3.85); the second
corresponds to the ‘reverse scope’ reading in which a bike that Lance rode
outscopes Every cyclist. The tecto/semantic proof for the ‘reverse’ reading
is just like the one in (3.85), except that the generalized quantifier term
derived in in (3.57) takes scope before the one derived in (3.83).

` (every cyclist)y.(a (bike that λx.today (rode x l)))x.wanted x y : p

` (a (bike that λx.today (rode x l)))x.(every cyclist)y.wanted x y : p

There are also two possibilities for the pheno term that is derived, which
builds on a pheno term similar to the one in (3.75), depending on the
scoping order:

` (λ f . f (every · cyclist) λt.(λ f . f (a · bike · that · Lance · rode · e · today)

λs.t ·wanted · s)) : s

` (λ f . f (a · bike · that · Lance · rode · e · today) λs.(λ f . f (every · cyclist)

λt.t ·wanted · s)) : s

But both of these reduce to the same form

` every · cyclist ·wanted · a · bike · that · Lance · rode · e · today : s ,

the surface form of (3.76), with the null string marking the medial extraction
site. So just as for the analysis of (3.48), there are two different semantic
terms corresponding to the available scopings, but the surface string and
the tecto proof are the same for both.

3.3 Summary

CyCG is a categorial grammar for analyzing natural language signs that
adopts the strategy, dating back to Curry (1961), of splitting the syntax into
surface form and underlying combinatorics. The component for deriving
surface forms is fairly simple, consisting of a type-theoretic implementation
of a monoid on the set of strings. The combinatorial component is also sim-
ple, represented in the multiplicative fragment of linear logic with a small
number of basic types. I have also shown here how CyCG can be equipped

3.3 Summary 87

with an expressive semantics that is a generalization of both Montague’s
(1973) semantics and Pollard’s (2008a) hyperintensional semantics.

There are, of course, differences between CyCG’s approach to syntax
and the approaches used by categorial grammar frameworks that are not in
the Curryesque tradition. Whereas CyCG lets the pheno logic handle word
order and leaves the combinatorics to the tecto, non-Curryesque categorial
grammars combine all of the machinery for both into a single component,
employing various tactics to get things to work smoothly. For Type Logical
Grammars in the tradition of Morrill (1994), various structural rules and
indexing schemes are often used. Moortgat’s (1997) Categorial Type Logic,
which is based on Lambek’s (1958) syntactic calculus, can handle peripheral
extraction but needs to specify special operations to handle cases of medial
extraction. Combinatory Categorial Grammar (Steedman, 2000) employs
an array of combinators to treat extraction.

I do not investigate here the comparative coverage of Curryesque cate-
gorial grammars versus the non-Curryesque ones, and note that in many
cases the non-Curryesque methods likely represent alternative means of
achieving similar results. But CyCG does have some attractive properties
as a theory, as Mihaliček and Pollard (2012) have argued for a related
framework. Its pheno and semantic components are implemented in a
mainstream type theory. In the case of the pheno, the monoidal theory
is extremely simple. As for the semantics, it is no more complicated
in essence than the Montague semantics that enjoys so much familiarity
among semanticists.

Lastly, the design choice of separating word order from combinatorics
allows the grammar rules to be very austere, with just two rules (Combine
and Extract) invoked to perform all of the computational work. This move
also has the positive consequence of allowing grammar writers a great deal
of freedom in terms of composing their lexical entries.

Chapter 4

Dynamic Categorial Grammar

To model natural language discourse, I supplant the semantic component
of the Curryesque Categorial Grammar discussed in chapter 3 with a
discourse semantics. The resulting extended formalism is called Dynamic
Categorial Grammar, also referred to via the acronym DyCG.

As its name implies, DyCG is dynamic in the sense that utterances not
only update the context of interpretation but also rely on it for their own
interpretation. It therefore figures into the tradition of dynamic theories
that dates back to Discourse Representation Theory (Kamp, 1981; Kamp
and Reyle, 1993) and File Change Semantics (Heim, 1982, 1983a, 1992,
also known as Context Change Semantics). But it also traces its lineage
to the branch of dynamic theories that are additionally compositional
in Montague’s (1973) sense, for example, the dynamic semantics due to
Groenendijk and Stokhof (1990, 1991), Chierchia (1992, 1995), Muskens
(1994, 1996), Beaver (2001), and de Groote (2006). DyCG is most similar to
Muskens’s, Beaver’s, and de Groote’s semantics because it is expressed in
pure type theory.

The core idea behind DyCG’s semantics is that the meanings of declara-
tives are not simply propositions, but functions that take an input context
and produce an output context updated with their content. Contexts them-
selves are also functions, from a vector of entities to a proposition. Then
discourse referents are modeled as indices into these entity vectors. The
notion of anaphoric accessibility is handled by dynamic negation (definition
4.9), which limits the availability of discourse referents in its scope, because
the other quantifiers are defined in terms of it. Indefinites introduce new

88

4.1 Motivation for a Dynamic Approach 89

discourse referents by extending the domain of the entity vectors that are
the domains of contexts.

In §4.1, I discuss some pretheoretical motivations for adopting a dy-
namic approach to semantics. The fundamentals of DyCG are given in §4.2,
starting with some preliminary definitions (§4.2.1), and then giving the
DyCG definitions of discourse contexts, the meanings of declaratives, and
discourse updates (§4.2.1.1). In §4.2.2, I show how a static semantics like
the one discussed in chapter 3 can be turned into a dynamic semantics via
some simple translations. The dynamic counterparts of the static seman-
tic operators are defined in §4.2.2.1, and then in §4.2.2.2, some dynamic
notions of entailment are defined, along with an operator that selects the
antecedents of anaphors. With these definitions in place, §4.3 demonstrates
a small DyCG fragment of English, showing some basic examples first, then
how quantifier scope (§4.3.1) and donkey anaphora (§4.3.2) are handled
in DyCG. Some extensions to the CyCG deduction rules for modeling
discourse are discussed in §4.4, and then §4.5 gives a chapter summary and
a comparison between DyCG and other approaches to semantics.

4.1 Motivation for a Dynamic Approach

Adopting a dynamic semantics entails a more complicated formal theory
than is necessary for the static, propositional semantics described for CyCG
in chapter 3, for example. So some discussion of the motivations for taking
on this additional complexity is warranted. Rather than characterizing
meanings in terms of truth in some model of the world, dynamic semantics
opts to model them in terms of their interaction with the context of inter-
pretation. This philosophical take on meaning, pioneered by Karttunen
(1974), Lewis (1979), Kamp (1981), and Heim (1982), among others, is more
in line with the way speakers actually use language in context.

At the empirical level, static semantics suffers from the famous defect
that it cannot handle so-called donkey anaphora (Geach, 1962) of the form

(4.1) If a farmeri owns a donkeyj, hei beats itj.

Static semantic theories are hard pressed to capture the anaphora indicated
in (4.1) because the scope of the variables representing the farmer and
the donkey is ‘closed off’ by the clause subordinate to If. Rather than
modeling them as scope-bound individual variables, the dynamic solution
is to introduce discourse referents (Karttunen, 1976) representing the farmer

4.1 Motivation for a Dynamic Approach 90

and the donkey into the context of interpretation. These discourse referents
are then available for later reference by anaphoric pronouns.

For a broader consideration of implicatures in general, such as the one
undertaken in this thesis, it is advantageous to have a formal model of the
discourse context in the semantics itself. The use of a pronoun bears an
implication about the state of the discourse context, namely, that a suitable
antecedent is retrievable (see §2.2.1.1, above). But other implicatures also
interact with the discourse context. For example, nominal appositives
update the discourse context directly without being subject to entailment-
modifying operators. And one reason that nonconventional implicatures
can fail to persist is that their entailments are in conflict with the entailments
present in the discourse context. Beaver (2001), following Heim (1983b,
1992), comes to a similar conclusion, that a notion of the discourse context
is required for the proper modeling of presuppositions.

A notion of the context also allows a richer formal model than possible
with a prominent alternative to dynamic semantics, exemplified in the work
of Cooper (1979) and the E-Type pronouns of Evans (1980). In these theories,
a pronoun’s meaning is taken to be available from the ambient discourse
context in an unspecified way, because they are couched in purely static
semantics that do not formally account for the context. But not only are
these theories necessarily less fine-grained in terms of what they can say
about the discourse context, it is unclear how they would be extended to
model implicatures in general.

Schlenker (2007), following on Geurts (1999, chapter 4), argues against
a dynamic approach to implicature that follows Heim (1982, 1983b) on the
grounds that the meanings of connectives and quantifiers are arbitrarily
stipulated, and thus not explanatory. Instead, Schlenker argues for a purely
static semantics in which the persistence of implicatures is derived from
over-arching principles of transparency, nontriviality, and constancy. But
unless static propositional logic is taken to have some kind of ontological
primacy, the alternatives to Schlenker’s assessment found in Dekker 2005
and Rothschild 2011 are compelling. For Dekker and Rothschild, connec-
tives and quantifiers in a Heim-style dynamic semantics are not stipulative,
but rather derivable from their truth conditions in concert with a notion of
linearity: in an utterance of the form S1 and S2, the content of S1 updates the
context before the content of S2. Static conjunction has no way to capture
this, so an argument can be made that any static semantics is simply too
coarse-grained to faithfully model language use in context.

4.2.1 Preliminaries 91

4.2 A Compositional Dynamic Semantics

The dynamic semantics I will use to model senses and implicatures is
an outgrowth of earlier work (Martin, 2012; Martin and Pollard, 2012a,b;
Kierstead and Martin, 2012), which is in turn greatly based on de Groote’s
(2006) compositional dynamic theory. It is most similar to Kierstead and
Martin 2012 in that de Groote’s continuations are not used, either explicitly
or by reducing a continuized type system to a direct-style syntax, as I
explore in Martin 2010 using a variant of the λµ-calculus (Parigot, 1992,
2000).

The type system, however, is equally complex as de Groote’s, but as
I discuss below, this way of setting up a dynamic semantics is more in
line with the way dynamic interpretation has been formally treated since
Kamp (1981) and Heim (1982), with utterances updating an input context
to produce an output context. Because of this treatment of utterances,
the semantics I present here most closely resembles the formal theories in
Muskens 1994, 1996, Beaver 2001, and de Groote 2006.

4.2.1 Preliminaries

The underlying type theory for this dynamic semantics is the dependent
type theory λPΣ discussed in appendix C, which allows functional types
Πx:A.B and pair types Σx:A.B in which the type B may depend on the
variable x : A. As appendix C discusses in detail, these types are general-
izations of the function and pair types in ordinary type theory (appendix
B). Type-theoretic functions and pairs are still available as the special cases
A→ B and A× B in which B does not depend on an inhabitant of A (see
equations (C.3) and (C.13)).

Since the grammar rules for DyCG, given in figure 3.1, use a different
scheme for managing contexts than the ones for dependent type theory
(figure C.1), there are many occurrences of the Weak and Conv rule from
dependent type theory that are suppressed in DyCG derivations. Many
proofs involving type formation are not shown, and the Abs rule is ab-
breviated for clarity by omitting the proof of the type’s derivability. The
interested reader is referred to appendix C for technical details.

The dynamic elaboration is built on the static agnostic semantics in
chapter 3, so the nonlogical types e and p, of individuals and propositions,
are still used in addition to the logical type t. The dynamic semantics

4.2.1.1 Contexts, Contents, and Updates 92

additionally makes use of the type ω discussed in §C.3.1. The inhabitants
of this type will be used as discourse referents. Accordingly, definition 3.5
is extended to add ω as a meaning type, with extension type

Ext(ω) =def n ,

and an extension function @ωn for each type ωn, axiomatized as

` ∀n:n∀i:ωn∀w:w.(i @ωn w) = (nat i) ,

where nat, defined in §C.3.1, maps each inhabitant of ωn to its correspond-
ing natural number.

4.2.1.1 Contexts, Contents, and Updates

The context of interpretation for a discourse consists of the propositions
that the interlocutors mutually accept, parameterized by the entities that the
propositions involve, whose identities are not necessarily specified or even
known. Accordingly, contexts in DyCG are modeled as mappings from
vectors of entities of arbitrary arity to propositions, with vectors defined as
in definition C.3. For n : n a natural number, the type of n-contexts is

(4.2) cn =def en → p ,

the type of functions taking an n-ary entity vector to a proposition. The
entity vector that is the argument to a context can be seen as an analog to
Heim’s (1982) “sequences” and to the set of discourse referents accessible
from a given discourse representation structure (Kamp, 1981). The arity
of a context c : cn, obtained via the function |·|n : Πn:nΠc:cn .n, is simply the
arity of its input vector. For each natural number n,

(4.3) |·|n =def λc:cn .n .

This function’s natural number subscript is almost always dropped in
practice.

The empty context t : c0 is a special case of a context whose input
vector is the empty entity vector and whose propositional content is just

4.2.1.1 Contexts, Contents, and Updates 93

the necessarily true proposition:

(4.4) t =def λx0 .true

This context is useful for evaluating the effects of discourse updates, as I
discuss below.

A useful shorthand for writing variables of a vector type is to superscript
the variable with the vector’s arity the first time the variable appears bound.
That is, abstracts of the form λx:en .a are written simply λxn , and then as
just x in the body a of the abstract. An example context is the following
2-context:

λx2 .(cyclist x0) and (bike x1) and (own x1 x0) : c2

This context contains a conjoined proposition with the information that
the first member x0 of the 2-ary vector parameter x is a cyclist and that its
second member x1 is a bike, and that the first member owns the second
member. This is the context that might be used to model an utterance
of the sentence A cyclist owns a bike, for example. This example clarifies
the sense in which entity vectors serve the purpose of Karttunen’s (1976)
discourse referents: nothing needs to be known about the actual identities of
the coordinates of x, but any suitable vector must be of arity 2.

Definition 4.1 (Vectors of Meaning Types). For the case of vectors of type
An whose factors are all of some meaning type A, the two clauses describing
the set of meaning types in definition 3.5 is extended with the following:

3. If A is a meaning type and n : n, then An is a meaning type.

The extension type of a vector of meaning types is given by extending
the Ext function, as follows, where A is a meaning type and n a natural
number.

Ext(An) =def Ext(A)n

Finally, the axiomatization of the extension function @ is extended with a
recursively defined axiom for vectors of meaning types, where the functions
head and tail are as defined in (C.25) and (C.26), and the vector concatena-
tion function • is as defined in definition C.7.

` ∀n:n∀x:An∀w:w.(x @An w) = ((tail x) @An−1 w) • ((head x) @A w)

It is sometimes useful to speak of contexts in general when the arity is
not necessarily known or relevant. The corresponding type of contexts of

4.2.1.1 Contexts, Contents, and Updates 94

any arity is
c =def Σn:n.cn ,

the dependent sum whose second component, of type cn, depends on the
natural number n that is its first component (see §C.2.1 for a discussion of
dependent sum types). To keep the notation standard, we make the arity
available for every c : c by defining the function |·| : c→ n as simply the
natural number that is its first component:

(4.5) |·| =def λc:c.(π1c)

And so the arity of every c : c is the arity |(π2c)| of the n-context that is its
second component, since the type c is the type of pairs of a natural number
and a context of that arity.

The meanings of declarative utterances are modeled as contents, which
for every natural number n have the type

(4.6) kn =def Πc:c.c|c|+n ,

where n denotes the number of discourse referents introduced by the
content. For some n, this is the type of functions from contexts to contexts
where the output context’s arity is the arity of the input context plus n, the
number of newly introduced discourse referents.

The number of discourse referents a content introduces is called its
degree, and is available via the function |·|n : Πn:nΠk:kn .n, defined similarly
to the arity function for contexts in (4.3), for n a natural number:

(4.7) |·|n =def λk:kn .n

Just as for the arity function for contexts, the subscript on the degree
function is dropped in practice. Also similarly to the type c of contexts of
any arity, the type

(4.8) k =def Σn:n.kn

is the type of contents of any degree, with the corresponding degree
function |·| : k→ n, defined as

(4.9) |·| =def λk:k.(π1k) .

4.2.1.1 Contexts, Contents, and Updates 95

(Compare with the arity function for contexts of any arity in (4.5).) Note
that, because of the type constraints on kn in (4.6), we have

|(k c)| = |k|+ |c|

for every k : k and c : c, as desired. In chapter 5, the type of contents
will redefined for in order to separate the sense and implicature parts of
utterance meaning.

To reduce notational clutter, shorthands for the application of a content
to a context are defined as follows, similarly to (4.5):

(k c) =def (k (π2c)) for k : kn and c : c,

(k c) =def ((π2k) c) for k : k and c : cn,

(k c) =def ((π2k) (π2c)) for k : k and c : c.

These definitions remove the need to always first invoke the second projec-
tion function π2 when applying a content to an argument. Whether k : k,
k : kn, c : c, or c : cn is irrelevant, because the application (k c) is always
available.

The type un is the type of n-ary updates, also known as context changes
(following Heim (1982)). For n a natural number, an update u : un takes a
context and returns another context whose arity is increased by n over the
input context.

un =def Πc:c.c|c|+n

Intuitively, an update is a content that has been proffered and accepted by
the interlocutors. Accordingly, the grammar rules for composing discourses
in §4.4, below, operate on updates, not on contents. Just as for contexts and
contents, the type u is the type of updates of any arity:

u =def Σn:n.un

Similar notational shorthand to that used for contents is also used for
updates:

(u c) =def (u (π2c)) for u : un and c : c,

(u c) =def ((π2u) c) for u : u and c : cn,

(u c) =def ((π2u) (π2c)) for u : u and c : c.

4.2.2 Dynamicizing a Static Semantics 96

As for contents, the intention is that applications can be used interchange-
ably for updates whether the arity is specified as a type parameter or not.
In the following, I will sometimes drop the natural number subscript from
the types for contexts, contents, and updates when it is either irrelevant or
can be inferred from contexts.

4.2.2 Dynamicizing a Static Semantics

To give a mapping from the static CyCG semantics in chapter 3, it is first
useful to recursively define, for every natural number n, the type of n-ary
static properties as follows:

p0 =def p

pn+1 =def e→ pn

This definition ensures that each type pn is the type of functions from n
entity arguments to a proposition. For example, the type of transitive verb
meanings is p2 = e → e → p. Clearly a nullary static property is just a
static proposition.

The corresponding dynamic type hierarchy uses contents rather than
propositions as the meanings of declaratives, and discourse referents (i.e.,
natural numbers) as arguments rather than entities. To begin defining the
dynamic counterparts of static properties, we need to ensure that a dynamic
property takes a natural number n to a content whose input context is of
an arity large enough to map n to an entity. To this end, I define, for each
natural number m : n, the type of contexts of arity at least m as

c≥m =def Σn:n.cm+n ,(4.10)

and then the type of contexts strictly greater than m is defined in terms of
c≥m, as

c>m =def c≥m+1 .(4.11)

Finally, to find the greatest discourse referent among several arguments,
I define the following function.

4.2.2 Dynamicizing a Static Semantics 97

Definition 4.2 (Greatest Discourse Referent). For every natural number i,
the function

maxi : ωi+1 → ω

selects the greatest coordinate from a list of i + 1 discourse referents, which
cannot be empty because of the type constraints. Its natural number
parameter is often dropped, and it is subject to the following axioms:

` ∀n:ω1 .(max n) = n0

` ∀i:n∀n:ωi+2 .max (tail n) < (head n)⇒ (max n = (head n))

` ∀i:n∀n:ωi+2 .(¬ (max (tail n)) < (head n))⇒ ((max n) = max (tail n))

In definition 4.2, the head and tail functions are as defined in (C.25) and
(C.26), respectively. The first axiom is the base case, stating the obvious fact
that the greatest coordinate in a one-element vector is the sole element. The
other two axioms simply state that when the list of discourse referents is
longer than one, the greatest coordinate is found by recursively comparing
the head of the list with the greatest coordinate of the tail of the list.

Definition 4.3 (Dynamic Properties). The types of dynamic properties are
defined as follows.

d0,i =def ki

d∗,i =def 1→ ki

d1,i =def Πn:ωΠc:c>n .c|c|+i

d2,i =def Πm:ωΠn:ωΠc:c>(maxm,n) .c|c|+i

d3,i =def Πk:ωΠm:ωΠn:ωΠc:c>(max k,m,n) .c|c|+i

Here I engage in the notational abuse discussed in §C.3.1 of writing an
inhabitant of ω interchangeably with the natural number it corresponds
to. I also write, for example, k, m, n to denote the vector 〈〈〈∗, k〉 , m〉 , n〉.
Informally, the general pattern for the types dm,i, where m : n, is

dm,i =def Πn1:ω · · ·Πnm :ωΠc:c>(max n1,...,nm).c|c|+i .

That is, a dynamic property is a function from some number of discourse
referents that returns a content whose input context must be at least
large enough to have the greatest among those discourse referents in its

4.2.2 Dynamicizing a Static Semantics 98

domain. For example, the dynamic type of transitive verbs is d2,i for some
i. A nullary dynamic property, that is, a content, is called a dynamic
proposition.

In practice, the subscript i representing the degree of the content is some-
times omitted when it is irrelevant, as is the information about the minimum
size of the input context.

With a mapping from the static type hierarchy to the dynamic one in
place, we can define the dynamic counterparts of n-ary static propositions.

Definition 4.4 (Dynamic n-ary Propositions). The dynn functions from pn

to dn,i handle the translation from static to dynamic recursively for each n.
For the base case, define for static propositions p

dyn0 =def λp:p0 λc:cλx|c| .p ,

and informally, for each n : n, define for relations r : pn+1

dynn+1 =def λr:pn+1 λm:ωλi1 :ω...in−1:ωλc:c>(maxm,i1,...,in−1)
λx|c| .

(dynn (r xm)) i1 · · · in−1 c x .

For meaning types P : 1 → p that expect an argument of the unit type 1,
define

dyn∗ =def λP:1→pλu:1.dyn0(P u) .

As examples, we have

(dyn∗ snow) = λuλcλx|c| .(snow u) ,

(dyn0 true) = λcλx|c| .true ,

(dyn1 cyclist) = λn:ωλc:c>n λx|c| .(cyclist xn) , and

(dyn2 ride) = λm:ωλn:ωλc:c>(maxm,n)λx|c| .(ride xm xn)

as the dynamic counterparts of snow, the necessarily true proposition
true, the unary static property cyclist, and the binary static property ride.
The notational convention of writing the dynamic counterpart of a static
meaning in small caps is observed throughout. For example, for the

4.2.2.1 Dynamic Connectives and Quantifiers 99

dynamic properties above, the following abbreviations are used:

snow =def (dyn∗ snow)

cyclist =def (dyn1 cyclist)

ride =def (dyn2 ride)

4.2.2.1 Dynamic Connectives and Quantifiers

The dynamic counterparts of the static connectives and quantifiers must
account for the way contextual interpretation functions, while still preserv-
ing the proposition-level effects of their static incarnations. The dynamic
meanings of indefinites need to introduce discourse referents, and the
dynamic version of conjunction must exhibit the sequential nature of dis-
course. Dynamic connectives and quantifiers also have to model the limited
lifespan observed for discourse referents: a discourse referent introduced
in the scope of a quantifier or negation is unavailable for later reference
except under special circumstances.

As a preliminary to defining promotion to an update and dynamic
conjunction, I first introduce a notational convenience for vectors. Rather
than littering up the semantic terms with vector coordinate selections
and prefixations, I write xm, yn as a shorthand for variables of type em+n,
denoting vectors that are the concatenation x • y of some x : em and y : en.
As a further shorthand, I sometimes write simply y to represent a vector of
the form y1 where y0 = y. Finally, in view of proposition C.8, if x : e0 is
the empty e-vector and yn is a vector variable, then I write just λyn rather
than λx0,yn or λyn,x0 .

The function cc is defined to promote a content to an update, also
known as a context change.

Definition 4.5 (Context Change). The context change function cc, whose
type is

cc : Πk:k.u|k| ,

is defined as

cc =def λk:kλc:cλx|c|,y|k| .(c x) and (k c x, y) .(4.12)

4.2.2.1 Dynamic Connectives and Quantifiers 100

This function takes a content and transforms it into an update that also
incorporates the information in the input context into its output. It is
used to promote a content to a discourse update after the corresponding
utterance is accepted by an interlocutor. Although the input vector x :
e|c|+|k| to the resulting context contains all of the discourse referents already
in the context c along with any introduced by the content k, only the prefix
containing c’s discourse referents is provided as argument to c, as shown
in equation (4.12), which conjoins two contexts asymmetrically.

Definition 4.6 (Dynamic Conjunction). The dynamic counterpart of the
static conjunction and : p→ p→ p is

(4.13) and : Πh:kΠk:k.k|h|+|k| ,

which reflects the fact the conjunction in discourse is asymmetric in the
general case: the information in the second conjunct is interpreted in a
context updated with the information in the left conjunct.

(4.14) and =def λh:kλk:kλc:cλx|c|,y|h|,z|k| .(h c x, y) and (k (cc h c) x, y, z)

Note that k is evaluated in the context (cc h c) and then applied to the full
list of discourse referents x, y, z : e|c|+|h|+|k|, whereas h is evaluated in the
input context, applied afterward to the vector x, y containing only the first
|c|+ |h| discourse referents (since |(h c)| = |c|+ |h| by the definition of the
type kn in (4.6)).

To give an example of and, first define the content

rain =def (dyn∗ rain) = λuλcλx|c| .rain : d∗

similarly to the definition of snow : d∗, above, where rain : 1→ p takes the
unit ∗ to the proposition that it rained. Then the conjunction of (rain ∗)
with (snow ∗), is as follows, where rain and snow are the corresponding

4.2.2.1 Dynamic Connectives and Quantifiers 101

βη-reduced forms:

` (rain and snow)

= (rain c x, y) and (snow (cc rain c) x, y, z)

= λcλx|c|,y|rain|,z|snow| .(rain c x, y) and ((λcx|c|snow) (cc rain c) x, y, z)

= λcλx|c|,y|rain|,z|snow| .(rain c x, y) and ((λx|(ccrain c)|snow) x, y, z)

= λcλx|c|,y|rain|,z|snow| .(rain c x, y) and snow

= λcλx|c|,y|rain|,z|snow| .((λcx|c|rain) c x, y) and snow

= λcλx|c|,y|rain|,z|snow| .rain and snow : k0

This example demonstrates how the input context to the second conjunct
snow is determined by (cc rain c).

In the case of the dynamicization of the static existential quantifier exists,
first we define the following.

Definition 4.7 (Extension Function). The extension function

(·)+ : Πc:c.c|c|+1 ,

which extends a context to the next higher arity. This function is defined as

(·)+ =def λc:cλx|c|,y.c x .

That is, the context c+ is the context just like c except that its vector
argument has an extra coordinate. When multiple applications of the
extension function are needed, the shorthand c++ is often written for
(c+)+, the result of applying the extension function to the context c+.

Definition 4.8 (Dynamic Existential). For each i : n, the dynamic existen-
tial quantifier

exists : ΠD:d1,i .ki+1 ,(4.15)

4.2.2.1 Dynamic Connectives and Quantifiers 102

the dynamic counterpart of the static existential exists, takes a unary dy-
namic property to a dynamic proposition (that is, a content) of degree i.
Since exists introduces a discourse referent, it is defined to ensure that
the resulting dynamic proposition is type-constrained to increase the arity
of the context by one: note that the domain of the resulting content is a
context of arity |c|+ 1.

exists =def λDλc.D |c| c+(4.16)

Since the natural number |c|, the arity of c, is the index of the newly-added
discourse referent in the context c+, exists has the effect of simultaneously
extending its context argument c and passing the new discourse referent
to its dynamic property argument D. In this way, the exists captures the
novelty condition associated with indefinites that is discussed in §2.2.1.1.

As an example, consider the dynamic existential quantifier applied to
the dynamic property cyclist, whose bound variables have been renamed
via α-conversion to avoid confusion:

` exists cyclist = λc.cyclist |c| c+

= λc.(λnλd:c>n λx|d|(cyclist xn) |c| c+)

= λc.(λd:c>|c|λx|d|(cyclist x|c|)) c+

Note that, although the λ-bound context d does not appear free in the term
(cyclist x|c|), the supplied argument c+ still has the effect of constraining
the arity of the vector x to be |c+| = |c|+ 1. This is due to the dependently
typed definition of kn in (4.6), and is also required by the type constraints
for exists in (4.15). Then the reduced form is on the right side of the
equality symbol in

` exists cyclist = λc:cλx|c|,y.cyclist y : k1 .

Applying exists cyclist to the empty context t yields

` ((exists cyclist) t) = λx0,y.(cyclist y)

= λy1 .(cyclist y0) : c1 ,

since |t| = 0. Note that by proposition C.6, the term λy1 .(cyclist y0) is
interderivable with cyclist.

4.2.2.1 Dynamic Connectives and Quantifiers 103

In addition to negating the propositional content in its scope, dynamic
negation must also limit the accessibility of any discourse referents intro-
duced in its scope. This second requirement is accounted for in DyCG
negation using the propositional existential quantifier defined in equation
(3.19), in a way reminiscent of Heim’s (1982) “existential closure.”

Definition 4.9 (Dynamic Negation). The dynamic negation

not : k→ k0 ,

defined as

not =def λk:kλc:cλx|c| .not existsy|k| .(k c x, y) ,(4.17)

existentially binds all of the discourse referents introduced within its scope,
then negates the resulting proposition.

Notice that the requirement of the type of not that its output content be
of degree 0 is observed by this axiom. In the case when |k| > 0, all of
the discourse referents introduced by k are bound by exists, implying the
following.

Theorem 4.10. For every k : k, we have ` |(not k)| = 0.

Proof. This follows immediately from the definition of not in 4.9, since for
any k : k, (not k) is a content that takes a context to another context of the
same arity.

In case |k| = 0, we have theorem 4.12, based on the lemma below.

Lemma 4.11. If A is a meaning type, then for every p : p in which x : A is not
free, we have ` (existsx p) ≡ p.

Proof. Let a : t such that there is no free occurrence of x in a. Then we have

` (∃xa) = a

by “Rule C” (Andrews, 2002, theorem 5245). Note that by axiom (3.19),
universal instantiation, and universal generalization,

` ∀p:p∀w:w.((existsx p) @ w)⇔ ∃y.((λx.p y) @ w) .

4.2.2.1 Dynamic Connectives and Quantifiers 104

Now let p : p where x : A is not free in p, for some meaning type A. By
β-reduction, the substitution rule, universal instantiation, and theorem B.14,
it follows that

` ∀w:w.((existsx p) @ w) = (p @ w) .

Then we have
` (existsx p) ≡ p

by meaning equivalence (definition 3.6).

Theorem 4.12. If k : k0, then ` (not k) ≡ λcλx|c| .not (k c x).

Proof. Let k : k0. Then by (4.17), we have

(not k) = λcλx|c| .not existsy0 .(k c x, y) .

Invoking the substitution rule, we arrive at

` λcλx|c| .not existsy0 .(k c x, y)

= λcλx|c| .not existsy0 .(k c x) (by proposition C.8)

≡ λcλx|c| .not (k c x) (by lemma 4.11)

Theorem 4.13. If k : k0, then ` (not (not k)) ≡ k.

Proof. Let k : k0. Then by theorem 4.12,

` not (not k) ≡ λcλx|c| .not (not (k c x)) .

Now, for any p : p and w : w, we have

` (not (not p)) @ w = (¬ (¬ (p @ w))) (by axiom (3.14))

= p @ w ,

since the underlying type theory is classical (see theorem B.17). Then by
meaning equivalence (definition 3.6),

` ∀p:p.(not (not p)) ≡ p .

4.2.2.1 Dynamic Connectives and Quantifiers 105

Therefore for k : k0,

` not (not k) ≡ λcλx|c| .(k c x)

≡ k

by substitution and η-reduction.

Some examples illustrate the effect of dynamic negation on a content.
For a simple example, applying not to (snow ∗) gives

` not (snow ∗) = λcλx|c| .not existsy0 .(snow c x, y)

= λcλx|c| .not existsy0 .((λdλz|d|snow) c x, y)

= λcλx|c| .not existsy0 .snow

≡ λcλx|c| .not snow : k0 ,

by theorem 4.12.
A slightly more complicated example demonstrates how not limits the

accessibility of discourse referents in its scope. The dynamic negation of
(exists cyclist) : k1 is as follows, where, as above, α-conversion has been
used to avoid confusion:

` not (exists cyclist) = λcλx|c| .not existsy1 .((exists cyclist) c x, y)

= λcλx|c| .not existsy1 .((λdλ
z|d+| .cyclist z|d|) c x, y)

= λcλx|c| .not existsy1 .((λ
z|c+| .cyclist z|c|) x, y)

= λcλx|c| .not existsy1 .cyclist (x, y)|c|
= λcλx|c| .not existsy1 .cyclist y0 : k0

This implies that not (exists cyclist) is interderivable with

λcλx|c| .not (exists cyclist) : k0 ,

by proposition C.6. And so the argument to cyclist, the only coordinate of
the 1-ary vector y, is not available outside the scope of not because it is
bound by the instance of exists. The type constraints associated with exists

in (4.15) are preserved because the arity of x, y is |x|+ 1.
The definitions of and, exists, and not allow a full dynamic version

of the logic of propositions defined in definition 3.9 to be defined, with

4.2.2.1 Dynamic Connectives and Quantifiers 106

the remaining connectives and quantifier are defined in terms of these first
three.

Definition 4.14 (Dynamicization of the Static Logic of Propositions). The
types of the dynamicized connectives and quantifiers are as follows:

not : k→ k0

and : Πh:kΠk:k.k|h|+|k|
implies : k→ k→ k0

or : k→ k→ k0

forall : d1 → k0

exists : d1 → k1

Then the correspondence between the static and dynamic logics is defined
below.

(dyn not) =def not(4.18)

(dyn and) =def and(4.19)

(dyn implies) =def implies =def λhk.not (h and (not k))(4.20)

(dyn or) =def or =def λhk.not ((not h) and (not k))(4.21)

(dyn forall) =def forall =def λD.not existsn.not (D n)(4.22)

(dyn exists) =def exists(4.23)

The reason that the types of the dynamic connectives and quantifiers
are somewhat more complicated is that they have the additional task of
managing the discourse referents in the context, and so, for example, the
type of exists is not the dynamic generalized quantifier type d1 → k, but a
dependent variant of this type in which the output content is constrained
to extend the arity of the input context by 1. Similarly, the type of and is
not k→ k→ k, and the type of not is not k→ k. In the case of and, its
type reflects the fact that the resulting content must be extended by the
sum of the number of discourse referents introduced by its conjuncts. For
not, the dependent typing requires that the output content not introduce
any discourse referents, since it renders inaccessible any discourse referents
introduced in its scope.

I define some convenience operators on dynamic properties, by analogy
to the ones defined in 3.10.

4.2.2.2 Dynamic Entailment and Definiteness 107

Definition 4.15 (Operations on Dynamic Properties). The DyCG analog of
the static property conjunction that in (3.21) is

that : d1 → d1 → d1 ,

defined by analogy to its static counterpart (repeated below) as follows:

that =def λPQx.(P x) and (Q x)(3.21)

that =def λDEn.(D n) and (E n)(4.24)

Likewise, the dynamic version of property negation

non : d1,i → d1,0 ,

for each natural number i, is analogous to static property negation.

non =def λPx.not (P x)(3.22)

non =def λDn.not (D n)(4.25)

4.2.2.2 Dynamic Entailment and Definiteness

DyCG also makes use of a contextualized version of entailment, and a
contextualized description operator for selecting anaphoric antecedents.
As a preliminary for defining these, I first define a propositional notion of
entailment based on entails : p→ p→ t from definition 3.7.

Definition 4.16 (Propositional Entailment). The relation

Entails : p→ p→ p

encodes entailment between propositions as a proposition, subject to the
axiom

` ∀p:p∀q:p∀w:w.(p Entails q) @ w⇔ (p entails q) .

That is, Entails encodes a form of entailment that holds whenever one
proposition entails another at every world.

Then contextual entailment is defined in terms of Entails.

4.2.2.2 Dynamic Entailment and Definiteness 108

Definition 4.17 (Contextual Entailment). The notion of contextual entail-
ment, encoded in the function

c-entails : Πc:cΠd:c≥|c| .p ,

which is written infix and defined as

(4.26) c-entails =def λc:cλd:c≥|c| .forallx|c| .(c x) Entails existsy|d|−|c| .(d x, y)

defines contextual entailment as holding between two contexts c and d,
where d is of an arity at least as great as c.

Intuitively, this definition requires that the first context must entail the
existence of entities satisfying the content that is found in the second but
not in the first.

Entailment between contents is then defined based on contextual entail-
ment.

Definition 4.18 (Entailment between Contents). To determine whether
a content’s potential update would be entailed by a given context, the
function

k-entails : c→ k→ p

is used. It is defined as

k-entails =def λc:cλk:k.c c-entails (cc k c) ,

and written infix.

Then we can determine whether a content is contextually consistent as
follows.

Definition 4.19 (Consistency for Contents). The function

k-cons : c→ k→ p ,

also written infix and defined as

k-cons =def λc:cλk:k.not (c k-entails (not k)) ,

4.3 A Dynamic Fragment 109

yields the proposition that a context c does not contextually entail the
dynamic negation of a content k.

Finally, the function defined below is used to retrieve the antecedents
of anaphors.

Definition 4.20 (Generalized Definiteness). The generalized definiteness
function

the : ΠD:d1 Πc:c.ω|c|

selects the unique discourse referent entailed by a given context to have a
specified dynamic property. It is defined as

the =def λD:d1 λc:c

ι

n:ω|c| .c k-entails (D n) ,(4.27)

where ι

n:ω|c| is the description operator for natural numbers less than |c|
(see definition B.8 and theorem B.9).

Definiteness, by the definition in (4.27), requires that the context entails
a certain discourse referent has a certain property. But for pronouns,
as I discuss in chapter 2 in connection with (2.55) and (2.56), all that is
required is that the discourse not be inconsistent with the descriptive content.
Accordingly, pronouns use a different function to select their antecedents.

Definition 4.21 (Definiteness for Pronouns). The definiteness function for
pronouns has the same type as the in definition 4.20:

pro : ΠD:d1 Πc:c.ω|c|

However, its definition is based on k-cons rather than invoking k-entails

directly.

pro =def λD:d1 λc:c

ι

n:ω|c| .c k-cons (D n)(4.28)

These definitions of definiteness will be greatly extended in chapter 5.

4.3 A Dynamic Fragment

Turning to some English examples that demonstrate how the dynamic
semantics replaces the static semantics in chapter 3, consider first the

4.3 A Dynamic Fragment 110

dynamic version of the simple examples in (3.28) and (3.29), repeated
below.

(3.28) It snowed.

(3.29) Kim sneezed.

For (3.28), the lexicon needs to be modified so that snowed corresponds to
the entry

` λs.s · snowed ; It(S ; λu.snow : d∗ .

As part of the broader DyCG strategy of treating all signs with tecto type
NP semantically as dynamic generalized quantifiers (see the discussion of
kim, below), the dynamic version of the pleonastic It that is the subject of
weather predicates like snowed is itpleo : d∗ → k, defined as

itpleo =def λD.(D ∗) .

Then the DyCG lexical entry corresponding to It uses similar pheno and
identical tecto to the static version in (3.30).

` λ f .(f it) : (s→ s)→ s ; (It(S)(S ; itpleo : d∗ → k

Aside from the different semantic typing assigned to It, the DyCG proof
of (3.28) is very similar to the CyCG one in (3.32).
(4.29)
` λ f .(f it) ; (It(S)(S ; itpleo ` λs.s · snowed ; It(S ; λu.snow

` ((λ f (f it)) (λss · snowed)) ; S ; (itpleo λu.snow)

(This proof uses the Combine rule, and as before, the rule label is omitted
to save space.) As intended, the DyCG version has the same concrete and
abstract syntax, with the only difference being that the semantics uses
snow rather than snow. The root label in (4.29) reduces to the long normal
form

` (it · snowed) : s ; S ; λcx|c| .snow : k .

To handle (3.29), the semantics of proper names needs to be modi-
fied from the simple entity constants used in chapter 3 to give proper
names the type d1 → k of dynamic generalized quantifiers, imitating Mon-
tague’s (1973) static semantics and Barwise and Cooper’s (1981) treatment
of noun phrases. For example, define kim : d1 → k as follows, where
named-kim =def (dyn1 named-kim), and named-kim is the static property of

4.3 A Dynamic Fragment 111

being named Kim:

kim =def λDc.D (the named-kim c) c(4.30)

= λDc.D (ι

n:ω|c|c k-entails (named-kim n)) c

(And similarly for other proper names.) This definition simply passes the
unique discourse referent entailed by the context to be named Kim to a
specified dynamic property. In chapter 5, I discuss how DyCG handles
situations in which there is no such unique discourse referent, in the context
of dynamically modeling senses and implicatures.

Defining sneeze : d1 as

sneeze =def (dyn1 sneeze) = λn:ωλc:c>n λx|c| .(sneeze xn) ,

and the required DyCG lexical entries as

` λ f .(f Kim) : (s→ s)→ s ; (NP(S)(S ; kim : (ω → k)→ k

` λs.s · sneezed : s→ s ; NP(S ; sneeze : ω → k ,

a DyCG proof of (3.29) is available.
(4.31)
` Kim ; (NP(S)(S ; kim ` λs.s · sneezed ; NP(S ; sneeze

` ((λss · sneezed)Kim) ; S ; (kim sneeze)

A reduced form of the root of this proof is

` Kim · sneezed : s ; S ; λc:c>(thenamed-kim c)λx|c| .(sneeze x(thenamed-kim c)) : k ,

where (the named-kim c) is the unique discourse referent named Kim per
definition 4.20. And so, as for the proof in (4.29), the proof in (4.31) yields a
sign with the identical pheno string and tecto type as its static counterpart,
with the difference that the semantics is dynamic.

To show how DyCG handles quantification, we start with the example

(3.34) Lance rides a bike.

In keeping with the strategy of constructing a dynamic semantics based on
its static counterparts, the dynamic generalized determiner a : d1 → d1 →
k is defined as follows, with its static counterpart a repeated alongside for

4.3 A Dynamic Fragment 112

comparison.

a =def λPQ.existsx.(P x) and (Q x)(3.35)

a =def λDE.existsn.(D n) and (E n)(4.32)

Thus the dynamic indefinite determiner a in (4.32) can equivalently be
written as

λDE.exists (D that E) .

Then the DyCG semantics for the proper name Lance is defined similarly
to kim, based on the dynamic property

named-lance =def (dyn1 named-lance) ,(4.33)

as

lance =def λDc.D (the named-lance c) c ,(4.34)

and the dynamic semantics for the transitive verb rides and common noun
bike as:

ride =def (dyn2 ride)

bike =def (dyn1 bike)

Lastly, the DyCG lexicon necessary to prove a sign corresponding to (3.34)
has the following entries, where QP =def (NP(S)(S, as in chapter 3.

` λ f .(f Lance) : (s→ s)→ s ; NP ; lance : d1 → k

` λst.t · rides · s : s→ s→ s ; NP(NP(S ; ride : d2

` λs f . f (a · s) : s→ (s→ s)→ s ; N(QP ; a : d1 → d1 → k

` bike : s ; N ; bike : d1

Now everything necessary for a DyCG proof of (3.34) is in place.
Since both Lance and a bike are typed as (dynamic) generalized quanti-

fiers, the proof starts by providing two trace arguments to the transitive
verb rides. Unlike CyCG traces, where the semantic variable is of type e of
entities, DyCG semantic traces have the type of natural numbers, that is,

4.3 A Dynamic Fragment 113

the type of discourse referents. First the object trace:
(4.35)

` λst.t · rides · s ; NP(NP(S ; ride s ; NP ; m ` s ; NP ; m
s ; NP ; m ` λt.t · rides · s ; NP(S ; (ride m)

Next the subject trace is provided.
(4.36)

(4.35)
...

s ; NP ; m ` λt.t · rides · s ; NP(S ; (ride m) t ; NP ; n ` t ; NP ; n
s ; NP ; m, t ; NP ; n ` t · rides · s ; S ; (ride m n)

Before a bike can take scope, it first must be formed as a generalized
quantifier. The proof subtree in (4.37) shows the generalized determiner a
combining with its argument bike.

(4.37)
` λs f . f (a · s) ; N(QP ; a ` bike : s ; N ; bike

` λ f . f (a · bike) ; QP ; (a bike)

Then, starting from the proof in (4.36), the trace in object position is bound
so that a bike can take the proper scope.

(4.38)

(4.36)
...

s ; NP ; m, t ; NP ; n ` t · rides · s ; S ; (ride m n)
t ; NP ; n ` λs.t · rides · s ; NP(S ; λm.ride m n

Here, for reasons of horizontal space, I split the proof into its two ‘halves,’
the first showing the pheno and tecto components only. The proof in (4.39)
shows a bike taking scope in the pheno.

(4.39)

(4.37)
...

` λ f . f (a · bike) ; QP

(4.38)
...

t ; NP ` λs.t · rides · s ; NP(S

t ; NP ` ((λ f f (a · bike)) λs.t · rides · s) ; S

4.3 A Dynamic Fragment 114

The following proof shows a bike taking scope on the semantic side.

(4.40)

(4.37)
...

` QP ; (a bike)

(4.38)
...

NP ; n ` NP(S ; λm.ride m n
NP ; n ` S ; (a bike)m.ride m n

Finally, the proper name Lance takes its scope, with the proof again split
into two for reasons of space. First the pheno side:

(4.41)
` λ f .(f Lance) ; QP

(4.39)
...

t ; NP ` t · rides · a · bike ; S
` λt.t · rides · a · bike ; NP(S

` ((λ f (f Lance)) λt.t · rides · a · bike) ; S

Then the semantics of Lance taking scope:

(4.42)
` QP ; lance

(4.40)
...

NP ; n ` S ; (a bike)m.ride m n
` NP(S ; λn.(a bike)m.ride m n

` S ; lancen.(a bike)m.ride m n

And so the β-reduced long-form root label of the final proof is

(4.43) ` Lance · rides · a · bike : s ; S ; lancen.(a bike)m.ride m n : k1 ,

which analyzes (3.34) as a sentence with the correct surface form. The
dynamic semantics of (4.43) reduces as follows.

` lancen.(a bike)m.ride m n

= lancen.existsm.(bike m) and (ride m n)

= ((λDc(D (the named-lance c) c))

λnλc:cλ
x|c+| .(bike |c|) and (ride |c| n))

= λc:cλ
x|c+| .(bike |c|) and (ride |c| (the named-lance c)) : k1 .

Note that there is another semantic scoping available, namely the one that
results from withdrawing the subject and object traces in the other order,

4.3.1 Dynamic Quantifier Scope 115

yielding
` (a bike)m.lancen.ride m n : k1 .

However, this alternative scoping does not result in a distinct reading, since
lance simply passes the relevant discourse referent to its argument in both
scopings.

4.3.1 Dynamic Quantifier Scope

DyCG straightforwardly provides a dynamic version of the CyCG account
of (3.48), repeated below.

(3.48) Every cyclist rides a bike.

To get started, we need a dynamic every that is based on its static counterpart
in a similar way to the parallel between a and a. As for a, the definition of
every : d1 → d1 → k0 in (4.44) is presented alongside its static counterpart
every.

every =def λPQ.forallx.(P x) implies (Q x)(3.49)

every =def λDE.foralln.(D n) implies (E n)(4.44)

To give DyCG versions of the two scoping alternatives in (3.64) and (3.65),
all that remains is to specify the dynamic meanings of cyclist.

cyclist =def (dyn1 cyclist)

Then the DyCG lexical entries for Every and cyclist, written in short form
in (4.45) and (4.46), are just like the corresponding CyCG ones, with the
dynamic semantics replacing the static one.

` λs f . f (every · s) ; N(QP ; every(4.45)

` cyclist ; N ; cyclist(4.46)

(These lexical entries are written in short form to save horizontal space.) For
clarity, in the following DyCG proofs for (3.48), proofs, only the semantics
is shown because the pheno and tecto parts of the proof are identical to
their static counterparts in (3.64) and (3.65).

For the dynamic surface scope reading, we start with the proof in (4.38),
then apply the semantics of a bike from (4.37) to it. Then the discourse

4.3.1 Dynamic Quantifier Scope 116

referent variable n is bound to prepare for Every cyclist’s scope taking.

(4.47)

(4.37)
...

` (a bike) : d1 → k

(4.38)
...

n : ω ` λm.ride m n : d1

n : ω ` (a bike)m.ride m n : k
` λn.(a bike)m.ride m n : d1

The proof that Every cyclist is a dynamic generalized quantifier is similar to
the proof for a bike in (4.37).

(4.48)
` every : d1 → d1 → k0 ` cyclist : d1

` (every cyclist) : d1 → k0

Finally, (every cyclist) takes its scope over the proof in (4.47).
(4.49)

(4.48)
...

` every cyclist : d1 → k0

(4.47)
...

` λn.(a bike)m.ride m n : d1

` (every cyclist)n.(a bike)m.ride m n : k0

The reverse scope reading starts with the semantic part of the proof in
(4.36), because in the reverse scope proof, (every cyclist) needs to take
scope first instead of (a bike). Then the object-positions discourse referent
m is extracted to ready the proof so that (a bike) can take scope.

(4.50) (4.37)
...

` (a bike)

(4.48)
...

` (every cyclist)

(4.36)
...

m, n ` (ride m n)
m ` λn.ride m n

m ` (every cyclist)n.ride m n
` λm.(every cyclist)n.ride m n

` (a bike)m.(every cyclist)n.ride m n

(This proof suppresses all typing information so that the entire proof can
be displayed.)

And so the signs derived by DyCG for (3.48) are very similar to those
derived by CyCG. These signs are given below in parallel to display their

4.3.1 Dynamic Quantifier Scope 117

similarity.

` every · cyclist · rides · a · bike ; S ; (every cyclist)y.(a bike)x.ride x y
(3.64)

` every · cyclist · rides · a · bike ; S ; (every cyclist)n.(a bike)m.ride m n
(4.51)

` every · cyclist · rides · a · bike ; S ; (a bike)x.(every cyclist)y.ride x y
(3.65)

` every · cyclist · rides · a · bike ; S ; (a bike)m.(every cyclist)n.ride m n
(4.52)

Note that, although the combined DyCG proofs are not shown, the surface
forms in (4.51) and (4.52) are the ones derived by the grammar for the same
reason they are the ones derived by the CyCG variants: the string variable
s is linked to the discourse referent variable n via the Trace rule, just as the
string variable t is linked to the discourse referent m.

The dynamic semantic terms for the surface scope reading of (3.48)
reduces as follows.

` (every cyclist)n.(a bike)m.ride m n

= foralln.(cyclist n) implies (a bike)m.ride m n

= not existsn.not ((cyclist n) implies (a bike)m.ride m n)

= not existsn.not not ((cyclist n) and not (a bike)m.ride m n)

= not existsn.not not ((cyclist n)and

not existsm.(bike m) and (ride m n)) : k0

The reverse scope reading, on the other hand, reduces to:

` (a bike)m.(every cyclist)n.ride m n

= existsm.((bike m) and foralln.(cyclist n) implies (ride m n))

= existsm.((bike m) and not existsm.not

((cyclist n) implies (ride m n)))

= existsm.((bike m) and not existsn.not

not ((cyclist n) and not (ride m n))) : k1

4.3.2 Donkey Anaphora 118

By theorem 4.13, these readings are equivalent to

not existsn.(cyclist n) and not existsm.(bike m) and (ride m n)

and

existsm.(bike m) and not existsn.(cyclist n) and not (ride m n)

respectively, so that, by proposition C.6, we finally arrive at

λcx|c| .not existsy.(cyclist y) and not existsz.(bike z) and (ride z y) : k0

for the surface scope reading, and

λcλx|c|,y.(bike y) and not existsz.(cyclist z) and not (ride y z) : k1

for the reverse scope reading. Notice that for the reverse scope reading, a
discourse referent is introduced, but no discourse referent is introduced for
the surface scope reading.

4.3.2 Donkey Anaphora

To demonstrate a central motivation for replacing the CyCG static semantics,
I examine the following example, an instance of donkey anaphora (Geach,
1962, chapter 5):

(4.53) Every cyclisti that owns a bike rides iti.

The DyCG lexical entries for all of the words in (4.53) are already defined
besides owns and it. Starting with owns, it is defined based on its static
counterpart own using the dynamicizer dyn2:

own =def (dyn2 own)

The pronoun it needs to select its antecedent from prior context, and its
antecedent must meet the condition of not being human. It is modeled by
the dynamic generalized quantifier it : d1 → k, defined as

(4.54) it =def λDλc.D (pro nonhuman c) c ,

4.3.2 Donkey Anaphora 119

which passes the unique discourse referent that has descriptive content
consistent with being nonhuman. Here nonhuman =def (dyn1 nonhuman),
where nonhuman is the static property of being nonhuman. Note that the
definition of it is just like the definition of the proper names kim and
lance in (4.30) and (4.34), above, with the exception that pro is used in
place of the and the dynamic property passed to pro is different.

The extensions to the DyCG lexicon needed to account for (4.53) are the
following.

` λst.s · owns · t : s→ s→ s ; NP(NP(S ; own : d1

` λs f .s · that · (f e) : s→ (s→ s)→ s ; N((NP(S)(N ; that

` λ f .(f it) : (s→ s)→ s ; (NP(S)(S ; it : d1 → k

The DyCG lexical entry corresponding to owns is straightforwardly a tran-
sitive verb, similar to ride, above. The dynamic property conjunction that

has the same abstract and concrete syntax as its static counterpart that, and
its type is omitted here for readability. The lexical entry for it is similar to
the one used for other generalized quantifiers, such the dynamic proper
name semantics kim, discussed above.

Since every needs to take as its arguments the dynamic properties
corresponding to cyclist that owns a bike and rides it, we first derive the
property arguments. The one headed by cyclist begins by hypothesizing
arguments for owned, similarly to the proof in (4.36), starting with the object
trace.
(4.55)

` λst.t · owns · s ; NP(NP(S ; own s ; NP ; m ` s ; NP ; m
s ; NP ; m ` λt.t · owns · s ; NP(S ; (own m)

And next the trace for the subject position. (Here, and in the following
proofs, I perform β-reduction in the concrete syntactic and semantic terms
when possible.)
(4.56)

(4.55)
...

s ; NP ; m ` λt.t · owns · s ; NP(S ; (own m) t ; NP ; n ` t ; NP ; n
s ; NP ; m, t ; NP ; n ` t · owns · s ; S ; (own m n)

Next the object trace is extracted so that a bike (from the proof in (4.37))
can take scope, after which the subject trace is extracted. (Here and below,

4.3.2 Donkey Anaphora 120

for reasons of horizontal space, the proofs are split, showing the abstract
syntax and semantics separately from the concrete syntax.)

(4.57)

(4.37)
...

` QP ; (a bike)

(4.56)
...

NP ; m, NP ; n ` S ; (own m n)
NP ; n ` NP(S ; λm.own m n

NP ; n ` S ; (a bike)m.own m n
` NP(S ; λn.(a bike)m.own m n

The concrete syntactic part of the proof in (4.57) is as follows.
(4.58)

(4.37)
...

` λ f . f (a · bike) : (s→ s)→ s

(4.56)
...

s : s, t : s ` t · owns · s : s
t : s ` λs.t · owns · s : s→ s

t : s ` t · owns · a · bike : s
` λt.t · owns · a · bike : s→ s

The property conjunction that first combines with cyclist.

(4.59)
` N((NP(S)((NP(S) ; that ` N ; cyclist

` (NP(S)((NP(S) ; (cyclist that)

The pheno portion of this proof is given below.

(4.60)
` λs f .s · that · (f e) : s→ (s→ s)→ s ` cyclist : s

` λ f .cyclist · that · (f e) : (s→ s)→ s

Then the proof for cyclist that . . . combines with the one for owns a bike,
below, with only the short-form semantic terms shown.

(4.61)

(4.59)
...

` (cyclist that)

(4.57)
...

` λn.(a bike)m.own m n
` cyclist that λn.(a bike)m.own m n

4.3.2 Donkey Anaphora 121

The abstract syntax for (4.61) is then:
(4.62)

(4.60)
...

` λ f .cyclist · that · (f e) : (s→ s)→ s

(4.58)
...

` λt.t · owns · a · bike : s→ s
` cyclist · that · e · owns · a · bike : s

These proofs yield the DyCG sign for cyclist that owns a bike below.

` cyclist · that · e · owns · a · bike ;(4.63)

NP(S ; cyclist that λn.(a bike)m.own m n

As for the dynamic property corresponding to rides it, we start with the
proof in (4.38).

(4.64) ` (NP(S)(S ; it

(4.38)
...

NP ; n ` NP(S ; λm.ride m n
NP ; n ` S ; itm.ride m n

` NP(S ; λn.itm.ride m n

And the concrete syntax for (4.64) is in (4.65).

(4.65) ` λ f .(f it) : (s→ s)→ s

(4.38)
...

t : s ` λs.t · rides · s : s→ s
t : s ` t · rides · it : s
` λt.t · rides · it : s→ s

With the dynamic meanings for the two properties cyclist that owns a
bike and rides it derived, all that remains is to pass both of these to the
dynamic meaning of Every, finally giving the following DyCG sign.

` every · cyclist · that · e · owns · a · bike · e · rides · it ;(4.66)

S ; (every (cyclist that λn.(a bike)m.own m n))n.itm.ride m n

4.3.2 Donkey Anaphora 122

To see that the semantics captures the meaning of (4.53), we first reduce
the semantic term in (4.66).

` (every (cyclist that λn.(a bike)m.own m n))n.itm.ride m n

= (everyn.((cyclist n) and (a bike)m.own m n))n.itm.ride m n

= foralln.(((cyclist n) and (a bike)m.own m n)

implies itm.ride m n)

= not existsn.not (((cyclist n) and (a bike)m.own m n)

implies itm.ride m n)

= not existsn.not not (((cyclist n) and (a bike)m.own m n)

and not itm.ride m n)

= not existsn.not

not (((cyclist n) and existsm.(bike m) and (own m n))

and not itm.ride m n)

Because of the property bike, the context passed to the dynamic property
containing it contains a discourse referent whose descriptive content is
consistent with being nonhuman. And so this term can be applied to the
empty context t, defined above in (4.4), to yield the following term by
proposition C.6.

` λx0 .not existsy.not not existsz.(cyclist y) and (bike z) and

(own z y) and not (ride z y)

And by eliminating the double negation, we get

≡ λx0 .not existsy.existsz.(cyclist y) and (bike z) and

(own z y) and not (ride z y) : c0 .

For the empty entity vector x0, this semantics gives the truth conditions
intuitively associated with (4.53), because it says that there is no cyclist that
owns some bike but does not ride it.

In chapter 5, I discuss anaphora in much greater detail, in the context
of extending the dynamic semantics presented here to a full theory of
conventional implicature. There I discuss Roberts’s (2003) weak familiarity
and its impacts on anaphoric accessibility and the so-called proportion

4.4 Grammar Rules for Modeling Discourse 123

` s : s ; D ; u : u ` t : s ; S ; k : k (Continue)
` s · t : s ; D ; (cc k) ◦ u : u

Figure 4.1: DyCG natural deduction rule for discourse, where ◦ is the
composition function for updates defined in (4.67).

problem, along with a solution to it that involves redefining every and
other determiners. The intent of this chapter is simply to lay out the basic
underpinnings of DyCG and show that it is capable of handling the kinds
of phenomena that other dynamic theories are capable of.

4.4 Grammar Rules for Modeling Discourse

DyCG is intended to model discourse-level meanings, whereas CyCG stops
at the level of sentences. Because of this, some extensions to the CyCG
grammar rules in figure 3.1 are needed, which use the new nonlogical type
D, of discourses. The necessary extension to the grammar rules is shown
in figure 4.1.

A discourse is continued using the Continue rule, which takes an
update and merges it with the content of an utterance into a new discourse.
The resulting string is simply the concatenation s · t of the two discourses’
concrete syntaxes, and the semantic content is simply the composition of
the updates (cc k) and u, where cc is the update function defined in (4.12)
and ◦ : u→ u→ u is the standard infix function composition

(4.67) ◦ =def λu:uλv:uλc:c.u (v c) .

Example B.24 discusses function composition in type theory in more detail.
The connection between dynamic conjunction, the context change func-

tion, and composition of updates is expressed in the following.

Theorem 4.22. If h and k are contents, then ` cc (h and k) = (cc k) ◦ (cc h).

Proof. Let h : k and k : k. Then we have the following term identities by
the definitions of and (4.14), cc (4.12), and ◦ (4.67), and the β-conversion

4.4 Grammar Rules for Modeling Discourse 124

axiom (B.5):

` cc (h and k)

= cc (λx|c|,y|h|,z|k|(h c x, y) and (k (cc h c) x, y, z))

= λcλx|c|,y|h|,z|k| .(c x) and (h c x, y) and (k (λx|c|,y|h|(c x) and (h c x, y)) x, y, z)

= λc.((λcλx|c|,y|k|(c x) and (k c x, y)) λx|c|,y|h| .(c x) and (h c x, y))

= λc.(cc k) λx|c|,y|h| .(c x) and (h c x, y)

= λc.(cc k (cc h c))

= (cc k) ◦ (cc h) : u

Then it follows that ` ∀hk.cc (h and k) = (cc k) ◦ (cc h) from universal
instantiation.

It is important to note about the Continue rule that it requires the
variable contexts of its premises to be empty. This is done to prevent
operators from taking scope over an entire discourse. As a result, all
traces must be resolved at the sentence level, before the sentential sign is
promoted to an update and used as in an instance of Continue.

We then define the empty discourse as

(4.68) ` e : s ; D ; λc:c.c : u ,

whose pheno is the empty string e and whose semantics is simply the
identity function on contexts. Then we have the following derived rule:

(4.69)
` s : s ; S ; k : k (Start)
` s : s ; D ; (cc k) : u

The Start rule says that any term of tecto type S whose semantics is a content
can be promoted to a discourse with the same pheno and its semantics
promoted to an update by cc. This rule is derived by invoking Continue
using the empty discourse, for some sign ` s : s ; S ; k : k, as follows.

(4.70)
` e : s ; D ; λc:c.c : u ` s : s ; S ; k : k (Cn)
` e · s : s ; D ; (cc k) ◦ λc:c.c : u

4.4 Grammar Rules for Modeling Discourse 125

(Here the label Cn abbreviates Continue.) Noting that e · s = s by the axiom
in (3.5) and the fact that

` ((cc k) ◦ λc:c.c) = λc:c.(cc k) ((λc:cc) c)

= λc:c.(cc k) c

= (cc k) : u

by βη-reduction, the root label of the proof in (4.70) reduces to the root
label of the Start rule in (4.69).

As an example, consider the very simple discourse

(4.71) A cyclisti arrived. Shei sneezed.

With the lexical entries for A, cyclist, and sneezed already defined, we need
to state entries for the intransitive arrived and the pronoun She. Taking

arrive =def (dyn1 arrive)

and

she =def λDc.D (pro female c) c ,

these lexical entries are straightforward:

` λs.s · arrived ; NP(S ; arrive : d1

` λ f .(f she) ; (NP(S)(S ; she : d1 → k

(The meanings for the proper names and pronouns will be generalized
below in §5.2.1.) As for it, note that the only difference between she and
lance is the use of pro and dynamic property passed to pro. For the case
of she, the dynamic property used is female =def (dyn1 female), where
female is the static property of being female.

The DyCG sign for the first utterance in (4.71) is promoted to a discourse
in (4.72) via the derived rule Start from (4.69), above.

(4.72)
` a · cyclist · arrived : s ; S ; (a cyclist arrive) : k
` a · cyclist · arrived : s ; D ; cc (a cyclist arrive) : u

4.4 Grammar Rules for Modeling Discourse 126

This discourse is combined with the second utterance using Continue, as
in (4.73), which shows just the abstract syntax and semantics.

(4.73)
` D ; cc (a cyclist arrive) : u ` S ; (she sneeze) : k
` D ; (cc (she sneeze)) ◦ cc (a cyclist arrive) : u

The concrete syntax corresponding to (4.73) is below.

(4.74)
` a · cyclist · arrived : s ` she · sneezed : s
` a · cyclist · arrived · she · sneezed : s

And so the DyCG discourse rules in figure 4.1 give an appropriate
syntax and dynamic semantics that models (4.71). This can be seen by
reducing the semantic term derived in (4.73):

` (cc (she sneeze)) ◦ cc (a cyclist arrive)

= λc.(cc (she sneeze)) cc (a cyclist arrive) c

= λc.(cc (she sneeze)) λx|c|,y1 .(c |c|(x, y)) and (cyclist y0) and (arrive y0) : u

This term can be further reduced and shorthanded to

` λc.(cc (she sneeze)) λx|c|,y.(c x) and (cyclist y) and (arrive y) : u

Noting that

` (she sneeze) = λcx|c| .(sneeze x(pro female c)) : k ,

the normal form of the semantic term derived in (4.73) is:

` (cc (she sneeze)) ◦ (cc (a cyclist arrive))

= λcλx|c|,y.(c x) and (cyclist y) and (arrive y) and (sneeze x(pro female c′)) : k1

where

c′ = λx|c|,y.(c x) and (cyclist y) and (arrive y) .

4.5 Summary and Comparison with Other Theories 127

Applying this semantics to the empty context t, defined in equation (4.4),
we get

` ((cc (she sneeze)) ◦ cc (a cyclist arrive)) t

= λy.true and (cyclist y) and (arrive y) and (sneeze x(pro c′′ female))

≡ λy.(cyclist y) and (arrive y) and (sneeze y) : c1

by proposition C.8, where c′′ = λy.true and (cyclist y) and (arrive y). The
discourse referent y is selected as the argument to sneeze because it is the
one that is consistent with being female, per the definition of pro in (4.21).
Note that the context that results from applying the DyCG semantics for
(4.71) to the empty context is interderivable with

` cyclist that arrive that sneeze : e→ p

by proposition C.6.

4.5 Summary and Comparison with Other Theories

The dynamic semantics presented in this chapter is an encoding in pure
(dependent) type theory of a semantics that models the meanings of declar-
atives as functions from discourse contexts to discourse contexts. In this
way, it has much in common with the tradition of dynamic semantics that
can be traced back to Heim (1982), especially with the work of Beaver
(2001). Its approach to modeling the semantics of utterances also resembles
the dynamic tradition dating to Groenendijk and Stokhof (1990, 1991). It
also captures many central notions from Kamp’s (1981) DRT, with the
arguments to predicates modeled as discourse referents, and negation and
quantifiers ’closing off’ the accessibility of discourse referents introduced
within their scope, and has much in common with Muskens’s (1996) com-
positional, type-theoretic version of DRT and the recent computational
dynamic semantics discussed by van Eijck and Unger (2010).

DyCG perhaps has the most in common with the work of de Groote
(2006). Like de Groote, I give a straightforward mapping from a static
semantics to a dynamic one based principally on redefinitions of the static
operators and, exists, and not (although for de Groote, the underlying static
semantics is not agnostic). And although, as I mention in the introduction
to this chapter, DyCG does not explicitly employ the technique of continua-

4.5 Summary and Comparison with Other Theories 128

tions, the type system it uses is underlyingly quite similar to de Groote’s.
De Groote’s contexts, of type γ, are lists of entities, essentially identical to
the entity vectors used here. For de Groote, the meanings of declarative
utterances are modeled by the type

γ→ (γ→ o)→ o ,

where o is the truth value type, de Groote’s type for propositions. Thus
the analog, in de Groote’s theory, of the DyCG type c of contexts is the
type γ→ o. And since the order of the arguments in de Groote’s type of
declaratives can be permuted to give

(γ→ o)→ γ→ o ,

the type of declaratives in his theory is the analog of the type c → c,
which, modulo dependent typing information, is exactly the type of DyCG
contents and updates. And so there is a deep similarity between de Groote’s
work and other compositional dynamic theories that model declaratives as
functions from contexts to contexts, including DyCG.

Finally, DyCG differs from my own previous work (Martin, 2012; Martin
and Pollard, 2012a,b) in that total functions are used rather than partial
functions, although in Kierstead and Martin (2012) I opt for total functions
as well. The reason, which will be greatly elaborated in chapters 5 and 6,
is that DyCG as formulated here takes a completely different approach to
anaphora. In this thesis, following the empirical discussion in chapter 2,
anaphora is modeled not as constraining the input context but as giving
rise to an implicature, which may conflict with the context in case there
is no retrievable antecedent. As I will show in the next two chapters, this
treatment of anaphora means that a general mechanism can also be used
to model other conventional implicatures in a dynamic setting.

Chapter 5

Anaphora

Extending the compositional dynamic semantics in chapter 4 to handle
implicatures more generally requires a way for the grammar to state which
parts of the meanings of constructions are senses and which are impli-
catures. In this chapter I lay out a way to extend Dynamic Categorial
Grammar that keeps these two meaning types separate. The approach is
inspired by earlier work by Karttunen and Peters (1979) and Nouwen (2007),
following the basic idea that the dynamic meanings of utterances determine
a pair of propositions: one for its sense, and one for its implicature.

As chapter 2 discusses, the subclass of implicatures that must be an-
chored to the speaker is the subclass that includes anaphora, honorifics, and
iterative adverbs. I give a DyCG account of many instances of anaphora,
including proper names, pronouns, and definites using the, possessives,
and iterative adverbs in the current chapter. In the literature, these implica-
tures are often referred to as bearing presuppositions, that is, contextual
felicity constraints. But since the other subclasses of implicatures besides
the anaphoric ones do not consistently place constraints on their context of
interpretation, I simply use the term anaphora to refer to the ones that do
constrain the context. Based on the new approach to anaphora explored
here, I define a generalized notion of contextual felicity that is designed to
account not only for the felicity conditions associated with anaphora, but
for the felicity of the entire class of conventional implicatures, including
the ones that can have a nonspeaker anchoring, discussed in chapter 6.

This chapter explores a robust account of anaphora that maintains a
separation between sense and implicature. It models anaphoric triggers as
giving rise to an implicature that a suitable antecedent is available in the

129

Chapter 5 Anaphora 130

context of interpretation, with infelicity arising when this implicature is
in conflict with the context because no such antecedent is available. This
chapter also offers an expanded notion of the accessibility of an anaphoric
antecedent compared with the usual accessibility relation in Discourse
Representation Theory (Kamp, 1981; Kamp and Reyle, 1993), theories
that are based on Heim (1982) such as Beaver 2001, and the mechanism
for anaphora resolution found in the work of Groenendijk and Stokhof
(1990, 1991). This expanded accessibility is achieved by implementing
Roberts’s (2003) weak familiarity, and is based in part on the account of weak
familiarity in Martin 2012.

For reasons I discuss below, the definition of the determiner every

given in chapter 4, which is known as the strong reading, is not finely-
grained enough. Drawing on examples of the use of various determiners
in context, the account of anaphora I develop here, also makes weak de-
terminer readings available, and I explore the conditions under which the
strong or weak reading is chosen. Lastly, by basing anaphora in part on
contextual entailments, this account represents an advance from de Groote
2006 and de Groote and Lebedeva 2010, which simply treat anaphora as
an unspecified resolution function. In the case of proper names, de Groote
and Lebedeva treat them as always requiring accommodation via excep-
tion handling. Instead, I model proper names as giving rise to anaphoric
retrievability implications just like other instances of anaphora.

I start with the extensions to DyCG that are required for modeling
both sense and implicature in §5.1, redefining some of the connectives
and functions (§5.1.1). Then in §5.2, I lay out an account of anaphora
using the newly defined two-level approach, giving a generalized formal
treatment of definiteness (§5.2.1), including an account of possessives
(§5.2.1.1). Next, §5.2.2 discusses a more general formal notion of contextual
consistency and felicity than the one usually assumed by theories that treat
presuppositions. §5.2.3 gives an account of the iterative adverb too. The
notions of familiarity and accessibility are given a generalized treatment in
the form of an implementation of weak familiarity in §5.3. Then §5.4 turns
the focus to the strong and weak determiner readings, giving evidence for
the two readings (§5.4.1) and then discussing two earlier approaches (§5.4.2
and §5.4.3) before proposing a synthesis of them in §5.4.4, including a
general formal mechanism for yielding weak readings (§5.4.4.1). Finally,
§5.5 offers a summary of this chapter and a comparison with some other

5.1 Extending Dynamic Categorial Grammar 131

approaches, such as the work of Potts (2005) and the theory of anaphora
due to van der Sandt (1992).

5.1 Extending Dynamic Categorial Grammar

To extend the DyCG developed in chapter 4 to a dynamic semantics that
keeps sense and implicature separate, some retrofitting is required. Specifi-
cally, we need to redefine the type k of contents, the dynamic connectives
and and not (including some of the functions they rely on), and the dy-
namic quantifier exists. For convenience, I also define the n-ary empty
contexts tn : cn for each natural number n, as follows:

(5.1) tn =def λxn .true

And so the empty context defined in (4.4) can be redefined as t =def t0.
Starting with the type of contents, we use a dynamic version of the

account in Karttunen and Peters 1979, which models meanings as pairs
of expressions in Montague’s (1973) intensional logic. Accordingly, for a
natural numbers n, the type kn, defined in equation (4.6), is supplanted by
the type

(5.2) kn =def Πc:c.Σd:c|c|+n
.c|d| .

Intuitively, this is the type of functions that take a context as argument
and bifurcates it into a pair of contexts, with n new discourse referents
added that are available to both the first component and the second com-
ponent. Following Karttunen and Peters, the first context is called the
sense context (or just the sense), and the second is called the implicature
context (or simply implicature). (Karttunen and Peters refer to these as
the extension expression and implicature expression, respectively.) Drawing on
Karttunen and Peters’s notation, define the functions (·)s and (·)i, both of
type Πn:nΠp:Σd:cn .c|d| .cn, as follows, for n a natural number:

(·)s
n =def λp:Σd:cn .c|d| .(π1 p)

(·)i
n =def λp:Σd:cn .c|d| .(π2 p)

As shorthand, I omit the natural number subscript on these functions, and
write c | d to abbreviate the pair of contexts 〈c, d〉.

5.1.1 Redefining the Dynamic Logic 132

The process for dynamicizing a static semantics is exactly as described
in §4.2.2, with the exception of the function dyn0, which is redefined as

dyn0 =def λp:pλc:c.λx|c| .p | t|c| ,

That is, the dynamicization of a static proposition p is a content with a
context mapping a |c|-ary vector of entities to p as its sense, and the empty
|c|-context as its implicature.

5.1.1 Redefining the Dynamic Logic

The context change function cc from definition 4.5 has the same type
Πk:k.u|k|, but it is redefined as

(5.3) cc =def λk:kλc:cλx|c|,y|k| .(c x) and ((k c)s x, y) and ((k c)i x, y) .

So promoting a content to an update now has the effect that the content
gets ‘flattened out,’ with both its sense and implicature contexts combined
with the input context via propositional conjunction.

Turning to the dynamic connectives and quantifier, dynamic conjunction
must now operate on contents as redefined above in (5.2). Its definition in
(4.14) is replaced by

and =def λhkc.
〈

λx|c|,y|h|,z|k| .((h c)s x, y) and ((k (cc h c))s x, y, z),(5.4)

λx|c|,y|h|,z|k| .((h c)i x, y) and ((k (cc h c))i x, y, z)
〉

,

which may seem a bit involved. Intuitively, it conjoins both the sense and
implicature contexts of k and h in the same way as the previous definition,
but it takes care to ensure that the two content types are kept separate.

As an example, the conjunction of (rain ∗) with (snow ∗) now reduces
as follows, where as in chapter 4, rain and snow are in reduced form.

` rain and snow

= λc.λx|c| .rain and snow | λx|c| .true and true

≡ λc.λx|c| .rain and snow | t|c| : k0

(Recall that |rain| = 0 and |snow| = 0.) Thus the sense context of
rain and snow is the conjoined proposition rain and snow, but its impli-

5.1.1 Redefining the Dynamic Logic 133

cature context is essentially empty, containing only the necessarily true
proposition true.

Nothing essentially changes for the definition of the dynamic existen-
tial exists. Dynamic negation, on the other hand, needs a redefinition,
because it must target only the sense proposition and not the implicature
proposition of its content argument. Its type does not change, but its new
definition supplants the one in (4.17).

not =def λkc.λx|c| .not existsy|k| .(k c)s x, y | λx|c| .existsy|k| .(k c)i x, y(5.5)

In this version of dynamic negation, the discourse referents introduced
become existentially bound in both the sense and implicature parts of the
resulting content. But importantly, only the sense proposition is negated.

To demonstrate the way the redefined dynamic negation, the negation
of exists cyclist is shown below.

` not (exists cyclist)

= not λc.λx|c|,y1 .(cyclist y0) | t|c+|
= λc.λx|c| .not existsy1 .(cyclist y0) | λx|c| .existsy1 .true : k0

Applying the shorthand notation, η-reduction, lemma 4.11, and proposition
C.6, this term can be written as

` λc.λx|c| .not exists cyclist | t|c| : k0 .

In what follows, I will engage in a minor abuse of notation in that terms that
are interderivable according to proposition C.6 are sometimes substituted
for each other when it is convenient, for example, to reduce clutter.

Analogs of theorems 4.12 and 4.13 are available for the two-level setting.

Theorem 5.1. If k : k0, then

` (not k) ≡ λc.λx|c| .not ((k c)s x) | (k c)i .

Proof. Note that, for k : k0, we have

` (not k) = λc.λx|c| .not existsy0 .(k c)s x, y | λx|c| .existsy0 .(k c)i x, y

5.2 Anaphora in a Two-Level Setting 134

by equation (5.5). Similarly to the proof of theorem 4.12, invoke lemma
4.11, proposition C.8, substitution, and η-reduction to obtain

` λc.λx|c| .not existsy0 .(k c)s x, y | λx|c| .existsy0 .(k c)i x, y

≡ λc.λx|c| .not ((k c)s x) | (k c)i .

Theorem 5.2. If k : k0, then ` (not (not k)) ≡ k.

Proof. For k : k0, by an argument similar to the proof of theorem 4.13, we
have

` (not (not k)) ≡ λc.λx|c| .not (not ((k c)s x)) | (k c)i

≡ λc.(k c)s | (k c)i

≡ k ,

invoking axiom B.8.

An analog of theorem 4.22 is also available, by systematically replacing the
instances of cc and and with their corresponding redefinitions.

5.2 Anaphora in a Two-Level Setting

Giving an account of anaphora in this multi-level dynamic semantics allows
a rethinking of both Potts’s (2005) characterization of the behavior of con-
ventional implicatures as well as the notion of infelicity from the literature
on presuppositions. In the first case, viewing anaphora as a special case
of conventional implicature allows us to take issue with Potts’s empirical
generalization that no lexical item can have both a sense contribution and
an implicature contribution. In the second, we can go beyond the view of
infelicity as the failure of a presupposition to be satisfied in a given context,
toward a broader view of infelicity based on contextual entailments and
Grice’s (1975) cooperative principle. The relevant contextual entailments used
to model anaphora should reflect the intuition discussed in §2.2.1, that
the implications associated with anaphora are obligatorily anchored to the
speaker because they are implications about the discourse context itself.

To explore these ideas further, I start with an examination of the dy-
namic meanings of proper names. For example, in chapter 4, I treated the

5.2 Anaphora in a Two-Level Setting 135

proper name Lance as having the DyCG translation

(4.34) lance =def λDc.D (the named-lance c) c .

That is, lance is a dynamic generalized quantifier that passes to its dynamic
property argument the unique discourse referent in the input context that is
entailed to have the name Lance. But this definition has nothing to offer in
cases where there is no such discourse referent. The definiteness function
the is defined in terms of the description operator ι, and because of the
way ιis defined (see definition B.8 and theorem B.9), if there is no unique
discourse referent meeting the relevant condition, then an arbitrary (but
fixed) inhabitant of ω|c| is selected. As it stands, where most theories would
predict presupposition failure, DyCG would simply predict indeterminate
behavior.

In Martin and Pollard (2012a,b), contents are modeled as partial func-
tions from contexts to contexts, so that in case of presupposition failure, the
offending context is simply not in the presupposing content’s domain. But
for DyCG, which uses only total functions, I propose a different treatment
that extends the definition in (4.34) to the multi-level case. A prerequisite
for giving a revised definition of lance is a definition of the propositional
unique existential quantifier.

Definition 5.3 (Unique Existential). For each meaning type A, the quantifier

exists!A : (A→ p)→ p

is axiomatized as

` ∀P:A→p∀w:w.((exists!A P) @ w)⇔ ∃!x:A.((P x) @ w) ,(5.6)

where ∃! is as in definition B.7.

As usual, the type parameter subscript A is often suppressed when it is
irrelevant or inferable from context.

5.2.1 Generalized Definiteness 136

Then a definition of lance : d1 → k that takes the conventional impli-
cature perspective is

lance =def λDc.(D (the named-lance c) c)s | (D (the named-lance c) c)i
(5.7)

and exists!n:ω|c| .(c k-entails (named-lance n)) .

The sense proposition of lance is just as before. What is new is the
implicature proposition that there exists a unique natural number n < |c|
such that the context entails that the entity at coordinate n has the property
of being named Lance. As I discuss below in §5.3, discourse referents
may be explicitly introduced into DyCG by the use of an indefinite, or
introduced via a pragmatic entailment-driven inference process.

5.2.1 Generalized Definiteness

As discussed in §2.2.2.1, especially in connection with examples (2.55) and
(2.56), the descriptive content implications are different depending on the
definite. For example, consider a version of (2.55) that uses a proper name
instead of a pronoun:

(2.55) A copi just walked over to my car. Shei wrote me a ticket for my
busted tail light!

(5.8) A copi just walked over to my car. # Lancei wrote me a ticket for
my busted tail light!

The difference between (2.55) and (5.8) is that proper names require their
antecedent to be contextually entailed to have the property of being so
named, while the use of a pronoun only require that their antecedent’s
descriptive content not conflict with the pronoun’s descriptive content. In
(2.55), the use of the pronoun She may be the first time the addressee learns
that the cop is female, but for (5.8), the use of Lance cannot be the first time
the addressee learns the cop’s name is Lance.

In DyCG, this difference between pronouns and other definites is han-
dled by the two functions the and pro from definitions 4.20 and 4.21. These
functions are repeated below.

the =def λD:d1 λc:c

ι

n:ω|c| .c k-entails (D n)(4.27)

pro =def λD:d1 λc:c

ι

n:ω|c| .c k-cons (D n)(4.28)

5.2.1 Generalized Definiteness 137

Seeing these functions side by side makes it clear that the only difference
between the way nonpronominal definites are treated and the way pro-
nouns are treated is that for pronouns, all that is required is that the context
be consistent with the relevant descriptive content, while other definites
make the stronger requirement of (contextual) entailment of the descriptive
content. As Roberts (2005) explains, there is more to this story, because
pronouns additionally require maximal salience among the discourse refer-
ents entailed to have nonconflicting properties. But since salience is mainly
a pragmatic phenomenon, I leave it unaccounted for in the DyCG seman-
tic theory, with the assumption that anaphora resolution for pronouns
incorporates an unspecified check for maximal salience.1

With this difference in mind, two general functions can be used to
encode definiteness in a dynamic setting.

Definition 5.4 (Generalized Definitizers). The generalized definitizer func-
tions the and pro, both with the type d1 → d1 → k of dynamic generalized
determiners, are defined as follows:

the =def λDEc.(E (the D c) c)s |
(5.9)

λx|c| .(((D that E) (the D c) c)i x) and exists!n:ω|c| .(c k-entails (D n))

pro =def λDEc.((D that E) (pro D c) c)s |
(5.10)

λx|c| .(((D that E) (pro D c) c)i x) and exists!n:ω|c| .(c k-cons (D n))

The implicature proposition in a dynamic generalized determiner gener-
ated by either of these functions embodies the retrievability implication
discussed in §2.2.1.1: the implication is that a contextually unique discourse
referent must be available that bears the relevant property. Note that any
implicature content associated with either D or E is inherited by the term
that results from applying either of the or pro, in a way reminiscent of
Karttunen and Peters 1979.

Whether the discourse referent must be entailed to have the relevant
property or merely not entailed to have a conflicting property depends

1As Stone and Webber (1998) point out, even this unspecified salience check may not
be enough in certain situations, in which a further notion of plausibility is required to
disambiguate which is the intended antecedent. I leave plausibility this beyond the DyCG
theory of anaphora as well.

5.2.1 Generalized Definiteness 138

on whether the or pro is used. For the definitizer function the, note that
in this generalized determiner’s sense proposition, the unique discourse
referent that the context entails to have the property D is selected. Part of
its implicature proposition is the requirement that such a discourse referent
is available among the ones in the context’s input vector. However, for
the case of pro, the discourse referent selected must only have descriptive
content that does not conflict with the property D, and its implicature
part contains the relevant proposition. For pro, the content of D is also
incorporated into the sense of the resulting determiner, since, as (2.55)
shows, the pronoun’s sortal information may be new.

This definition of the is somewhat distantly related to the one given by
Beaver (2001, definition 54). To see how the works, consider its application
to the dynamic property named-lance =def (dyn1 named-lance).

` (the named-lance)

= λDc.(D (the named-lance c) c)s |
λx|c| .(((named-lance that D) (the named-lance c) c)i x) and

exists!n:ω|c| .c k-entails (named-lance n) : d1 → k

Note that (the named-lance) has a meaning that is closely similar to the
one given for lance in (5.7). Any implicature content associated with either
property named-lance or D is inherited by the result, and the implication
is added that there is a retrievable antecedent that is contextually entailed
to be named Lance. The dynamic meaning of the proper name Lance can
then be defined instead as

(5.11) lance =def the named-lance ,

and similarly for other proper names.
The inanimate pronoun can be given a redefinition based on pro that

supplants the one in (4.54), as follows:

(5.12) it =def pro nonhuman

5.2.1 Generalized Definiteness 139

With pro as defined in (5.10), this definition of it expands to

` pro nonhuman

= λDc.((nonhuman that D) (pro nonhuman c) c)s |
λx|c| .(((nonhuman that D) (pro nonhuman c) c)i x) and

exists!n:ω|c| .c k-cons (nonhuman n) : d1 → k ,

where nonhuman =def (dyn1 nonhuman) is the dynamic property of being
nonhuman. Similarly, with the dynamic properties

female =def (dyn1 female) and

male =def (dyn1 male) ,

where female : e → p and male : e → p are respectively the property of
being female and the property of being male, dynamic meanings for the
gendered pronouns she and he are available.

she =def pro female(5.13)

he =def pro male(5.14)

So proper names and the pronouns are all defined in terms of the and
pro. By way of illustrating that definites in DyCG behave as expected,
consider the discourse

(5.15) A cyclist commutes to work. A driver commutes to work. The
cyclist rides a bike.

To model (5.15) in DyCG, first define driver =def (dyn1 driver) as the
dynamic meaning of driver and commute =def (dyn1 commute) as the
meaning of commutes to work, where driver and commute are the static
properties of being a driver and commuting to work, respectively. Then
add the following lexical entries:

` λs f . f (the · s) ; N((NP(S)(S ; the

` driver ; N ; driver

` λs.s · commutes ; NP(S ; commute

(Lexical entries for the remaining words in (5.15) are defined as in chapter
4.)

5.2.1 Generalized Definiteness 140

Given these extensions to the lexicon, signs for the first two utterances
in (5.15) are as follows.

` a · cyclist · commutes ; S ; (a cyclist commute)

` a · driver · commutes ; S ; (a driver commute)

After promoting the first utterance using the Start rule, it is combined with
the second utterance via Continue, to yield

` a · cyclist · commutes · a · driver · commutes ; D ;(5.16)

(cc (a driver commute)) ◦ (cc (a cyclist commute)) .

A sign modeling the third utterance of (5.15) is

` the · cyclist · rides · a · bike ; S ; (the cyclist)n.(a bike)m.ride m n ,

which, after combination with the discourse formed from the first two
utterances, gives

` a · cyclist · commutes · a · driver · commutes · the · cyclist · rides · a · bike ;

D ; (cc ((the cyclist)n.(a bike)m.ride m n)) ◦
(cc (a driver commute)) ◦ (cc (a cyclist commute)) .

Since the semantics of (5.16) reduces to a term equivalent to

` λc.λx|c|,y,z.(c x) and (cyclist y) and (commute y) and

(driver z) and (commute z) : u2 ,

the semantics of the third utterance is able to select the unique discourse
referent with the entailment of being a cyclist. Applying this semantics
to the empty context t0, we arrive at an equivalent β-normal form of the
semantics of this discourse.

` ((cc (the cyclistn.(a bike)m.ride m n)) ◦
(cc (a driver commute)) ◦ (cc (a cyclist commute)) t)

≡ λx,y,z.(cyclist x) and (commute x) and (driver y) and (commute y) and

(bike z) and (ride z x) and exists!n:ω|c′| .c
′ k-entails (cyclist n) : c3

5.2.1 Generalized Definiteness 141

Here,

c′ = λx,y.true and (cyclist x) and (commute x) and

(driver y) and (commute y) : c2

is the context passed to the third utterance by the preceding discourse.
To see how the DyCG treatment of pronouns differs from its treatment

of the definite determiner the, consider the discourse

(5.17) A cyclisti commutes to work. Shei arrives on time.

Allowing the definition of arrives from chapter 4 as the lexical entry for
arrives on time, all of the lexical entries needed to derive a DyCG sign for
(5.17) are already defined. Using the rules Start and Continue as before,
the sign corresponding to (5.17) is

` a · cyclist · commutes · she · arrives ; D ;

(cc (she arrive)) ◦ (cc (a cyclist commute))

Since the dynamic meaning of the first utterance is

` a cyclist commute

≡ λc.λx|c|,y.(cyclist y) and (commute y) | t|c+| : k1 ,

the resulting context is passed by and as the argument to the second
utterance’s meaning, which is

` she arrive = λc.λx|c| .(female x(pro female c)) and (arrive x(pro female c)) |
λx|c| .exists!n:ω|c| .c k-cons (female n) : k0 .

The second utterance’s meaning selects the unique discourse referent that
is not entailed to be nonfemale, namely, the cyclist. Then the β-reduced
meaning of (5.17) is

` (cc (she arrive)) ◦ (cc (a cyclist commute))

= λcλx|c|,y.(c x) and (cyclist y) and (commute y) and

(female x, y(pro female c′)) and (arrive x, y(pro female c′)) and

exists!n:ω|c′| .c
′ k-cons (female n) : u1 ,

5.2.1.1 Possessives 142

where, similarly as above,

c′ = λx|c|,y.(c x) and (cyclist y) and (commute y) : c|c|+1

is the context passed to (cc (she arrive)).
As before for (5.15), we apply this meaning to the empty context,

yielding

` (((cc (she arrive)) ◦ cc (a cyclist commute)) t)

≡ λy.(cyclist y) and (commute y) and (female y) and (arrive y) and

exists!n:ω|c′′| .c
′′ k-cons (female n) : c1 ,

Here the context

c′′ ≡ λy.(cyclist y) and (commute y) : c1

is the context passed to (cc (she arrive)). With c′′ as input, she is able to
select the unique discourse referent whose entailments do not conflict with
the property of being female, namely the cyclist discourse referent y. Note
that she adds the information that the cyclist is female.

5.2.1.1 Possessives

The definitions of definites can also be used to define dynamic meanings
for possessive determiners. As above for the definitizer function, I want
to define a function that describes the meanings of all possessives in
the most general way possible. Clearly, such a function must factor out
the genderedness of possessive pronouns in order to generalize dynamic
meanings for her and his. But recalling the discussion of possessives in
§2.2.1.3, possessive determiners can sometimes function as definites and
other times as indefinites. And so a general possessivizer function should
factor out the variable behavior of possessives as definites and as indefinites
as well.

With these requirements in mind, define the possessivizer function
possessive with the type

possessive : (d1 → d1 → k)→ (d1 → k)→ d1 → d1 → k ,

5.2.1.1 Possessives 143

which takes a dynamic generalized determiner and a dynamic generalized
quantifier to a dynamic generalized determiner. Its definition is inspired
by the definition of hiss in Martin 2012, equation (16):

possessive =def λABDE.A (D that λm.(Bn.have m n)) E(5.18)

Here have =def (dyn2 have) is the dynamicization of the static binary
property have : p2 of possession. The typing of possessive says that A is
a dynamic generalized determiner, B is a dynamic generalized quantifier,
and D and E are dynamic properties.

The definition of the possessivizer in (5.18) allows definite versions of
the possessive determiners her, his, and its, as follows.

herdef =def possessive the she(5.19)

hisdef =def possessive the he(5.20)

itsdef =def possessive the it(5.21)

Expanding these definitions show how they work to model their respective
possessive determiners.

` herdef = λD.the (D that λm.(shen.have m n))

` hisdef = λD.the (D that λm.(hen.have m n))

` itsdef = λD.the (D that λm.(itn.have m n))

(Here, the semantic terms are written in η-reduced form to reduce clutter.)
Similarly, indefinite versions of the possessive determiners are available by
passing the indefinite a to possessive rather than the definite the.

herindef =def possessive a she(5.22)

hisindef =def possessive a he(5.23)

itsindef =def possessive a it(5.24)

5.2.1.1 Possessives 144

These give indefinite versions of the definite possessive determiners above,
again in η-reduced form:

` herindef = λD.a (D that λm.(shen.have m n))

` hisindef = λD.a (D that λm.(hen.have m n))

` itsindef = λD.a (D that λm.(itn.have m n))

The indefinite versions of the possessives capture the observations of Barker
(2000) and Pollard and Smith (2011) discussed in §2.2.1.3.

To see how these definitions give different results in practice, apply
both in turn to model the simple utterance

(5.25) His bike arrives.

The possessive His corresponds to two different lexical entries, which differ
only in their semantics:

` λs f .(f (his · s)) ; N((NP(S)(S ; hisdef

` λs f .(f (his · s)) ; N((NP(S)(S ; hisindef

Depending on which lexical entry is chosen, the two semantics correspond-
ing to His can yield one of the following two signs.

` his · bike · arrives ; S ; (hisdef bike arrive)(5.26)

` his · bike · arrives ; S ; (hisindef bike arrive)(5.27)

First, we reduce the meaning of the definite version of His, to yield:

` hisdef bike arrive

= the (bike that λm.hen.have m n)arrive

≡ λc.λx|c| .(arrive (the (bike that λm.hen.have m n) c) c)s x |
λx|c| .(exists!m:ω|c|c k-entails ((bike m) and hen.have m n)) and

exists!n:ω|c| .c k-cons (male n) : k

In this version, the implicature proposition requires that there be both
a male discourse referent and a bike that he has. But for the indefinite

5.2.2 A Broader Notion of Contextual Felicity 145

version, only the requirement of the male discourse referent is present:

` hisindef bike arrive

= a (bike that λm.hen.have m n)arrive

= existsm.(bike m) and (hen.have m n) and (arrive m)

≡ λc.λx|c|,y.(bike y) and (male x, y(promale c′)) and

(have y x, y(promale c′)) and (arrive y) |
λx|c|,y.exists!n:ω|c′| .c

′ k-cons (male n) : k

In this case, the context passed to λm.hen.have m n is

c′ ≡ λx|c|,y.(c x) and (bike y) : c|c|+1 ,

which contains the information that the newly-introduced discourse refer-
ent is a bike.

5.2.2 A Broader Notion of Contextual Felicity

With two possible readings for every possessive determiner, DyCG as a
theory now embodies the hypothesis that possessives are always ambigu-
ous between definite and indefinite. In this section, I propose a generalized
notion of contextual felicity to explain how speakers perform the disam-
biguation in the course of interpreting discourse. This new notion of felicity
is generalized in the sense that presupposition satisfaction is a special case
of it.

To motivate this notion of felicity, I briefly recall Grice’s (1975) cooperative
principle, especially as it pertains to his maxim of quality. Grice defines the
cooperative principle as follows:

We might then formulate a rough general principle which par-
ticipants will be expected (ceteris paribus) to observe, namely:
Make your conversational contribution such as is required, at
the stage at which it occurs, by the accepted purpose or direc-
tion of the talk exchange in which you are engaged.
(Grice, 1975, page 167 in Martinich 2001)

More relevant to the task of disambiguating the possessive determiners is
this passage about quality:

5.2.2 A Broader Notion of Contextual Felicity 146

Under the category of quality falls a supermaxim—“Try to make
your contribution one that is true”—and two more specific
maxims:

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

(Grice, 1975, page 168 in Martinich 2001)

Following Grice, what serves to disambiguate the definite and indefinite
readings of possessive determiners is the addressee’s assumption that the
speaker is cooperative and, therefore, observing the maxim of quality. And
so if the definite reading of the determiner would end up making the
context inconsistent (in the sense of entailing a contradiction), then the
indefinite reading is preferred. On the other hand, if the definite reading is
felicitous, then it is preferred on the grounds that otherwise the speaker
would have used the indefinite a because it clarifies that the speaker does
not intend for an antecedent to be retrievable. Similarly, I follow the
standard assumption in dynamic semantics since Kamp (1981) and Heim
(1982) that an indefinite introduces a discourse referent, and thus implicates
that the speaker did not intend for the addressee to retrieve an already
familiar one.

To make these ideas more concrete, I define the notions of consistency
and felicity as DyCG semantic terms.

Definition 5.5 (Contextual Consistency). A context c is consistent if and
only if it is consistent with the content λc:c.t | t, where t = t0 is as defined
above. The function consistent : c→ t, defined as

(5.28) consistent =def λc.(c k-cons λc.t | t) ≡ true ,

can be used as a test for consistency.

5.2.2 A Broader Notion of Contextual Felicity 147

To see how the consistent function works, let c : c be a context. Then by
lemma 4.11 and definitions 4.16, 4.17, 4.18 and 4.19, we have

` consistent c

= (c k-cons λc.t | t) ≡ true

= (not (c k-entails (not λc.t | t))) ≡ true

= (not (c c-entails (cc (not λc.t | t) c))) ≡ true

= (not (c c-entails λx|c| .(c x) and (not true) and true)) ≡ true

= (not forallx|c| .(c x) Entails ((c x) and false)) ≡ true

= (not forallx|c| .(c x) Entails false) ≡ true

And so the test for the consistency of a context c is a test whether c applied
to every vector of the required arity entails the necessarily false proposition
at every world.

Felicity is in turn based on contextual consistency.

Definition 5.6 (Felicity). A content k is felicitous in a context c if and only
if the context obtained by promoting k to an update and then applying it
to c is consistent in the sense defined in 5.5. This property is encoded in
the function felicitous-in : k→ c→ t, written infix:

(5.29) felicitous-in =def λkc.consistent (cc k c)

The notions of consistency and felicity are not encoded in the grammar
because they are part of the pragmatic processes used by speakers in the
course of interpreting discourse, and not strictly part of the semantics of
utterances themselves. But the definition of felicity in (5.29) is intended
to reflect the fact that speakers consider the effects of content that is
proffered for acceptance or rejection (Roberts, 1996) before integrating the
new content into the discourse context. It is imaginable that speakers
apply something like the felicitous-in function in the course of the invoking
Continue rule (figure 4.1), before drawing the conclusion. As I discuss
further in chapter 6, the definitions in equations (5.28) and (5.29) are general
enough to also describe cases when conventional implicatures with variable
commitment status are used infelicitously.

By way of illustrating how this process works, consider the two variant
analyses corresponding to (5.25) in (5.26) and (5.27). In a situation in which
(5.25) is uttered ‘out of the blue,’ with little or no prior context shared

5.2.2 A Broader Notion of Contextual Felicity 148

by the interlocutors, the felicity test would fail for the definite reading
(5.26), since the empty context does not provide enough information for an
antecedent for his bike to be retrieved:

` ¬ ((hisdef bike arrive) felicitous-in t)

One reason is that a portion of the implicature part of the meaning of (5.25),
namely the proposition

(5.30) exists!m:ω|c| .c k-entails ((bike m) and hen.have m n) ,

where c is the input context, is not consistent with the empty context t. As
a result, the indefinite reading (5.26) would be preferred in this case. (A
second reason that the definite reading is infelicitous in an ‘out-of-the-blue’
context is that there is no antecedent for the pronoun he.)

But consider (5.25) interpreted in a discourse context containing the
utterance

(5.31) A cyclist owns a bike.

Note that the DyCG semantics of (5.31) is as follows:

` (a cyclist)n.(a bike)m.own m n

= existsn.(cyclist n) and existsm.(bike m) and (own m n)

≡ λc.λx|c|,y,z.(cyclist y) and (bike z) and (own z y) | t|c++| : k

Therefore, the definite reading (5.26) is felicitous in the context updated by
(5.31), since

` (hisdef bike arrive) felicitous-in (cc ((a cyclist)n.(a bike)m.own m n) t) .

The reason the definite reading is felicitous in this case is that both the
implicature propositions are consistent with the context that results from
applying the dynamic meaning of (5.31) to the empty context, and it is
therefore preferred to the indefinite reading. The proposition in (5.30)
then becomes consistent due to the presence of a suitable bike discourse
referent and the entailment between owning and having. As for the other
implicature proposition

exists!n:ω|c′| .c
′ k-cons (male n) ,

5.2.3 The Iterative Adverb ‘Too’ 149

where

c′ ≡ λy,z.(cyclist y) and (bike z) and (own z y) ,

it is also consistent with the relevant context, since being a cyclist does not
entail being nonmale.

5.2.3 The Iterative Adverb Too

The DyCG approach to anaphora is general enough to extend to instances
of anaphora that do not involve discourse referents in the same way that
proper names, pronouns, and other definites do. As discussed in §2.2.1.2,
example (2.35) (when it bears focus on John) bears the retrievability impli-
cation the context entails that a salient individual other than John went to
Harvard.

(2.35) John went to Harvard, too.
(Heim, 1990b, example 14)

In this section, I discuss how many of the same mechanisms used to
model definite anaphora in DyCG can be harnessed to model the dynamic
meaning of too, including its attendant retrievability implication.

First note that the following discourse is infelicitous when John bears
the focus:

(5.32) John went to Harvard. # John went to Harvard, too.

We clearly need a way to determine when two discourse referents are the
same as a preliminary to giving an analysis of examples like (2.35) and
(5.32). We start by giving a way to compare intensions for equality.

Definition 5.7 (Intensional Equality). The infix intensional equality func-
tion

equalsA : A→ A→ p ,

for each meaning type A, is axiomatized by

` ∀a:A∀b:A∀w:w.(a equals b) @ w⇔ a = b .

5.2.3 The Iterative Adverb ‘Too’ 150

As usual, the type subscript is usually dropped when it is irrelevant. Based
on intensional equality, we can then define the following function to handle
the duty of comparing discourse referents.

Definition 5.8 (Contextually Entailed Equality). The contextually entailed
equality function c-equals : A → A → p, written infix, compares two
inhabitants of a meaning type A for equality as follows:

(5.33) c-equals =def λa:Aλb:Aλc:c.forallx|c| .(c x) Entails (a equals b)

Here, Entails is as defined in 4.16.

With a way to compare discourse referents, we can give a definition of
the dynamic meaning of too, with the type

too : d1 → d1 ,

defined as

too =def λDnc.(D n c)s | λx|c| .((D n c)i x) and(5.34)

existsm:ω|c| .(c k-entails (D m)) and not (m c-equals n) .

The only contribution of too as defined in (5.34) is to add the implicature
proposition that there must exist a discourse referent besides the one to
which the property D applies that also has the property in question. This
dynamic treatment of too, inspired by Heim 1990b, is similar to the one
proposed by Beaver (2001, definition D17). Note that this definition is
somewhat simplified in that focus is not taken into account.

Giving a lexicon for modeling (2.35) and (5.32) is straightforward. The
name John is modeled similarly to Lance in (5.11), as

(5.35) john =def the named-john ,

where named-john =def (dyn1 named-john) and named-john : e → p is
the static property of being named John. And for simplicity, the property
go-harvard =def (dyn1 go-harvard) is the dynamic property of going to

5.2.3 The Iterative Adverb ‘Too’ 151

Harvard, where go-harvard : e→ p is its static counterpart.

` λ f .(f John) ; (NP(S)(S ; john

` λs.s ·went · to ·Harvard ; NP(S ; go-harvard

` λ f s.(f s) · too ; (NP(S)((NP(S) ; too

This lexicon is presented in short form, with the pheno and semantic types
elided.

The concrete syntactic proof starts by combining too with the verb
phrase.
(5.36)
` λ f s.(f s) · too : (s→ s)→ s→ s ` λs.s ·went · to ·Harvard : s→ s

` λs.s ·went · to ·Harvard · too : s→ s

Next, John takes the new verb phrase with too appended as its argument.
(5.37)

` λ f .(f John) : (s→ s)→ s

(5.36)
...

` λs.s ·went · to ·Harvard · too : s→ s
` John ·went · to ·Harvard · too : s

So the lexical entry for too given above yields the correct surface string for
(2.35).

Turning to the combined abstract syntax and semantics, we begin in the
same way, by combining too with the verb phrase.

(5.38)
` (NP(S)((NP(S) ; too ` NP(S ; go-harvard

` NP(S ; (too go-harvard)

Then as above, John takes the modified verb phrase as argument.

(5.39) ` (NP(S)(S ; john

(5.38)
...

` NP(S ; (too go-harvard)

S ; (john (too go-harvard))

5.2.3 The Iterative Adverb ‘Too’ 152

Reducing the semantic term, we have the following:

` john (too go-harvard)

= the named-john (too go-harvard)

≡ λc.λx|c| .(go-harvard x(thenamed-john c)) |
λx|c| .(exists!n:ω|c|c k-entails (named-john n)) and

existsm:ω|c| .(c k-entails (go-harvard m)) and

not (m c-equals (the named-john c)) : k

And so the sense proposition of the dynamic meaning of (2.35) is simply
that John went to Harvard, but the implicature proposition contains the
propositions that there is someone named John in the context, and that
someone other than John is contextually entailed to have gone to Harvard.
Also, note that we have

` ¬ (john (too go-harvard) felicitous-in (cc john go-harvard t)) ,

since the implicature proposition that some other discourse referent has
the property of going to Harvard is in conflict with a discourse context
containing only the information that John went to Harvard. Therefore, this
DyCG definition of too captures the infelicity in (5.32) as well.

Finally, this DyCG definition of the meaning of too captures Heim’s
(1990b) reason for presenting (2.35), namely that it is not enough simply
for there to be a general entailment that someone not contextually entailed
to be John went to Harvard. Presumably, this requirement would never
fail to be satisfied, as Kripke (2009) notes for the similar example (2.34a).
The implicature associated with too is stronger, that someone that has been
previously mentioned in the current discourse context bears the relevant
entailment. The definition of too in (5.34) captures this requirement,
because

` ¬ (john (too go-harvard) felicitous-in t) .

The reason (2.35) is not felicitous in the empty context t is that part of its
implicature context, namely the proposition

existsm:ω|c| .(c k-entails (go-harvard m)) and

not (m c-equals (the named-john c)) ,

5.3 Generalized Familiarity and Accessibility 153

is in conflict with the empty context, since there does not exist a discourse
referent that is contextually entailed to go to Harvard.

On the other hand, the DyCG semantics

` (kim go-harvard) and (john (too go-harvard)) : k ,

which would model an utterance like

(5.40) Kim went to Harvard, and John went to Harvard too ,

is felicitous in contexts in which antecedents for both Kim and John are
retrievable. The reason is that there is a discourse referent in the context
passed to too, besides the one corresponding to John, that is contextually
entailed to have gone to Harvard.

5.3 Generalized Familiarity and Accessibility

The relation of accessibility is one of the central features of the early dynamic
theories of Discourse Representation Theory (DRT, Kamp, 1981; Kamp and
Reyle, 1993), File Change Semantics (FCS, Heim, 1982, 1992), Dynamic
Predicate Logic (DPL, Groenendijk and Stokhof, 1990) and Dynamic Mon-
tague Grammar (DMG, Groenendijk and Stokhof, 1991). In these theories,
a potential antecedent is accessible from a definite such as a pronoun only
if the antecedent does not occur within the scope of a semantic operator
that does not also extend to the definite itself. The following examples,
drawn from Martin 2012, examples A–C, illustrate accessibility.

(5.41) If Pedro owns
{

a
every

}
donkeyi he beats iti.

(Kamp 1981, examples 1, 17)

(5.42) Everybody found a cati and kept iti. # Iti ran away.
(Heim 1983a, example 5)

(5.43)
{

A
No

}
donkeyi brays. Itsi name is ‘Chiquita.’

In (5.41)–(5.43), the variants in which a potential antecedent falls within the
scope of a quantifier demonstrate limited accessibility for anaphoric linking.
Constructions involving negation and conditionals also limit accessibility,
as (5.44) and (5.45) show.

5.3 Generalized Familiarity and Accessibility 154

(5.44) A farmer doesn’t own any donkeyi. # Iti’s brown.

(5.45) If a farmeri owns a donkeyj, hei beats itj. # The farmeri is from
Ohio.

In (5.44), the donkey discourse referent introduced inside the negation
cannot serve as the antecedent to the pronoun in the second utterance.
Similarly, in (5.45), the intended antecedent to The farmeri is within the
antecedent of the conditional in the first utterance, and is inaccessible as a
result.

This notion of accessibility is pervasive in the dynamic semantics tradi-
tion for two main reasons. The first is that essentially all dynamic theories
can be characterized as descendants of one of the three main branches.
For DRT, the list includes the work of Muskens (1994, 1996), Bos (2003,
2005), Blackburn and Bos (2005, 1999), van Eijck and Unger (2010), and
Venhuizen, Bos, and Brouwer (2013); for FCS, Beaver (2001), Martin and
Pollard (2012a,b), Martin (2012), and this thesis; for DPL/DMG, Chierchia
(1992, 1995), de Groote (2006), Nouwen (2007), AnderBois, Brasoveanu, and
Henderson (2010), de Groote and Lebedeva (2010), and Lebedeva (2012).
The second reason is that the idea that semantic operators limit the acces-
sibility of potential antecedents is built into all three of the main branch
theories (and their descendants) at a deep level. In the case of FCS and
DPL/DMG, accessibility is encoded into the meaning of certain determiners
and the If . . . , then . . . construction. In the case of DRT, accessibility runs
even deeper, as Chierchia and Rooth (1984) point out: DRT accessibility is a
necessary consequence of the models required for interpreting its discourse
representation structures.

Unfortunately, the notion of accessibility that is so tightly coupled
with all dynamic theories is too strict, causing the model of anaphora
presented by these theories to undergenerate. Perhaps the most famous
counterexample to classic accessibility is the ‘bathroom’ example

(5.46) Either this house doesn’t have a bathroomi, or iti’s in a funny
place.
(Roberts 1989, example 18, attributed to Barbara Partee)

Since the discourse referent introduced by a bathroomi in (5.46) is within the
scope of a negation, accessibility of dynamic theories treat it on a par with
(5.44), predicting that it is inaccessible outside the scope of the enclosing
negation. However, on the intended interpretation, clearly the pronoun

5.3 Generalized Familiarity and Accessibility 155

iti means the bathroom mentioned in the Either . . . clause. As another
counterexample, consider the following simple discourse.

(5.47) Every cyclist owns a bike. One cyclist rides the bike he owns every
day.

Following dynamic accessibility, the discourse referent a bike in (5.47), which
could potentially antecede the bike he owns, is trapped within the scope of
Every. But here the definite the bike he owns is completely felicitous; it seems
to have been inferred, in some sense, by the information in the preceding
utterance.

Several proposed fixes for the undergeneration caused by the overly
restrictive nature of the accessibility relation in dynamic theories. Groe-
nendijk and Stokhof (1991) give variants of the dynamic quantifiers and
connectives in DMG which allow the anaphoric link evidenced in (5.46)
by allowing discourse referents to escape the scope of their enclosing op-
erators. However, these variant DPL/DMG quantifiers and connectives
are too permissive, failing to rule out the inaccessibility demonstrated in
(5.41)–(5.45).

The E-Type pronoun approach, prominently exemplified in the work
of Evans (1977, 1980), Cooper (1979), Heim (1990a), Neale (1990), and
Chierchia (1995), treats pronouns as disguised definite descriptions in
Russell’s (1905) sense. This approach suffers from a problem similar to the
one that Groenendijk and Stokhof’s scope-extension proposal suffers from.
E-Type theories do not countenance a notion of anaphoric accessibility,
since pronouns are modeled as borrowing their descriptive content from a
previously occurring noun phrase, with no constraints on what counts as
‘previously occurring.’ Thus, in the general case, E-Type theories share an
inability to rule out infelicitous examples like (5.44), just like Groenendijk
and Stokhof’s proposal for DMG. A second deficiency of E-Type theories is
their requirement that the antecedent be semantically unique, in the sense of
being the only entity in the world bearing the relevant descriptive content,
rather than informationally unique, in the sense of being the only discourse
referent in the current context of interpretation that is entailed to bear
the description in question. For lengthy and convincing discussion of the
deficiencies of E-Type theories, see Roberts 2005.

5.3.1 Implementing Weak Familiarity 156

5.3.1 Implementing Weak Familiarity

Here I explore an alternative proposed by Roberts (2003, 2005) called weak
familiarity. The approach Roberts spells out is already foreshadowed by
Groenendijk and Stokhof (1991), who do not develop it further.

[. . .] [(5.48)] and [(5.49)] [. . .] seem to express the same thing:

(5.48) It is not the case that John doesn’t own a car. It is red
and parked in front of the house.

(5.49) John owns a car. It is red and parked in front of the
house.

These examples suggest that at least in cases such as these, a
sentence and its double negation are fully equivalent, i.e., that
they do not just have the same truth conditions, but also the
same dynamic properties. [. . .]

It may be worthwhile, though, to briefly point out another line
of reasoning, which does not strike us as altogether untenable.
It seems possible to argue that in [(5.48)] the pronoun it is not
directly anaphorically related to the indefinite term a car in the
preceding sentence, but only indirectly, mediated through a
unique object, the existence of which can be inferred from the
previous discourse and the context.
(Groenendijk and Stokhof, 1991, §7; examples (5.48) and (5.49)
are respectively numbered 42 and 43.)

Roberts’s approach generalizes the Extended Novelty-Familiarity-Condition of
Heim (1982) discussed in §2.2.1.1 in the following way. The familiarity part
of Heim’s condition is loosened so that rather than requiring the explicit
prior introduction of a discourse referent with the relevant descriptive
content, only the contextual entailment of a referent matching the relevant
content is needed. The benefit of the weak familiarity approach is that
examples like (5.46) and (5.47), in which an antecedent is merely entailed,
can be accounted for, while true instances of inaccessible antecedents like
those in (5.41)–(5.45) are still ruled out.

In Martin 2012 I pursued a strategy for implementing weak familiarity
in which pronouns and other definites were allowed to take as their an-
tecedents discourse referents that were not explicitly present but merely

5.3.1 Implementing Weak Familiarity 157

entailed. Unfortunately, this strategy is not without considerable problems.
These problems are centered around the fact that, while this approach
correctly allows anaphoric links that are ruled out in other dynamic theo-
ries, anaphors and their antecedents are still in some sense disconnected.
This occurs because the weakly familiar versions of definites are essentially
indefinites that introduce discourse referents with impoverished descriptive
content associated with them.

By way of illustrating this problem, note that the truth conditions for
(5.46) can be paraphrased as Either there’s no bathroom in this house, or there is
a bathroom in this house and that bathroom is in a funny place. But by defining
a weakly familiar version of it as an entailment-licensed indefinite, the
descriptive content that the antecedent is entailed to have, namely the
property of being a bathroom, is mostly lost: we are left only with the
relatively poor descriptive content associated with the pronoun it.

The upshot of this loss of descriptive content is that the Martin 2012
approach predicts different behavior for the following definites:

(5.50) a. Either this house doesn’t have a bathroomi, or the bathroomi’s
in a funny place and I really wonder where iti could be.

b. Either this house doesn’t have a bathroomi, or iti’s in a funny
place and I really wonder where the bathroomi could be.

The only difference between (5.50a) and (5.50b) is the order in which the
definites the bathroomi and iti occur. For (5.50a), the Martin 2012 imple-
mentation of weak familiarity essentially does the right thing: the weakly
familiar the bathroomi introduces a new bathroom discourse referent that
in turn serves as the antecedent to the (now strongly familiar) pronoun iti.
But for (5.50b), both the pronoun iti and the later definite the bathroomi in-
troduce separate discourse referents, and the semantics does not link these
two discourse referents in any way. The reason is that the weakly familiar
iti in (5.50b) introduces a nonhuman discourse referent, but this discourse
referent’s descriptive content is not suitable to serve as the antecedent to a
strongly familiar version of the bathroomi. As a result, the weakly familiar
the bathroomi is required, and because of the entailment of the existence of a
bathroom, it introduces its own bathroom discourse referent. The resulting
context contains separate discourse referents for a nonhuman and for a
bathroom, but this is clearly not the intended reading of (5.50b).

Here, rather than trying to encode entailment-based reasoning in the
DyCG semantics as I did in Martin 2012, I instead adopt the tack of

5.3.1 Implementing Weak Familiarity 158

assuming a pragmatic process that introduces discourse referents into the
context based on other entailments that are present, in cases where no
corresponding overt discourse referent is available. This process constitutes
a second way in which the arity of a context can be extended besides
the use of an indefinite, and I assume that it exists on the same plane as
the process I posited that handles the encoding of maximal salience for
the antecedents of pronouns. This pragmatic mechanism functions as an
auxiliary to the process of discourse interpretation, with explicitly stated
content giving rise to other potential antecedents for anaphora during the
course of interpreting the explicit content.

To see how this pragmatic implementation of weak familiarity works,
consider a simplified variant of the ‘bathroom’ example (5.46):

(5.51) The house has no bathroomi, or iti’s in a funny place.

To start with, we need to define dynamic meanings for house and bathroom.
These common nouns are straightforwardly dynamic properties, defined
as follows.

house =def (dyn1 house)

bathroom =def (dyn1 bathroom)

where house : p1 and bathroom : p1 are respectively the properties of being
a house and being a bathroom. Next, for simplicity, we define the property
of being in a funny place as

in-funny-place =def (dyn1 in-funny-place) ,

where in-funny-place : p1 is a static simplification of the property in question.
And lastly, the dynamic generalized determiner

no : d1 → d1 → k0

is defined as

no =def λDE.not (a D E) .(5.52)

5.3.1 Implementing Weak Familiarity 159

Assuming that the and have are as defined in (4.27) and (5.18), an
analysis of the first disjunct in (5.51) is available.

` (the house)n.(no bathroom)m.have m n

≡ λc.λx|c| .(((no bathroom)m.have m (the house c)) c)s |
λx|c| .(((house that λn.(no bathroom)m.have m n) (the house c)) c)i

and exists!n:ω|c| .c k-entails (house n)

≡ λc.λx|c| .not existsy.(bathroom y) and (have y x(thehouse c)) |
λx|c| .exists!n:ω|c| .c k-entails (house n) : k

The dynamic meaning of the first disjunct is straightforward, stating that
there is no bathroom that the unique house in the context has. We can also
derive a dynamic meaning for the second utterance, as follows:

` it in-funny-place

≡ λc.λx|c| .(nonhuman x(prononhuman c)) and (in-funny-place x(prononhuman c)) |
λx|c| .exists!n:ω|c| .c k-cons (nonhuman n) : k

Recalling that the dynamic disjunction or : k → k → k0 is given the
DeMorgan-inspired definition

(4.21) or =def λhk.not ((not h) and (not k)) ,

the dynamic meaning of (5.51) is modeled as

` ((the house)n.(no bathroom)m.have m n)or

(it in-funny-place)

= not ((not (the house)n.(no bathroom)m.have m n)and

not (it in-funny-place)) : k .

Unpacking this semantic term shows that the use of it is licensed because
its implicature is consistent with entailments present in the context of
interpretation. Note that, by the definition of or in (4.21), the first disjunct
of the meaning of (5.51) is negated. As a result, the context passed to the

5.3.1 Implementing Weak Familiarity 160

(negated) second disjunct is equivalent to

λx|c| .(c x) and (not not existsy.(bathroom y) and (have y x(thehouse c))) and

exists!n:ω|c| .c k-entails (house n) : c

where c is the original input context to (5.51). After eliminating the double
negation, this context is equivalent to

λx|c| .(c x) and (existsy(bathroom y) and (have y x(thehouse c))) and(5.53)

exists!n:ω|c| .c k-entails (house n) : c .

And so the implicature associated with (it in-funny-place), namely that
its input context is consistent with the existence of a discourse referent that
is nonhuman, is felicitous in this context.

In cases of weak familiarity such as this one, Roberts (2003, 2005) refers
to the antecedent a bathroomi as the licensing noun phrase. I make the
assumption that the pragmatic process of weak familiarity extends the
context in (5.53), in which the licensing noun phrase has given rise to an
existential entailment of the bathroom’s existence, to the context

λx|c|,y.(c x) and (existsz(bathroom z) and (have z x(thehouse c))) and(5.54)

(bathroom y) and (have y x(thehouse c)) and

exists!n:ω|c| .c k-entails (house n) : c|c|+1 .

Note that, in this context, a new discourse referent y is made available that
has the properties of the discourse referent that is entailed to exist in (5.53).
(Note that the bound variable has been renamed to avoid confusion.) More
generally, for P a property and q a proposition, this pragmatic process
converts a context of the form

λx.q : cn

such that λx.q c-entails λx.(exists P), to a context of the form

λx,y.q and (P y) : cn+1 ,

making explicitly accessible a discourse referent y that is merely entailed
to exist.

5.3.1 Implementing Weak Familiarity 161

With the context so extended to (5.54), the semantics of (5.51) is

` ((the house)n.(no bathroom)m.have m n)or

(it in-funny-place)

≡ λc.λx|c|,y.(existsz(bathroom z) and (have z x(thehouse c))) and

(bathroom y) and (have y x(thehouse c)) and

(nonhuman x, y(prononhuman c′)) and (in-funny-place x, y(prononhuman c′)) |
λx|c|,y.(exists!n:ω|c|c k-entails (house n)) and

exists!n:ω|c′| .c
′ k-cons (nonhuman n) : k1 .

Here c′ is the context (5.54) that is extended by weak familiarity before
being passed to the second disjunct. Thus the discourse referent introduced
via weak familiarity on the basis of the existential entailment triggered
by the licensing noun phrase a bathroomi is accessible to, and compatible
with, the pronoun iti in the second disjunct, as desired. In a context c
containing no other maximally salient discourse referent compatible with
being nonhuman, the weakly familiar bathroom discourse referent y is
selected by (pro nonhuman c′), yielding

λx|c|,y.(existsz(bathroom z) and (have z x(thehouse c))) and

(bathroom y) and (have y x(thehouse c)) and

(nonhuman y) and (in-funny-place y) : c1

as its sense. Clearly this corresponds to the intuitively correct truth condi-
tions associated with the sense of (5.51).

This example shows that weak familiarity succeeds where Heim’s (1982)
stronger version of familiarity fails. However, we have to be careful to
assume that weak familiarity also interacts with the pragmatic process for
limiting the discourse referents under consideration for the antecedents of
anaphora to only the most salient one(s), following Roberts (2005). Without
additionally specifying that the salience ranking mechanism interacts with
the process of introducing of weakly familiar, entailed discourse referents,
DyCG would analyze (5.51) to be infelicitous. This is because it’s associated
implicature

exists!n:ω|c| .c k-cons (nonhuman n)

5.3.1 Implementing Weak Familiarity 162

would be inconsistent with the context if the house discourse referent was
taken as most salient. The discourse referent for the house in (5.51) is the
only overt, strongly familiar discourse referent whose descriptive content
is consistent with being nonhuman, and thus the intended reading of (5.51)
would fail if the salience filter did not also make the entailed discourse
referent for the bathroom the most salient one.

For an example of weak familiarity across a discourse of multiple
utterances, consider the following simplified variant of (5.47).

(5.55) Every cyclist owns a bike. A cyclist rides the bike that he owns.

Since dynamic meanings corresponding to all the words in (5.55) have been
defined, a DyCG semantic term modeling the discourse in (5.55) can be
given:

` (cc (a cyclist)n.(the (bike that λm.hen.own m n))m.ride m n) ◦
(cc (every cyclist)n.(a bike)m.own m n) : u

To show the entailments it gives rise to, we start by reducing the first
utterance of the discourse in (5.55).

` (cc (every cyclist)n.(a bike)m.own m n)

= (cc foralln.(cyclist n) implies existsm.(bike m) and (own m n))

≡ λcx|c| .(c x) and not existsy.(cyclist y) and not existsz.(bike z) and (own z y) : u

Importantly, the content representing the first utterance yields a context
that, under any suitable input vector, entails that if some entity is a cyclist
there is a bike that cyclist owns.

The second utterance then picks up the discourse referent that is made
weakly familiar by the first utterance, as demonstrated below.

` (a cyclist)n.(the (bike that λm.hen.own m n))m.ride m n

≡ λc.λx|c|,y.(cyclist y) and (male x, y(promale c′)) and

(ride x, y(the (bike that λm.hen.own m n) c′) y) |
λx|c|,y.(exists!n:ω|c′|c

′ k-cons (male n)) and

exists!m:ω|c′| .c
′ k-entails ((bike m) and (own m (pro male c′))) : k1

5.3.1 Implementing Weak Familiarity 163

This term is passed the context updated by the first utterance, and so the
intermediate context updated by a cyclist is

c′ ≡ λx|c|,y.(c x) and

(not existsz.(cyclist z) and not existsw.(bike w) and (own w z)) and

(cyclist y) : c|c|+1 ,

where c is the original context passed to the first utterance.
To see that the existential implicature associated with the first utterance

of (5.55) licenses the felicitous use of the bike he owns in this case, consider
the dynamic meaning of (5.55) applied to the empty context t.

` (((cc (a cyclist)n.(the (bike that λm.hen.own m n))m.ride m n) ◦
(cc (every cyclist)n.(a bike)m.own m n)) t)

≡ λx,y.(not existsz.(cyclist z) and

not existsw.(bike w) and (own w z)) and

(cyclist x) and (bike y) and (male x) and (own y x) and (ride y x) and

(exists!n:ω2 c′ k-cons (male n)) and

exists!m:ω2 .c′ k-entails ((bike m) and own m (pro male c′)) : c2

In this case, the intermediate context

c′ ≡ λy.(not existsz.(cyclist z) and not existsw.(bike w) and (own w z)) and

(cyclist y) : c1 .

is exactly the same as the one above, except that it has been instantiated by
the application to t.

With the dynamic meaning of (5.55) expanded out in this way, it is
not hard to see why the DyCG analysis of (5.55) is felicitous. The weakly
familiar model of the bike that he owns is felicitous in a context containing the
first utterance of (5.55) because its associated implicature, namely that there
is some bike discourse referent that is owned by the cyclist, is contextually
entailed. Note, however, that the same would not be true without weak
familiarity, because without this mechanism, the input context for the

would not contain a unique bike discourse referent—one is only weakly
familiar, entailed to exist by the use of cyclist in the context updated by
the first utterance.

5.3.1 Implementing Weak Familiarity 164

As implemented here, weak familiarity allows a variant of (5.47) in
which the bike he owns is replaced by the pronoun it, which is much less
rich in terms of its descriptive content, requiring only that its antecedent is
not entailed to lack the property of nonhumanness.

(5.47′) Every cyclist owns a bike. ? One cyclist rides it every day.

Examples like (5.47′) are related to the ‘marbles’ examples in (5.56), and to
example (5.57).

(5.56) a. I dropped ten marbles and found all of them, except for onei.
Iti is probably under the sofa.

b. ? I dropped ten marbles and found only nine of them. It is
probably under the sofa.

(Heim, 1982, example 21, attributed to Barbara Partee)

(5.57) Not every donkey brays. ? It’s brown.
(Carl Pollard, personal communication)

I adopt the strategy of claiming that what makes cases like (5.47′)–(5.57),
different from the ‘bathroom’ example in (5.46) is the question of maximal
salience, one of Roberts’s (2005) requirements for (weak) familiarity of
pronouns. For (5.56), the variant in (5.56a) is judged to be preferable to the
one in (5.56b) in part because the antecedent to the pronoun It has been
made salient in (5.56a). As for the ability of it in the ‘bathroom’ example
(5.46), above, I argue that the task of modeling how the pronoun finds
its antecedent is properly part of the pragmatics of salience, and outside
the dynamic semantic theory. And so, as it stands, the weak familiarity
extensions to DyCG’s account of anaphora would allow all of (5.47′)–(5.57)
using it.

Importantly, though, discourse referents that are legitimately inaccessi-
ble are still treated as such. DyCG predicts infelicity for all of the following
examples, which are variants of (5.41), (5.43), and (5.44), respectively.

(5.58) # If Lance owns every bikei, he rides iti.

(5.59) # No cyclisti arrives. Heri name is ‘Kim.’

(5.60) # A cyclist does not own a bikei. Iti’s red.

Starting with (5.58), its infelicity can be tested as follows:

` ¬ (((lancen.(every bike)m.own m n) implies hen.itm.ride m n)

felicitous-in t)

5.3.1 Implementing Weak Familiarity 165

In this case, the infelicity arises because

` lancen.(every bike)m.own m n

≡ λc.λx|c| .not existsy.(bike y) and not (own y x(thenamed-lance c)) |
λx|c| .exists!n:ω|c| .c k-entails (named-lance n) : k

does not give rise to a nonhuman discourse referent. And weak familiarity
cannot come to the rescue, since there is no nonhuman entity that is even
entailed to exist.

For (5.59), we have the following, since (no cyclist arrive) clearly
does not introduce any discourse referents, entailed or overt:

` ¬ ((she named-kim) felicitous-in (cc (no cyclist arrive) t))

Here named-kim =def (dyn1 named-kim). And similarly, for the intended
reading of (5.60), in which the negation outscopes the indefinite a bike, both
the strongly familiar and weakly familiar versions of it are infelicitous (here,
red =def (dyn1 red)).

` ¬ ((it red) felicitous-in (cc (a cyclist)n.not (a bike)m.own m n) t)

The infelicity in this case occurs for similar reasons as for (5.58) and (5.59):
the negation limits the accessibility of the discourse referents introduced in
its scope, and

` cc ((a cyclist)n.not (a bike)m.own m n) t

≡ λy.(cyclist y) and not existsz.(bike z) and (own z y) : c1

does not introduce a discourse referent compatible with being nonhu-
man, nor does it entail the existence of any such entity. Of course, the
pronoun it could be felicitously used if the first utterance of (5.60) were
interpreted with the negation having narrowest scope. This reading would
be paraphrasable by There is a bike that a cyclist does not own, and it is red.

So implementing weak familiarity in DyCG has the effect of repairing
the accessibility relation that is common to all dynamic theories so that it
no longer undergenerates, at the price of leaving some examples, such as
(5.56), to be ruled in or out based on the pragmatic process of determining
maximal salience. I hypothesize that the pragmatic processes governing

5.4.1 Strong and Weak Readings of Determiners 166

salience and weak familiarity work in concert. Another positive aspect
of this approach is that the remaining cases of true inaccessibility are
maintained, as desired.

5.4 Determiner Strength

I turn now to a proposal for handling the problem of asymmetric quantifica-
tion discussed by Heim (1982), Partee (1984), Rooth (1987), and Kanazawa
(1994), among others. Before laying out the DyCG formalization in section
5.4.4, I first discuss the previous proposals due to Kanazawa (1994, in §5.4.2)
and Chierchia (1992, 1995, in §5.4.3). I argue below that while each of these
authors treat essential elements of the problem correctly, both accounts
are flawed in different ways. But first, in §5.4.1, I provide an overview of
certain aspects of the asymmetry problem.

5.4.1 Strong and Weak Readings of Determiners

Ignoring generic readings, (5.61b) has an interpretation that is lacking in
(5.61a).

(5.61) a. A cyclist that owns a bikei rides iti.

b. Every cyclist that owns a bikei rides iti.

The ambiguity for (5.61b) centers around the following question: does each
cyclist ride every bike she owns, or only some of them? Early dynamic
theories, such as Kamp’s (1981) DRT and Heim’s (1982) FCS, only predict
the strong reading for (5.61b), the one in which each cyclist rides every
bike she owns. The weak reading, in which cyclists may ride some of their
bikes but not all of them, is not available. This is due to the fact that both
DRT and FCS adopt the unselective binding approach due to Lewis (1975),
so that quantificational determiners like Every in (5.61b) apply the same
quantificational force to all of the free variables in their scope.

This problem is sometimes called the asymmetric quantification problem,
because the weak reading seems to require that the discourse referent
introduced by the head noun cyclist in the (5.61) examples should be
treated differently from the one introduced by a bike. For approaches
based on unselective binding, the strong reading is forced because this
asymmetry is not respected: unselective binding amounts to quantification
over pairs, and so (5.61b) is predicted to be true if and only if, for every

5.4.1 Strong and Weak Readings of Determiners 167

pair 〈x, y〉 where x is a cyclist and y a bike that x owns, x rides y. When the
determiner in question is an indefinite (a, some, one) or a negated indefinite
(no), the pair-quantification reading coincides with the weak reading. But
quantification over pairs is insufficiently granular for every, and does not
work at all for the determiners most, at least two, etc.

We might choose to overlook the gaps in empirical coverage associated
with unselective binding theories. However, sometimes the weak reading
is preferred or the only one available, even for every:

(5.62) Every man that had a quarteri put iti in the parking meter.
(Schubert and Pelletier, 1989)

(5.63) Most cyclists that own a bikei ride iti.

In (5.62), the strong reading is not available in the usual case because
interlocutors generally know that paying for parking does not require each
man to empty his pockets into the meter. The usual story, due originally to
Rooth (1987, page 254), says about (5.63) that it is false if there are exactly
100 cyclists, 99 of them have only one bike but do not ride it, while the other
has 1,000 bikes and rides them all. That is, most cyclists do not ride any of
their bikes; it does not matter that out of the 1,099 pairs of a cyclist with
a bike she owns, 1,000 involve bike riding. However, unselective binding,
which reduces to pair quantification for donkey sentences, predicts that
(5.63) is true in this situation.

Explaining this asymmetry is known as the proportion or cardinality
problem, or alternatively, the problem of farmer/donkey asymmetry. Two
notions that bear on the proportion problem are what I will call the condi-
tions of distributivity and uniqueness. Distributivity arises in contexts where
the asymmetry described above is not present. For example, (5.61b) is
considered distributive in any context in which cyclists treat all of their
bikes the same way. The strong and weak readings both coincide with intu-
itively correct truth conditions when distributivity is present, but otherwise
only the weak reading is consistent with intuitions, as (5.62) demonstrates.
The condition of uniqueness can be seen as a special case of distributivity,
because if every cyclist owns only a single bike, then necessarily cyclists
must treat all of their bikes the same. However, uniqueness is relatively
rare, in fact, it does not apply for the default interpretations of any of (5.61)–
(5.63). The notions of distributivity and uniqueness are centrally relevant
to two prominent accounts of strong and weak readings of determiners, as
I discuss in §5.4.2 and §5.4.3.

5.4.2 Kanazawa’s Tonicity-Based Approach 168

5.4.2 Kanazawa’s Tonicity-Based Approach

For Kanazawa (1994), the interpretation of a donkey sentence is given by
either the weak or the strong reading, with the choice of determiner the
main factor that affects which readings are possible. More specifically,
the key factor is the tonicity of the determiner. Because it is so central to
Kanazawa’s account, I first recall the notion of tonicity.

Definition 5.9 (Tonicity). If 〈A,v〉 and 〈B,6〉 are two preordered sets, then
f : A → B is called monotonic (respectively, antitonic) if and only if for all
a, a′ ∈ A, if a v a′ then f (a) 6 f (a′) (resp. f (a′) 6 f (a)). The function f is
called tonic if it is either monotonic or antitonic, and atonic otherwise.

If f : A→ A→ B is a (curried) function, it is called monotonic (resp. an-
titonic) in its first (resp. second) argument iff, for each a ∈ A, the function
λx.(f x a) (resp. λx.(f a x)) is monotonic (resp. antitonic).

The pertinent case for determiners is the one in which B is the set of
static propositions, 6 is the entailment relation entails : p → p → t from
definition 3.7, A is the set of static properties, and

v : (e→ p)→ (e→ p)→ t

is defined as the relation between static properties

v =def λPQ∀x.(P x) 6 (Q x) .

In the linguistic semantics literature, a monotonic determiner is some-
times called upward monotonic or monotone increasing, while an antitonic
determiner is often referred to as downward monotonic or monotone decreasing.
The terms left and right are sometimes used to refer to the first and second
arguments of a two-argument function. For example, in the semantics
literature, a determiner that is monotonic in its second argument is often
called right monotone increasing.

I use the following shorthands to refer to the tonicity properties of
determiners:

↑↑ monotonic in both arguments (a, some, several, many, at least n),

↑↓ monotonic in the first argument and antitonic in the second (not every,
not all),

5.4.3 Chierchia’s Dynamic/E-Type Account 169

↓↑ antitonic in the first argument and monotonic in the second (every, all),

↓↓ antitonic in both arguments (no, few, at most n), and

6l↑ atonic in the first argument and monotonic in the second (most).

The last case (6l↑) can be demonstrated by the entailments present in

(5.64) a. Most donkeys bray.

b. Most donkeys bray and snort.

c. Most brown donkeys bray.

Here neither of (5.64a) or (5.64c) entails the other, and therefore most is
atonic in its first argument. However, (5.64b) entails (5.64a). This means
that most is monotonic in its second argument, since we have

` (bray that snort) v bray ,

where bray : e → p and snort : e → p are the properties of braying and
snorting, respectively.

Kanazawa correctly rejects the pair quantification reading for donkey
sentences associated with theories that employ a version of the unselective
binding approach. He also rejects the E-Type treatment of donkey ana-
phora advocated by Kadmon (1990) on the grounds that E-Type pronouns
require uniqueness, and so they fail to capture the intuitive truth conditions
associated with either the strong or weak readings of donkey sentences in
almost all situations.

In Kanazawa’s account, the interpretation of a donkey sentence is given
by either the strong reading or the weak one, with the tonicity of the chosen
determiner being the central deciding factor. Under this view, only the
weak reading is available for determiners that have the same tonicity in
both arguments (either ↑↑ or ↓↓). For determiners with mixed tonicity,
the strong reading is supposedly preferred for those that are ↓↑. This
preference for the strong reading extends to the case of ↑↓ determiners,
according to Kanazawa, but the preference is diminished relative to that
for the ↓↑ determiners. For 6l↑ determiners, both readings are available.

5.4.3 Chierchia’s Dynamic/E-Type Account

Chierchia (1992, 1995) proposes a scheme for modifying the dynamic
meanings of determiners that is inspired by the conservativity property

5.4.3 Chierchia’s Dynamic/E-Type Account 170

exhibited by static determiners (Barwise and Cooper, 1981; Keenan and
Stavi, 1986).

Definition 5.10 (Conservativity). A generalized determiner d : (e→ p)→
(e → p) → p is conservative if and only if, for all properties P and Q, we
have

` (d P Q) ≡ (d P (P that Q)) ,

where the property conjunction that is as defined in (3.67).

As an example of the conservativity property of static determiners, note
that we have

` (a donkey bray)

= existsx.(donkey x) and (bray x)

≡ existsx.(donkey x) and (donkey x) and (bray x)

≡ (a donkey (donkey that bray))

and

` (every donkey bray)

= forallx.(donkey x) implies (bray x)

≡ forallx.(donkey x) implies ((donkey x) and (bray x))

≡ (every donkey (donkey that bray)) ,

where donkey and bray are static properties, and a and every are as defined
in equations (3.35) and (3.49). The determiners a and every are therefore
conservative by definition 5.10.

The essence of the idea is to transform a dynamic determiner into one
that gives only the weak readings by forcing the restrictor property to be
‘copied’ into the scope. For example, Chierchia’s approach aims to force
the dynamic meaning of (5.61b) to be equivalent to the one for

(5.65) Every cyclist that owns a bikei is a cyclist that owns a bikei and
rides iti.

Thus according to Chierchia, the weak reading is the default reading for
every determiner.

A problem for Chierchia’s approach is that, if determiners are always
dynamically conservative, it is unclear what to say about how the strong

5.4.4 A Synthesized Dynamic Proposal 171

readings arise. To yield the strong readings, Chierchia (1995, page 117)
proposes to make pronouns ambiguous between “c-command” binding con-
ditioned by syntax, “dynamic” binding, and E-Type stand-ins for definite
descriptions. The E-Type alternative yields the strong reading for (5.61a)
and (5.61b) in cases where the uniqueness condition applies, because it
requires that the farmer in question owns only one donkey.

Noting the rareness of the uniqueness condition, Chierchia (1992, page
160) posits a fourth ambiguity for pronouns in which the contextually
available function corresponding to an E-Type donkey pronoun is actually
a choice function, and then stipulates that for (5.61b) to be true every
possible choice function must select a bike that the cyclist in question rides.

5.4.4 A Synthesized Dynamic Proposal

I agree with both Kanazawa (1994) and Chierchia (1992, 1995) that the
pair-quantification readings yielded by unselective binding approaches
are incorrect except in a very limited number of cases. And I also accept
Kanazawa’s arguments for ignoring the E-Type readings. I agree with him
that for most, both weak and strong readings are available. But I reject his
claim that the strong reading is preferred for every. I would argue that the
strong reading for every and most is favored in cases where there is good
reason to assume the distributivity condition is satisfied.

Consider (5.66) as an example.

(5.66) a. Everyone who had a soni was concerned about hisi grades.

b. Everyone who had a credit cardi used iti to pay for dinner.

For (5.66a), an interlocutor has no reason to think that someone with more
than one son would treat any of them differently, so the strong reading
arises, that is, that each person with sons is concerned about each son’s
grades. But the pragmatics of situations where (5.66b) might be uttered
are different: we know that, in general, dinners are purchased using a
single credit card transaction, and so we get the (merely) weak reading. As
further evidence that the effect is pragmatic rather than being tied to every’s
tonicity, it is not too difficult to imagine a scenario where a credit card
issuer offered a prize for the person who managed to make transactions
on the largest number of distinct credit cards during a given period. In
such a scenario, the usual assumptions about the lack of distributivity with

5.4.4.1 Weakening Dynamic Determiners 172

respect to diners and credit cards do not apply, and so, in this scenario, we
are left with the strong reading for (5.66b).

And so, I conclude, as do Chierchia (1995) and Roberts (2005), that
the only reading generated by the grammar should be the weak reading.
But unlike Chierchia, I maintain that apparent strong readings arise via
pragmatic inference based on whether the distributivity property is as-
sumed (either explicitly or implicitly). And while I generally agree with the
approach of harnessing a dynamicized conservativity to get weak readings,
I take issue with the four-way ambiguity for pronouns in Chierchia’s pro-
posal. Chierchia argues against a strong/weak ambiguity for determiners
on the basis of the fact that there seems to be no language that has separate
morphemes corresponding to the two readings. But as far as I can tell, this
argument applies equally well against his strategy of positing a four-way
ambiguity for pronouns. Chierchia claims that his theory contains no such
ambiguity, but Roberts rejoins convincingly that it does: for Chierchia,
binding using E-Type pronouns uses variables over entities, while other
kinds of binding involve variables over discourse referents.

The proposal for handling the asymmetry problem that I advocate
here adopts and rejects a piece of both of Chierchia’s and Kanazawa’s
stories. For Chierchia, I adopt dynamic conservativity but reject his four-
way ambiguity that marshals E-Type pronouns in order to force strong
readings. In this DyCG semantics, all pronouns are what Chierchia calls
the “dynamically bound” case. As for Kanazawa, I adopt the approach
of excluding E-Type donkey pronouns from the theory, but reject the idea
that a determiner’s monotonicity is what decides which of the weak or
strong readings applies. In view of these factors, I choose to implement a
weak-reading-only analysis of donkey sentences within DyCG, described
in detail below.

5.4.4.1 Weakening Dynamic Determiners

Although they involve cyclists and bikes rather than farmers and donkeys,
the weak reading is available for each of the following ‘donkey sentences.’

5.4.4.1 Weakening Dynamic Determiners 173

(5.67)

A/One/Some
Several
At least/most n
Many/Few
(Not) Every
(Not) All
No
Most

cyclist(s) that own(s) a bikei ride(s) iti.

Observing this, we need a general way to map each of the dynamic gener-
alized determiner definitions given so far for DyCG to its corresponding
weakened variant. An initial attempt might be to directly imitate static
conservativity as defined in definition 5.10, defining an operator

weak-determiner : (d1 → d1 → k)→ d1 → d1 → k(5.68)

as follows:

weak-determiner =def λdDE.d D (D that E)

This definition would indeed yield the weak readings, but also gives
rise to the problem of ‘donkey doubling,’ since any discourse referents
introduced within D are introduced twice. To exemplify this problem,
consider weak-determiner, as defined, applied to the dynamic determiner a:

` (weak-determiner a)

= λDE.a D (D that E)

= λDE.exists (D that (D that E))

And so using (weak-determiner a) to model the variant of (5.67) with an
indefinite, we get

` (weak-determiner a) (cyclist that λn.(a bike)m.own m n)

λn.(itm.ride m n)

= existsn.((cyclist n) and existsm.(bike m) and (own m n))and

((cyclist n) and existsm.(bike m) and (own m n)and

itm.ride m n) : k .

5.4.4.1 Weakening Dynamic Determiners 174

Notice that two discourse referents are available to serve as the antecedent
to it, and therefore its associated implicature means that using it here is
infelicitous. And yet, intuitively, this is not an instance of weak familiarity
but rather of strong familiarity: the pronoun it in (5.67), on the intended
reading, is clearly anteceded by the discourse referent introduced by bike in
the restrictor.

A better attempt at defining weak-determiner makes sure that the situa-
tion illustrated above does not arise by limiting the accessibility of discourse
referents introduced in the restrictor, but not fundamentally modifying its
truth conditions. This can be accomplished by simply applying dynamic
double negation to the restrictor, as in the following definition.

(5.69) weak-determiner =def λdDE.d (non (non D)) (D that E)

(Here the dynamic property negation non is as defined in (4.25).) This
definition is essentially the same as the preliminary one given above, having
the same type as in (5.68), with the exception that no discourse referents
can be doubly introduced.

To see how the definition of weak-determiner in (5.69) is different from
the preliminary one that uses no negation, consider again the result of
using it to model the indefinite variant of (5.67), recalling theorem 5.2.

` (weak-determiner a) (cyclist that λn.(a bike)m.own m n)

λn.(itm.ride m n)

= existsn.(not not ((cyclist n) and (a bike)m.own m n))and

(cyclist n) and existsm.(bike m) and (own m n)and

itm.ride m n

≡ λc.λx|c|,y,z.(existsw.(cyclist y) and (bike w) and (own w y)) and

(cyclist y) and (bike z) and (own z y) and

(nonhuman x, y, z(prononhuman c′)) and (ride x, y, z(prononhuman c′) y) |
λx|c|,y,z.exists!n:ω|c′| .c

′ k-cons (nonhuman n) : k2

5.4.4.1 Weakening Dynamic Determiners 175

Here, the context passed to (itm.ride m n) is

c′ = λx|c|,y,z.(c x) and (existsw(cyclist y) and (bike w) and (own w y)) and

(cyclist y) and (bike z) and (own z y) : c2 ,

and so the implicature proposition associated with the strongly familiar it

is consistent, because the discourse referents introduced in the restrictor are
existentially bound. This means that the only remaining discourse referent
that is not entailed to be nonhuman is the one introduced in the scope.

Applying weak-determiner to a version of (5.67) where the determiner is
every shows how both the strong and weak readings can arise.

` (weak-determiner every) (cyclist that λn.(a bike)m.own m n)

λn.itm.ride m n

= foralln.((not (not ((cyclist n)and

existsm.(bike m) and (own m n)))) implies

((cyclist n) and existsm.(bike m) and (own m n)and

itm.ride m n))

= not existsn.not not (not not ((cyclist n)and

existsm.(bike m) and (own m n)))and

not ((cyclist n) and existsm.(bike m) and (own m n)and

itm.ride m n)

≡ λc.λx|c| .not existsy.(existsz((cyclist y) and (bike z) and (own z y))) and

not existsw.(cyclist y) and (bike w) and (own w y) and

(nonhuman x, y, w(prononhuman c′)) and (ride x, y, w(prononhuman c′) y) |
λx|c| .existsn:ω|c′| .c

′ k-cons (nonhuman n)

In this case, the context passed to itm.ride m n by the enclosing dynamic
existential is

c′ ≡ λx|c|,y,w.(c x) and (cyclist y) and (bike w) and (own w y) ,

so that it is able to select the unique discourse referent v that is consistent
with being nonhuman. The truth conditions associated with this weakened
version of every are equivalent to Every cyclist that owns a bike is a cyclist that

5.4.4.1 Weakening Dynamic Determiners 176

owns a bike and rides it. In case the distributivity property does not hold,
and cyclists may treat some of their bikes differently than others, the bike
that the cyclist is said to own by the restrictor may be a different one than
the cyclist rides. But when distributivity is present, these truth conditions
invite the inference that whichever bike is selected as the one that is owned
by the cyclist will also be ridden by her.

The dynamic determiners are then redefined based on their earlier
definitions, using weak-determiner, as follows.

aweak =def (weak-determiner a)(5.70)

noweak =def (weak-determiner no)(5.71)

everyweak =def (weak-determiner every)(5.72)

Notice that for certain determiners, applying weak-determiner has no practi-
cal effect. For example:

` (aweak cyclist ride)

= a (non non cyclist) (cyclist that ride)

= existsn.(not not (cyclist n)) and ((cyclist n) and (ride n))

≡ λc.λx|c|,y.(cyclist y) and (cyclist y) and (ride y) | t|c+|
≡ λc.λx|c|,y.(cyclist y) and (ride y) | t|c+|
≡ (a cyclist ride) : k

Since, by theorem 5.2, λn.(not not (cyclist n)) is truth-conditionally equiv-
alent to the dynamic property cyclist, the weak variant aweak is equivalent
to its original definition a. Slightly more complicated cases, in which a
discourse referent is introduced in the restrictor, are also equivalent with
respect to the weak/strong reading distinction, as the following example
shows.

` (aweak (cyclist that λn.(a bike)m.own m n) ride)

= existsn.(not not ((cyclist n) and existsm.(bike m) and (own m n)))

and (cyclist n) and existsm.(bike m) and (own m n) and (ride n)

≡ λc.λx|c|,y,z.(existsw(cyclist y) and (bike w) and (own w y)) and

(cyclist y) and (bike z) and (own z y) and (ride y) | t|c++| : k2

5.4.4.1 Weakening Dynamic Determiners 177

This pseudo-equivalence holds for weak-determiner applied to any of the ↑↑
or ↓↓ determiners, as well as the generalized definitizers the and pro from
equations (5.9) and (5.10).

In order to model the dynamic meaning of the determiner most, some
discussion of its static meaning is in order. I will follow standard practice
in making the simplifying assumption that most is roughly equivalent to
more than half. Then, thinking of the extensions of static properties as
(characteristic functions of) sets of entities, note that for P and Q static
properties, the truth conditions associated with (most P Q) should be that
the cardinality of (P that Q) is greater than the cardinality of (P that non Q).

Accordingly, I define the cardinality function cardA : (A→ t)→ n for
each set s as the number of entities in s, defined as follows, where s is
characterized by an A-predicate for some type A.

cardA =def λs:A→t

ι

n:n∃ f :A→ωn .(5.73)

(∀x:A∀y:A((s x) ∧ (s y))⇒ ((f x) = (f y)⇒ x = y))∧
∀i:ωn∃z:A.i = (f z)

That is, the cardinality of a set s is the natural number equinumerous with
s, where equinumerosity is defined as the existence of a bijection between
two sets.

I then introduce a new basic meaning type ν of natural number concepts,
with

Ext(ν) = n .

For every meaning type A, the cardinality of properties A → p is then
defined in terms of card, in the form of the function

kardA : (A→ p)→ ν ,

axiomatized by

` ∀P:A→p∀w:w.(kardA P) @ w = cardA (P @ w) .(5.74)

As usual, the type parameter on both card and kard is often dropped.
Then the infix function exceedsA,B : (A→ p)→ (B→ p)→ p, where A

and B are meaning types, simply tests whether a given set is larger than

5.4.4.1 Weakening Dynamic Determiners 178

another, and is subject to the following axiom:
(5.75)
` ∀P:A→p∀Q:B→p∀w:w.(P exceeds Q)@ w⇔ ((kardB Q)@ w < (kardA P)@ w)

The meaning of the static determiner most is then defined in terms of
exceeds, where non is as defined in (3.22).

(5.76) most =def λPQ.(P that Q) exceeds (P that non Q)

As an example, the static meaning of Most donkeys bray is

` most donkey bray

= (donkey that bray) exceeds (donkey that non bray)

= (λx(donkey x) and (bray x)) exceeds λx.(donkey x) and not (bray x) : p

As with other dynamic determiners, the dynamic counterpart to most

is defined by analogy. Toward a preliminary definition of dynamic most,
we first define the dynamic counterpart to exceeds, whose type is

exceeds : d1 → d1 → k ,

and which is defined as

exceeds =def λDEc.λx|c| .(λy|exists D|(exists D c)s x, y) exceeds(5.77)

(λz|exists E|(exists E c)s x, z) |
λx|c|,y|exists D|,z|exists E| .((exists D c)i x, y) and ((exists E c)i x, z)

Dynamic exceeds compares two dynamic properties by λ-binding the
discourse referents they introduce, while maintaining their contributions
to the implicature. With this definition in place, the dynamic generalized
determiner most could be defined as follows:

most =def λDE.(D that E) exceeds (D that non E)

Note the similarity between this definition of dynamic most and its static
counterpart in (5.76).

A version of (5.67) with most as the determiner could then be accounted
for in DyCG. Here, its dynamic meaning is promoted to an update and then

5.4.4.1 Weakening Dynamic Determiners 179

applied to the empty context, in order to resolve the anaphora associated
with it. (To clarify the exposition, the anaphoric implication associated
with it and the pronoun’s sortal information are omitted from the following
reductions involving most.)

` cc (most (cyclist that λn.(a bike)m.own m n) λn.itm.ride m n) t

= cc ((cyclist that λn.(a bike)m.own m n) that itm.ride m)

exceeds ((cyclist that λn.(a bike)m.own m n) that

λn.(not itm.ride m n)) t

≡ λx|c| .λy,z.((cyclist y) and (bike z) and (own z y) and (ride z y))

exceeds λv,w.(cyclist v) and (bike w) and (own w v) and not (ride w v) : c

One thing to immediately notice about the dynamic meaning given under
the current definitions for (5.67) with most is that the asymmetry problem
is reproduced here, since this is the strong reading: most is quite literally
quantifying over pairs of cyclists and bikes that they own.

To avoid this problem, we redefine the dynamic meaning of most as

most =def λDE.(non non (D that E)) exceeds(5.78)

(non non (D that non E)) ,

which uses dynamic double negation to ensure that any discourse referents
introduced within D or E are existentially bound without affecting the
meaning (theorem 5.2). To see how this redefinition avoids the asymmetry
problem, consider how differently it treats a version of (5.67) using most
as the determiner than the original definition (as before, the dynamic
meaning is promoted to an update and applied to the empty context, and

5.5 Summary and Comparison with Other Theories 180

the implications associated with it are omitted):

` cc (most (cyclist that λn.(a bike)m.own m n) λn.itm.ride m n) t

= cc ((non non (cyclist that λn.(a bike)m.own m n that

λn.itm.ride m n)) exceeds (non non (cyclist that

λn.(a bike)m.own m n that non itm.ride m n))) t

= cc ((λn(not not ((cyclist n) and (a bike)m.own m n)and

itm.ride m n)) exceeds λn.(not not ((cyclist n)and

(a bike)m.own m n) and not (itm.ride m n))) t

≡ λx|c| .λy.existsz.((cyclist y) and (bike z) and (own z y) and (ride z y))

exceeds λv.existsw.(cyclist v) and (bike w) and

(own w v) and not (ride w v) : c

This example shows that the definition of most in (5.78) gives the correct
reading, avoiding the asymmetry problem because only the cyclists are
being counted, not pairs of cyclists and bikes they own. Thus the DyCG
model of (5.67) with most yields truth conditions equivalent to The number
of cyclists that own a bike and ride it is larger than the number of cyclists that own
a bike but do not ride it, as desired.

5.5 Summary and Comparison with Other Theories

This chapter demonstrates how DyCG can be extended to a multi-level
framework that incorporates insights from both the tradition of dynamic
semantic theories that dates to Karttunen (1974, 1976), Lewis (1979), and
Heim (1982) with Karttunen and Peters’s (1979) approach to separating the
sense portion of utterance meaning from its implicatures. The revisions to
the dynamic theory presented in chapter 4 are relatively minimal, mostly
related to the fact that contents are now considered functions from a context
to a pair of contexts rather than to a single context.

The multi-level extensions to DyCG explored in this chapter allow a
different take on conventional implicatures than what is usually found
in the literature. Potts (2005) advocates a characterization of meaning in
which no lexical item contributes both sense and implicature content. But
under the view adopted here, in which anaphora is simply an instance of
conventional implicature where the implicature must be anchored to the

5.5 Summary and Comparison with Other Theories 181

speaker, we see that Potts’s characterization does not apply to the class of
conventional implicatures as a whole. This more general view of anaphora
also allows a generalization of the usual notion of contextual felicity to one
in which infelicity arises because part of the contribution of an utterance is
at odds with its context of interpretation.

Note that the novelty condition associated with indefinites, discussed
in §2.2.1.1, could be modeled as an implicature in a similar way as the
retrievability implication is handled here. But I avoid doing this since the
novelty condition is already implicit by the fact that indefinites always
introduce an as-yet-unused discourse referent by extending the context’s
arity. Also, since it is intimately involved with anaphora, I discuss the
descriptive content implication in this chapter even though it is actually
not obligatorily speaker-anchored like the retrievability implication.

This chapter also lays out an implementation of Roberts’s (2003) weak
familiarity, in the context of providing a more general and more empirically
adequate formulation of the accessibility of anaphoric antecedents than
is assumed in any other dynamic theory. I show how these ideas about
anaphora allow successful accounts not just of the definite anaphora asso-
ciated with proper names, pronouns, and the, but also (both definite and
indefinite) possessives and the iterative adverb too.

Since the retrievability implication associated with anaphora, under
the formal approach given here, is tested only against the input context,
the DyCG theory of anaphora qualifies as a satisfaction theory, borrowing
the terminology of Geurts (1996, 1999). It has the strategy of testing the
satisfiability of anaphoric implications against a single context in common
with Heim (1982, 1983a,b) and Beaver (2001), among others. Geurts argues
stridently that satisfaction theories are hopelessly doomed because there is
only ever a single context available to check anaphoric implications against.
Instead, he argues for van der Sandt’s (1992) approach, in which anaphoric
antecedents can be located in (or accommodated in) the global, local, or any
one of several possibly available intermediate contexts.

Here, I claim that a single local context suffices. As Beaver (2001,
chapter 5) shows, intermediate accommodation sometimes yields strange
predictions that are at odds with intuitions. But there is an additional
reason DyCG’s account of anaphora opts for a single context, namely
that the examples given as evidence for the necessity of intermediate
accommodation are either instances of weak familiarity or involve lexical

5.5 Summary and Comparison with Other Theories 182

items that are not actually anaphoric: possessive noun phrases, so-called
factives, and other persistent entailments.

For example, the use of realize in the following requires resolution or
accommodation according to the van der Sandt theory:

(5.79) If Butch is barking, then Mary realizes that Butch is awake.
(Beaver, 2002, example 1)

In van der Sandt’s approach, realize presupposes that Butch is awake and
therefore a choice is forced as to whether the antecedent should be found
in the global context, the intermediate context of the If . . . clause, or the
local context of the then . . . clause. But no such choice is forced if we
instead model realize as giving rise to a persistent entailment rather than
an anaphoric presupposition.

To take another example, Bos (2003) uses the following to argue that
different contexts for accommodation are required.

(5.80) If Miai is married, then heri husband is out of town.
(Bos, 2003, example 7)

Since there is no overt antecedent for her husband, a decision must be made
about where to accommodate one, according to the van der Sandt approach.
But for DyCG, which implements weak familiarity, no such decision is
required because an antecedent for Mia’s husband is entailed to exist (at
least in legal jurisdictions that allow only opposite-sex marriage).

Lastly, in this chapter I developed a theory of the strength of determiner
readings in DyCG that is a blend of two prominent theories on the topic.
This hybrid theory, I argue, adopts the desirable characteristics of both
while avoiding the pitfalls associated with each. In DyCG, determiners are
treated as having the so-called weak reading, and then the strong readings
arise only when the condition of distributivity holds for the properties in
question.

In chapter 6, I show how the two-level extensions to DyCG proposed
here impact conventional implicatures other than anaphora, for example,
the appositives, nonrestrictive relatives, parentheticals, and expressives
discussed by Potts (2005) and others. As I will show, the two-level view
of meaning, in which lexical items can contribute sense and implicature
content, is the correct generalization for handling both anaphora and the
conventional implicatures that are not invariably speaker anchored.

Chapter 6

Variable Conventional
Implicatures

In this chapter, I show how the two-level extension to Dynamic Categorial
Grammar discussed in chapter 5 applies to conventional implicatures other
than just instances of anaphora. Specifically, I give an account of many of
the phenomena discussed in Potts 2005: nominal appositives, nonrestrictive
relatives, as-parentheticals (all supplements), and expressives. I show that
the strategy of separating sense from implicature yields a theory that has
the desirable attributes of both Karttunen and Peters’s (1979) theory and
the theory of conventional implicatures in Potts 2005, while also capturing
anaphora and avoiding many of the considerable problems with Potts’s
framework.

As a compositional theory that separates sense from implicature content,
the approach proposed here has some similarities with recent proposals
due to Nouwen (2007), Kubota and Uegaki (2009), Barker, Bernardi, and
Shan (2010), AnderBois et al. (2010), and my own work (Kierstead and
Martin, 2012). However, the account I offer here departs from both Kubota
and Uegaki 2009 and Barker et al. 2010 in that continuations are not needed;
I also propose looser constraints on the interaction possibilities than do
Barker et al., in line with Amaral et al.’s (2007) empirical observations.

The account presented here shares with Nouwen 2007 and AnderBois
et al. 2010 an embedding in a dynamic framework, but compares favorably
with both of these. In the case of Nouwen’s work, this account is more
finely grained, for example, allowing supplements to be stacked. AnderBois
et al.’s proposal represents a mere sketch of an extension to Dynamic

183

6.1 Supplements 184

Montague Grammar (Groenendijk and Stokhof, 1991), but the approach
I describe in detail below is far more formally explicit. Perhaps the most
attractive aspect of the account explored here is that it shows in detail how
anaphora and other conventional implicatures interact, for example, when
a definite occurs within a supplement but its antecedent occurs outside it.

After discussing some necessary extensions to DyCG, I show in §6.1 how
DyCG can be used to model supplements. The analysis I present in §6.1.1 is
finely grained, with supplements in both medial and final positions, as well
as stacked supplements (§6.1.1.1). The DyCG account of expressives is laid
out in §6.2, and in §6.3, I describe how the DyCG analysis of supplements
correctly allows anaphoric links between the sense and implicature levels.
Then in §6.4, I show how the generalized notion of felicity from chapter
5 also captures infelicity for both supplements and expressives. I discuss
in §6.5 a problem that arises in Karttunen and Peters’s theory, the binding
problem, which prompts Potts to disallow all interaction between sense
and implicature, including anaphora. I start in §6.5.1 by exploring how
this problem would not manifest itself in DyCG if Karttunen and Peters’s
analysis were followed. Then §6.5.2 offers an alternative analysis where the
binding problem does not arise at all. Unfortunately, the DyCG analysis is
not without related problems of its own, which I examine in §6.5.3 and then
offer some proposed solutions in §6.5.4. Finally, in §6.6, I give a summary
of the DyCG account of variable conventional implicatures.

Although the descriptive content implication associated with definites
figures among the variable conventional implicatures (see §2.2.2.1), it is
not treated in this chapter for two reasons. The first is that definites are
discussed at length in chapter 5, and the second is that giving an account of
descriptive content requires a formal model of point of view, which DyCG
does not as yet have.

6.1 Supplements

I begin with a very simple example of a nominal appositive in order to
clarify the empirical issues associated with supplements as well as the
formal approach to modeling them in DyCG. The following example is
repeated from chapter 2:

(2.5) Lance, a cyclist, is from Texas.

6.1.1 Analyzing Supplements 185

In (2.5), the proper name Lance is called the anchor of the appositive a cyclist.
The correct syntactic and semantic generalizations about the anchor’s status
are that any syntactic generalized quantifier can serve as the anchor to an
appositive, but only certain generalized quantifiers are pragmatically valid,
as I discuss below.

Example (2.5) demonstrates why appositives, among other construc-
tions, are called supplements. The appositive a cyclist is in some sense an
additional property that is being attributed to Lance. And as discussed in
detail in chapter 2, the appositive’s content is different semantically from
the rest of the utterance in that it is not targeted by semantic operators. The
account of supplements developed here is syntactically similar to the one
found in Potts 2005, chapter 4, but is more empirically adequate in terms
of its semantics. The reason is that, while sense and implicature content
are separated, as for Potts, they are still allowed to interact, which Potts’s
account strictly disallows.

As for the content of the supplement itself, the distributional facts argue
for an analysis in which any predicative construction can be used as a
supplement. For example, consider the variants of (2.5) below.

(6.1) Lance,

a cyclist
no cyclist
pursued by angry fans
fresh from his cheating scandal
tired and discouraged
on a private jet
drinking a sports drink

, gave an interview.

With these facts in mind, I give a way to turn certain nonpredicative
constructions into predicatives, as part of the analysis of supplements
below.

6.1.1 Analyzing Supplements

As a preliminary, the DyCG semantics for modeling anaphora in chapter 5
is extended with the following.

Definition 6.1 (Merge). The merge function ⇑, whose type is

⇑ : ΠD:d1,i .d1,i ,

6.1.1 Analyzing Supplements 186

for some natural number i, is defined as

⇑ =def λDnc.t|c|+|D n| | λx|c|,y|D n| .(D n c)s x, y and (D n c)i x, y .(6.2)

That is, the merge function simply takes a dynamic property and combines
its sense and implicature content, yielding a new dynamic property with
an empty sense proposition and the combined sense and implicature of
the original as its implicature. Note that, as the type of ⇑ shows, any
discourse referents introduced in either the sense or implicature contexts
of the original property are only introduced into the implicature context of
the merged property.

By way of demonstrating how the merge function works, applying it to
the dynamic property cyclist gives

` (⇑ cyclist) = λnc.t|c| | λx|c| .(cyclist xn) and true

≡ λnc.t|c| | λx|c| .cyclist xn : d1 → k .

And so the effect of ⇑ is to take a dynamic property and turn it into another
dynamic property that only has implicature content.

Based on ⇑, we can define a dynamic analog of Potts’s (2005) account
of the comma intonation associated with supplements.

Definition 6.2 (Comma). The comma function, representing the comma
intonation, has the type

comma : d1 → (d1 → k)→ d1 → k ,

and is defined as

comma =def λDQE.Q ((⇑D) that E)(6.3)

As its definition shows, comma takes a dynamic property D and a dynamic
generalized quantifier Q, returning another dynamic generalized quantifier
that incorporates D’s content as an implicature. Note that this definition of
the dynamic meaning of the comma intonation is somewhat different from
the one given in Kierstead and Martin 2012; there, the second property E
is passed a context explicitly updated by the first property D, but for the
definition in (6.3), the same result is achieved instead by using the dynamic
conjunction in that.

6.1.1 Analyzing Supplements 187

With cyclist =def (dyn1 cyclist) and lance as defined in (5.11), for
convenience, we define the dynamic property of being from Texas as

(6.4) from-texas =def (dyn1 from-texas) ,

where from-texas : e→ p is the static property of being from Texas.
In light of the syntactic evidence in (6.1) that the class of supplements in-

cludes predicatives, we need a way to turn a dynamic generalized quantifier
into a semantic predicative, that is, a dynamic property. As a preliminary, I
define the function equals =def (dyn2 equals), written infix, where equals

is as in definition 5.7.

Definition 6.3 (Predicativizer). The function

pred : (d1 → k)→ d1

turns a dynamic generalized quantifier into a dynamic property. It is
defined as

pred =def λQn.not (not (Qm.m equals n)) .(6.5)

As an example, the result of applying the predicativizer function pred to
the dynamic generalized quantifier a cyclist is

` (pred a cyclist)

= λn.not (not ((a cyclist)m.m equals n))

= λn.not (not (existsm.(cyclist m) and (m equals n))) : d1 .

As preliminaries for giving lexical entries for modeling (2.5), we first
define the nonlogical basic type Pred of predicatives. This type will be
used to ensure that the argument to the comma intonation must be a
predicative. Generalized quantifiers are converted to predicatives using the
rule in figure 6.1. To see how this rule works in practice, note that the sign
corresponding to a cyclist can be converted from a generalized quantifier to
a predicative as follows:

` λ f . f (a · cyclist) ; (NP(S)(S ; a cyclist : d1 → k

` a · cyclist : s ; Pred ; (pred a cyclist) : d1

(Note that ((λ f f (a · cyclist)) λs.s) β-reduces to a · cyclist.)

6.1.1 Analyzing Supplements 188

` f : (s→ s)→ s ; (NP(S)(S ; Q : d1 → k
(Pred)

` (f λs.s) : s ; Pred ; (pred Q) : d1

Figure 6.1: DyCG nonlogical rule converting generalized quantifiers to
predicatives, where pred is as defined in (6.5).

Since we need a way to say what the comma intonation does in the
concrete syntax, I also introduce the function

comma : s→ s ,

but do not define it, leaving its implementation as a ‘hook’ for a future
theory of intonation, which is beyond the scope of this thesis. Now a
lexicon for modeling (2.5) can be given:

` λs f g.g (f λt.t · (comma s)) : s→ ((s→ s)→ s)→ (s→ s)→ s ;

Pred(((NP(S)(S)((NP(S)(S ; comma

` λs.s · is · from · Texas ; NP(S ; from-texas

The lexical entries corresponding to the generalized quantifier Lance and
property cyclist are as before in chapters 4 and 5. To save space, the semantic
types are suppressed.

In proving a DyCG sign modeling (2.5), I adopt the space-saving ap-
proach used above, showing the pheno logic proof first, separately from
the combined tecto and semantic proof. First the generalized quantifier a
cyclist is derived and then converted to a predicative.

(6.6)

` λs f . f (a · s) : s→ (s→ s)→ s ` cyclist : s

` λ f . f (a · cyclist) : (s→ s)→ s
` a · cyclist : s

6.1.1 Analyzing Supplements 189

Then the combined string provides the required first argument to the
concrete syntax of the comma intonation.
(6.7)

` λs f g.g (f λt.t · (comma s))

(6.6)
...

` a · cyclist

` λ f g.g (f λt.t · (comma (a · cyclist))) : ((s→ s)→ s)→ (s→ s)→ s

(In this proof tree, and below, I employ the following shorthands: some of
the pheno types are elided, as are rule labels, and β-reductions for terms
are performed whenever possible.) Next, the comma-delineated appositive
a cyclist derived above combines with its generalized quantifier argument,
the anchor Lance.
(6.8)

(6.7)
...

` λ f g.g (f λt.t · (comma (a · cyclist))) ` λ f .(f Lance) : (s→ s)→ s

` λg.g (Lance · (comma (a · cyclist))) : (s→ s)→ s

And finally, this new generalized quantifier’s concrete syntax is applied to
the pheno corresponding to the property of being from Texas.
(6.9)

(6.8)
...

` λg.g (Lance · (comma (a · cyclist))) ` λs.s · is · from · Texas : s→ s

` Lance · (comma (a · cyclist)) · is · from · Texas : s

Thus DyCG generates the correct surface string for (2.5), including the
comma intonation, which here is left as an unanalyzed primitive.

Turning to the part of the proof dealing with the abstract syntax and
semantics of (2.5), we start again by combining a with cyclist. First the
predicative is built by combining with the generalized quantifier a cyclist,
as above.

(6.10)
` (NP(S)((NP(S)(S ; a ` NP(S ; cyclist

` (NP(S)(S ; a cyclist

` Pred ; (pred a cyclist)

6.1.1 Analyzing Supplements 190

Then comma takes the appositive as argument (here, the type of the abstract
syntax accompanying comma is abbreviated by replacing the generalized
quantifier syntactic type (NP(S)(S by QP, as in chapters 3 and 4).

(6.11) ` Pred(QP(QP ; comma

(6.10)
...

Pred ; (pred a cyclist)

` QP(QP ; comma (pred a cyclist)

Next Lance combines with a cyclist to form a new dynamic generalized
quantifier, finally taking is from Texas as its argument.

(6.12)

(6.11)
...

` QP(QP ; comma (pred a cyclist) ` QP ; lance

` QP ; (comma (pred a cyclist)) lance

Here again, the abstract syntactic type corresponding to the root label of
the proof in (6.11) is abbreviated as before. Finally, the newly composed
generalized quantifier takes the verb phrase as argument.
(6.13)

(6.12)
...

` QP ; (comma (pred a cyclist)) lance ` NP(S ; from-texas

` S ; (comma (pred a cyclist) lance) from-texas

As before, the syntactic type of the root label of the proof in (6.12) is
abbreviated.

Reducing the semantic term derived in (6.13) shows how this account of
nominal appositives keeps the sense content separate from the associated
implicature.

` (comma (pred a cyclist) lance) from-texas

= lance ((⇑ pred a cyclist) that from-texas)

= the named-lance ((⇑ pred a cyclist) that from-texas)

≡ λc.λx|c| .(from-texas x(thenamed-lance c)) |
λx|c| .(existsy(cyclist y) and (y equals x(thenamed-lance c))) and

exists!n:ω|c| .c k-entails (named-lance n) : k

6.1.1 Analyzing Supplements 191

As this reduction shows, the dynamic meaning of the comma intonation
has the effect of setting aside the information that Lance is a cyclist, as an
implicature, while leaving the proposition that he is from Texas as part of
the sense of the expression.

A negated variant of (2.5) demonstrates that comma correctly separates
sense from implicature.

(2.5′) Lance, a cyclist, is not from Texas.

The DyCG semantics for (2.5′) is simply the semantics for (2.5) wrapped by
the dynamic negation not.

` not ((comma (pred a cyclist) lance) from-texas)

≡ λc.λx|c| .not (from-texas x(thenamed-lance c)) |
λx|c| .(existsy(cyclist y) and (y equals x(thenamed-lance c))) and

exists!n:ω|c| .c k-entails (named-lance n) : k

Here, no discourse referents become existentially bound in the sense be-
cause none are introduced (see lemma 4.11). Note that, in the DyCG se-
mantics for (2.5′), only the proposition that Lance is from Texas is negated,
while the proposition that Lance is a cyclist survives as an implicature.

The definition of the comma intonation given in (6.3) is general enough
to account for utterance-final appositives, such as the instance of a cyclist
in

(6.14) Kim met Lance, a cyclist.

Defining the dynamic meaning of Kim as

(6.15) kim =def the named-kim ,

just as in chapters 4 and 5, the extensions to the lexicon needed for (6.14)
are as follows, where

meet =def (dyn2 meet) ,

and meet : e→ e→ p is the static relation of meeting.

` λ f .(f Kim) : (s→ s)→ s ; (NP(S)(S ; kim : d1 → k

` λst.t ·met · s : s→ s→ s ; NP(NP(S ; meet : d2

6.1.1 Analyzing Supplements 192

The concrete syntactic proof starts by hypothesizing both arguments to
meet. Here, and below, I elide some of the types in the concrete syntactic
proofs in order to save space, showing only the terms themselves.

(6.16)

` λst.t ·met · s : s→ s→ s s : s ` s : s
s : s ` λt.t ·met · s : s→ s t : s ` t : s

s : s, t : s ` t ·met · s : s
t : s ` λs.t ·met · s : s→ s

After withdrawing the object trace, Lance, a cyclist is applied to the resulting
term.
(6.17)

(6.8)
...

` λg.g (Lance · (comma (a · cyclist)))

(6.16)
...

t : s ` λs.t ·met · s : s→ s

t : s ` t ·met · Lance · (comma (a · cyclist)) : s
` λt.t ·met · Lance · (comma (a · cyclist)) : s→ s

The last step of the proof in (6.17) is that the subject trace is withdrawn so
that Kim can take scope.
(6.18)

` λ f .(f Kim) : (s→ s)→ s

(6.17)
...

` λt.t ·met · Lance · (comma (a · cyclist))

` Kim ·met · Lance · (comma (a · cyclist)) : s

And so with no modification to the lexical entry for the comma intona-
tion given to model (2.5), the concrete syntax for a variant in which the
appositive appears at the end of the utterance can be captured as well.

As for the semantics for (6.14), the proof also begins by hypothesizing
discourse referents for both the subject and object of meet.
(6.19)
` NP(NP(S ; meet NP ; m ` NP ; m

NP ; m ` NP(S ; meet m NP ; n ` NP ; n
NP ; m, NP ; n ` S ; meet m n

NP ; n ` NP(S ; λm.meet m n

Next the semantics of Lance, a cyclist takes as argument the verb phrase
with its object abstracted over. I suppress the semantic types here, just like
for the pheno proof above, as well as the abstract syntactic type of the root

6.1.1 Analyzing Supplements 193

label of (6.12).
(6.20)

(6.12)
...

` comma (pred a cyclist) lance

(6.19)
...

NP ; n ` NP(S ; λm.meet m n
NP ; n ` S ; (comma (pred a cyclist) lance)m.meet m n

` NP(S ; λn.(comma (pred a cyclist) lance)m.meet m n

Finally, Kim’s semantics takes scope over the verb phrase after the subject
discourse referent trace is withdrawn, yielding the final dynamic meaning
of (6.14).
(6.21)

` QP ; kim

(6.20)
...

` NP(S ; λn.(comma (pred a cyclist) lance)m.meet m n
` S ; kimn.(comma (pred a cyclist) lance)m.meet m n

Here again, the abstract syntactic type corresponding to kim, the type of a
generalized quantifier, is abbreviated to QP.

To see that DyCG gives the right meaning for this example of an
utterance-final appositive, we reduce the term derived in (6.20).

` kimn.(comma (pred a cyclist) lance)m.meet m n

= kimn.lance ((⇑ pred a cyclist) that λm.meet m n)

= (the named-kim)n.the named-lance ((⇑ pred a cyclist) that

λm.meet m n)

≡ λc.λx|c| .(meet x(thenamed-lance c) x(thenamed-kim c)) |
λx|c| .(exists!n:ω|c|c k-entails (named-kim n)) and

(exists!n:ω|c|c k-entails (named-lance n)) and

existsy.(cyclist y) and (y equals x(thenamed-lance c)) : k

As before, the dynamic meaning is as desired: its sense is that Kim met
Lance, and its implicature is that Lance is a cyclist, along with the two
requirements associated with the proper names Kim and Lance. Note that
withdrawing the traces in the other order would yield the proof term

` (comma (pred a cyclist) lance)m.kimn.meet m n : k ,

6.1.1 Analyzing Supplements 194

also corresponding to the concrete syntax of the surface form in (6.14).
However, the truth conditions would not change, since this term β-reduces
to the same form as the version with kim taking widest scope.

Although, for simplicity, I have chosen nominal appositives to demon-
strate DyCG’s handling of variable conventional implicatures, it is also
straightforward to extend this account to other supplemental constructions,
such as nonrestrictive relatives and as-parentheticals. For instance, the
following variants of (2.5) are very similar to the original with the nominal
appositive:

(6.22) Lance, who’s a cyclist, was recently caught doping.

(6.23) Lance, as a cyclist, rides constantly.

Apart from defining the properties corresponding to their respective
verb phrases, all that is needed for the variants in (6.22) and (6.23) is to give
lexical entries for the nonrestrictive relativizer who and the parenthetical as.
First we define the relativizer whonrrc and the parenthetical asparen, both of
which have the type d1 → d1, to have the semantics of the identity function
on dynamic properties, and likewise for the predicative copula is:

whonrrc =def λD.D(6.24)

asparen =def λD.D(6.25)

is =def λD.D(6.26)

Then the lexicon extensions for modeling (6.22) and (6.23) is as follows.

` λ f .who · (f e) : (s→ s)→ s ; (NP(S)(Pred ; whonrrc

` λs.as · s : s→ s ; Pred(Pred ; asparen

` λst.t · is · s : s→ s→ s ; Pred(NP(S ; is

` λs.s ·was · recently · caught · doping : s→ s ; NP(S ; caught-doping

` λs.s · rides · constantly : s→ s ; NP(S ; rides-constantly

Here the dynamic properties caught-doping and rides-constantly are
the simplified dynamic meanings corresponding to the verb phrases in
(6.22) and (6.23), respectively.

6.1.1.1 Stacking 195

With these extensions to the lexicon, a (short-form) sign corresponding
to (6.22) derived as

` Lance · (comma who · e · is · a · cyclist) ·was · recently · caught · doping ;

S ; (comma (whonrrc (is pred a cyclist)) lance) caught-doping

and one for (6.23) can be derived as

` Lance · (comma as · a · cyclist) · rides · constantly ;

S ; (comma (asparen (pred a cyclist)) lance) rides-constantly

The semantics of these two signs reduce to

` (comma (whonrrc (is pred a cyclist)) lance) caught-doping

= the named-lance ((⇑ pred a cyclist) that caught-doping) : k

and

` (comma (asparen (pred a cyclist)) lance) rides-constantly

= the named-lance ((⇑ pred a cyclist) that rides-constantly) : k ,

respectively.

6.1.1.1 Stacking

Like Potts’s (2005) analysis of supplements, the DyCG analysis presented
here can handle supplement stacking, in which multiple supplements are
attached to a single anchor.

(6.27) a. Colin Powell’s son, Michael, Bush’s choice to chair the FCC, is
an unabashed free-marketeer convinced that Clinton/Gore’s
procorporate policies on the media were somehow bad for
business.

b. The reporter interviewed Lance Armstrong, a rider for the US
Postal team, a cancer survivor.

c. I rented Annie Hall, which is Woody Allen’s finest, a true classic,
in order to reminisce about the East Coast US.

(Potts, 2005, examples 4.20 and 4.23)

6.1.1.1 Stacking 196

Because Potts’s theory can handle stacked supplements, it has an empirical
edge over a recent dynamic alternative proposed by Nouwen (2007). The
reason is that, in Nouwen’s account, stacking is expressly forbidden by
the formal machinery. Nouwen implements a version of Visser’s (2002)
extension to Dynamic Predicate Logic (Groenendijk and Stokhof, 1990) that
has two meaning types: one for what I call sense content, and the other for
implicature content. A problem with accounting for supplement stacking
arises for Nouwen because adding implicature content is forbidden if the
meaning type of the current compositional step is already the implicature
type. As a result, Nouwen’s incorrectly predicts that at most a single
supplement per anchor can ever be present.

But this problem does not arise for the DyCG analysis I present here. I
demonstrate DyCG’s ability to handle supplement stacking for a simplified
version of the stacked appositive in (6.27b). The necessary extensions to
the lexicon are only those needed to model the properties of riding for
US Postal and being a cancer survivor. For simplicity, these properties
are shortened to the properties of being a rider and being a survivor,
respectively.

` rider : s ; N ; rider : d1

` survivor : s ; N ; survivor : d1

Here, rider =def (dyn1 rider) and survivor =def (dyn1 survivor), where
rider : e→ p and survivor : e→ p are static properties.

The proof involves hypothesizing a generalized quantifier that is the
argument to the first supplement, letting the second take the resulting
term as argument, then withdrawing the quantifier for combination with
the anchor. Starting again with the pheno proof, first the quantifier is
hypothesized, then a derivation of the concrete syntax for the supplement
a rider is derived following the proof in (6.7).
(6.28)

...
` λ f g.g (f λt.t · (comma (a · rider))) Q : (s→ s)→ s ` Q : (s→ s)→ s

Q : (s→ s)→ s ` λg.g (Q λt.t · (comma (a · rider))) : (s→ s)→ s

Next the supplement a survivor is derived, again via a proof that follows
(6.7), and then applied to the term derived in (6.28). Here, the pheno
string corresponding to survivor is abbreviated, and some of the types are

6.1.1.1 Stacking 197

suppressed, in order to save space. The abbreviated context is Γ = Q : (s→
s)→ s.
(6.29)

...
` λ f g.g (f λt.t · comma (a · surv))

(6.28)
...

Γ ` λg.g (Q λt.t · comma (a · rider))

Γ ` λg.g (Q λt.t · (comma (a · rider)) · (comma (a · surv)))

` λQg.g (Q λt.t · (comma (a · rider)) · (comma (a · surv)))

As a final step, the hypothesized generalized quantifier phonology Q is
withdrawn to make way for taking the proper name Lance Armstrong, here
modeled as simply the pheno term for Lance given above, as argument.
(6.30)

(6.29)
...

` λQg.g (Q λt.t · (comma (a · rider)) · (comma (a · surv))) ` λ f .(f Lance)

` λg.g (Lance · (comma (a · rider)) · (comma (a · surv))) : (s→ s)→ s

Applying this term to

` λt.the · reporter · interviewed · t : s→ s ,

which models the verb phrase in (6.27b) with the object position abstracted
over, yields

` the · reporter · interviewed · Lance · (comma (a · rider)) ·
(comma (a · survivor)) : s ,

the (simplified) surface string corresponding to (6.27b).
The semantics for (6.27b) show how DyCG gets the right meanings for

stacked supplements.

(6.31)

...
` comma (pred a rider) Q : d1 → k ` Q : d1 → k

Q : d1 → k ` (comma (pred a rider) Q) : d1 → k

Here, similarly as above for the concrete syntax part of the proof, the
semantics for the appositive a rider is derived by a proof that follows the

6.1.1.1 Stacking 198

one in (6.11). Next the semantics for a survivor, derived in a similar way to
the semantics of a rider, takes a rider’s semantics as its argument. In this
proof, the context of the right branch is abbreviated to Γ = Q : d1 → k.
(6.32)

...
` comma (pred a survivor)

(6.31)
...

Γ ` (comma (pred a rider) Q) : d1 → k
Γ ` (comma (pred a survivor) (comma (pred a rider) Q)) : d1 → k
` λQ.(comma (pred a survivor) (comma (pred a rider) Q))

The root label of this proof has its type, which is

(d1 → k)→ d1 → k ,

omitted to save space. This term is then applied to the semantics for Lance,
which also has its type d1 → k elided:
(6.33)

(6.32)
...

` λQ.comma (pred a survivor) (comma (pred a rider) Q) ` lance

` comma (pred a survivor) (comma (pred a rider) lance) : d1 → k

This final term representing the doubly-supplemented Lance, a rider for the
US Postal team, a cancer survivor reduces as follows.

` comma (pred a survivor) (comma (pred a rider) lance)

= comma (pred a survivor) λD.(lance ((⇑ pred a rider) that D))

= λD.lance ((⇑ pred a rider) that ((⇑ pred a survivor) that D))

≡ λDc.λx|c| .(D (the named-lance c) c)s x |
λx|c| .(D (the named-lance c) c)i x and

(exists!n:ω|c|c k-entails (named-lance n)) and

(existsy(rider y) and (y equals x(thenamed-lance c))) and

existsz.(survivor z) and (z equals x(thenamed-lance c)) : d1 → k

This term is capable of taking the dynamic property corresponding to being
interviewed by someone, not modeled here, as its argument, to give the
DyCG semantics for (6.27b). Importantly, the properties of being a rider and

6.2 Expressives 199

being a survivor, both applied to the discourse referent corresponding to
Lance, end up in the implicature part of the dynamic proposition modeling
the stacked supplement.

6.2 Expressives

In this section I describe how the DyCG approach to modeling expressives,
another type of variable conventional implicature discussed in §2.2.2.2.
There I used the epithet, an instance of an expressive, in the following
example, as part of a discussion making the empirical case that expressives
are conventionally signaled but not necessarily speaker oriented.

(2.58) That socialist Obama got re-elected.

Here, I will give a formal model in DyCG of some instances of a class of
related expressives, the class of expressive adjectives, exemplified in (6.34)
and (6.35).

(6.34) Lance has entered the Tour de France, and the damn doper will
probably win it.

(6.35) The damn Republicans are only against taxes when they affect
rich people.

(6.36) At least he isn’t one of those damned socialists.
(6.37) Gimme back my damn bike!
(6.38) There’s no fucking beer left!

As discussed in §2.2.2.2, the occurrence of the expressive adjectives in the
above examples conveys that the anchor, here the speaker, has a height-
ened or negative attitude toward someone or something. These examples
also give good motivation for following Potts (2005, chapter 5) in leaving
unspecified the focus of the heightened attitude. In (6.34), the speaker is
communicating a negative attitude toward Lance due to the fact that Lance
is a doper; in (6.35), the negative attitude is toward the Republicans because
of their position on taxes. But for (6.36), the negative attitude is toward
socialists; in (6.37) it is not toward the bike but toward the person who took
the bike or to the fact that it was taken; in (6.38), it is toward the absence of
beer, not toward beer.

The DyCG analysis of expressive adjectives like damn is extremely
straightforward. By way of demonstrating it, I analyze a simplified variant
of (6.34) in

6.2 Expressives 200

(6.39) Lance entered the Tour de France, and the damn doper won.

For simplicity, I treat the property of entering the Tour de France as

enter =def (dyn1 enter) ,

the dynamic property of entering, based as usual on its counterpart static
property enter : e→ p. Similarly, the property of winning is

(6.40) win =def (dyn1 win) ,

also based on win : e→ p, its corresponding static property.
As for the DyCG meaning of damn, it is treated as a common noun

modifier that simply passes through the sense proposition of its argument
but adds the implicature that the point of view holder has a negative
attitude toward its argument’s argument. The type of damn is

damn : d1 → d1 ,

and its definition is

damn =def λDnc.(D n c)s | λx|c| .(D n c x)i and (neg D) .(6.41)

This definition of the dynamic meaning of damn uses the function neg :
d1 → p, which is the property of there being a negative attitude toward
some aspect related to its dynamic property argument. Exactly which
aspect is left unspecified, as discussed above. And when it comes to the
question of which point of view holds the negative attitude toward the
entity provided, it is not accounted for in the current account.

With most of the other words in (6.39) already having DyCG lexical
entries, it is straightforward to provide the remaining necessary entries.

` λs.s · entered · the · Tour · de · France : s→ s ; NP(S ; enter : d1

` λst.t · and · s : s→ s→ s ; S(S(S ; λhk.k and h : k→ k→ k

` λs.damn · s : s→ s ; N(N ; damn : d1 → d1

` doper : s ; N ; doper : d1

` λs.s ·won · it : s→ s ; NP(S ; win : d1

6.2 Expressives 201

The treatment of and in this lexicon is just straightforward sentential con-
junction, with the argument contents passed to the dynamic conjunction
and.

The concrete syntax of the first conjunct of (6.39) is shown in the proof
below, with types suppressed to save space, as before.

(6.42)
` λ f .(f Lance) ` λs.s · entered · the · Tour · de · France

` Lance · entered · the · Tour · de · France

The second conjunct’s concrete syntax has a similarly straightforward proof.
(6.43)

` λs f . f (the · s)
` λs.damn · s ` doper

` damn · doper

` λ f . f (the · damn · doper) ` λs.s ·won · it
` the · damn · doper ·won · it

And finally the two conjuncts are combined (here the string derived in
(6.42) is abbreviated, and the string Tour · de · France is abbreviated TdF.
(6.44)

` λst.t · and · s

(6.43)
...

` the · damn · doper ·won · it
` λt.t · and · the · damn · doper ·won · it

(6.42)
...

` Lance · entered · · ·
` Lance · entered · the · TdF · and · the · damn · doper ·won · it

This is clearly the correct surface string for (6.39).
The tecto and semantic proofs are equally straightforward. First, the

first conjunct:

(6.45)
` (NP(S)(S ; lance ` NP(S ; enter

` S ; (lance enter)

And next the second. In the proof of the second conjunct, the abstract
syntactic type (NP(S)(S is abbreviated to QP for space.
(6.46)

` N(QP : the

` N(N ; damn ` N ; doper

` N ; (damn doper)

` QP ; the (damn doper) ` NP(S ; win

` S ; the (damn doper)win

6.2 Expressives 202

The last step is that the conjuncts are combined, as for the pheno proof
above.
(6.47)

` λhk.k and h

(6.46)
...

` S ; the (damn doper)win

` S(S ; λk.k and the (damn doper)win

(6.45)
...

` S ; (lance enter)

` S ; (lance enter) and the (damn doper)win

In this proof, the tecto type assigned to and is elided; it is S(S(S.
Reducing the semantics for (6.39) derived in (6.47) shows how the DyCG

meaning for damn functions.

` (lance enter) and the (damn doper)win

= (the named-lance enter) and the (damn doper)win

≡ λc.λx|c| .(enter x(thenamed-lance c)) and (win x(the (damn doper) c)) |
λx|c| .(exists!n:ω|c|c k-entails (named-lance n)) and

(neg doper) and exists!n:ω|c′| .c
′ k-entails ((damn doper) n) : k

Here, the intermediate context passed to the second conjunct is

c′ ≡ λx|c| .(c x) and (enter x(thenamed-lance c)) and

exists!n:ω|c| .c k-entails (named-lance n)

And so the dynamic meaning of (6.39) adds the negative attitude towards
the property of being a doper to the implicature portion, whereas its sense
portion only contains the information that Lance entered and won, as
desired. The anaphoric link between Lance and the doper is possible as
long as Lance is unique among the discourse referents entailed to be a
doper, and the attitude holder is entailed to have a negative attitude toward
dopers in general.

As a demonstration of how the DyCG account of (6.39) correctly cap-
tures the implicatures of expressives, consider the variant

(6.39′) Lance entered the Tour de France, and the damn doper didn’t
win.

6.2 Expressives 203

The only difference between (6.39) and (6.39′) is that in (6.39′), the second
conjunct is negated. Based on the lexicon given above for (6.39), this variant
would receive the following DyCG semantics.

` (lance enter) and not (the (damn doper)win)

≡ λcλx|c| .(enter x(thenamed-lance c)) and not (win x(the (damn doper) c)) |
(exists!n:ω|c|c k-entails (named-lance n)) and

(neg doper) and exists!n:ω|c| .c k-entails ((damn doper) n) : k

Note that the implicature associated with the use of damn in (6.39′) is
preserved because only the information that Lance entered is negated.

Finally, I note that, similarly to the function possessive in §5.2.1.1, a
general function that generates dynamic meanings for expressives can be
defined. Potts (2005, pages 167–168) mentions that certain expressives
give rise to the implicature of a positive, rather than a negative, attitude
toward a certain discourse referent, giving the expressive brilliant used in
British English as an example. So a general function describing the class
of expressives should abstract over the implicated attitude. The function
describing expressives I define here is called expressive, which has the type

(d1 → p)→ d1 → d1 ,

and is defined to take a static property representing the implicated attitude
to yield a modifier over dynamic properties. It is defined as

expressive =def λPDnc.(D n c)s | λx|c| .(D n c x)i and (P D) ,(6.48)

so that, for example, the definition of damn in equation (6.41) can instead
be given as

damn =def (expressive neg) .(6.49)

A similar definition could be provided for the English expressives fucking,
bloody, stupid, and for other expressives that implicate a negative attitude.

As for the positive expressives, such as the British English brilliant,
they could be defined by invoking expressive as defined in (6.48) with the
positive counterpart to neg. The function expressive could also be used to
define dynamic meanings for epithets such as that socialist in

6.3 The Interaction between Sense and Implicature 204

(2.58) That socialist Obama got re-elected.

by defining an expressive version of socialist similar to damn in (6.49).
Similarly, honorifics in languages like French and Japanese could be de-
fined using expressive by passing it the property of being in a superior or
deferential position with respect to another.

6.3 The Interaction between Sense and Implicature

As pointed out by Amaral et al. (2007), Potts’s (2005) theory of supplements
is deficient in that it imposes the austere restriction on meanings that the
sense part can never interact with the implicature part. I discuss Potts’s
reasons for making this move, along with a discussion of the problem he
was attempting to solve, in §6.5. In this section, I show how DyCG correctly
allows anaphora between the sense and implicature portions of dynamic
meanings.

Examples abound that show why Potts’s prohibition on the interaction
between sense and implicature is empirically inadequate. Some such
examples include those in

(6.50) Stan Bronowski, who took an exami, passed iti with flying colors.
(Amaral et al., 2007, page 740, a variant of example 4.24 in Potts
2005)

(6.51) Lancei’s riding partner Kim, who’s been envying hisi bikej all
season, just asked himi to borrow itj.

In (6.50), a discourse referent representing the exam Stan took is introduced
within a supplement (here, a nonrestrictive relative) and antecedes the
pronoun it, which is outside the supplement. And (6.51) shows that the
interaction is even more free than (6.50) demonstrates. In this example, the
possessive his occurs within a supplement but finds its antecedent outside
it, and the pronoun it is outside the supplement, but its antecedent a bike
occurs within it.

To show how DyCG handles the interaction between sense and implica-
ture, I start with the simple example

(6.52) Kim, a cyclist that has a bikei, rides iti.

6.3 The Interaction between Sense and Implicature 205

The entire DyCG lexicon needed to model (6.52) is already in place, allowing
the following dynamic semantics:

` (comma (pred a (cyclist that λn.(a bike)m.have m n)) kim)(6.53)

λn.itm.ride m n : k

A good way to clearly show how the pronoun it is able to select its antece-
dent a bike, which occurs inside the nominal appositive in (6.52), is to show
the effect of Kim, a cyclist that has a bike on the input context. This part of
the meaning of (6.52) reduces as follows.

` comma (pred a (cyclist that λn.(a bike)m.have m n)) kim

= λD.the named-kim ((⇑ pred a (cyclist that

λn.existsm.(bike m) and (have m n))) that D)

≡ λDc.(((⇑ pred a (cyclist that λn.existsm.(bike m) and (have m n)))

that D) (the named-kim c) c)s |
λx|c| .(exists!n:ω|c|c k-entails (named-kim n)) and

(existsy,z(cyclist y) and (bike z) and (have z y) and

(y equals x(thenamed-kim c))) and (D (the named-kim c) c′)i x : d1 → k

Here, the context passed to D by that, and ultimately by and, is:

c′ ≡ λx|c| .(c x) and (exists!n:ω|c|c k-entails (named-kim n)) and

existsy,z.(cyclist y) and (bike z) and (have z y) and

(y equals x(thenamed-kim c))

This is the output context of the appositive in (6.53) because it is modeled
by the dynamic property

` ⇑ pred a (cyclist that λn.(a bike)m.have m n)

= λnc.t|c| | λx|c| .existsy,z.(cyclist y) and (bike z) and (have z y) and

(y equals xn) : d1 .

Since that is defined in (4.24) in terms of the dynamic conjunction and

(5.4), its second conjunct is evaluated in the context updated by its first.

6.3 The Interaction between Sense and Implicature 206

Here, the and-internal cc function places the implicature of the appositive
into the input context of that’s second conjunct D.

In this case, the second conjunct of that is the dynamic meaning of
rides it. Expanding the semantics for rides it shows how the pronoun can
select its antecedent given the input context it is passed, assuming the weak
familiarity mechanism described in §5.3.1 provides discourse referents
based on the existential entailments present.

` λn.itm.ride m n

= λn.(pro nonhuman)m.ride m n

≡ λnc.λx|c| .(nonhuman x(prononhuman c)) and (ride x(prononhuman c) xn) |
λx|c| .exists!n:ω|c| .c k-cons (nonhuman n) : d1

Since the context c′ passed to the semantics for rides it contains a discourse
referent for the bike, there is an available antecedent to the pronoun it: the
bike’s being nonhuman is consistent with the entailments present in the
input context. And so DyCG is capable of handling instances of anaphora
in which the anaphor does not occur within a supplement but finds its
antecedent inside one.

As for the other type of interaction between senses and implicatures
pointed out by Amaral et al., in which the anaphor occurs within a supple-
ment but the antecedent does not, consider

(6.54) Kimi’s bikej, which has heri name on itj, is fast.

Providing a DyCG sign corresponding to (6.54) requires a few new defini-
tions and extensions to the lexicon, but these are fairly straightforward.

The semantics of the possessive Kim’s bike is already available using
the possessive function defined in equation (5.18). The definite possessive
modeling Kim’s bike is

` kimsdef =def possessive the kim ,(6.55)

while its indefinite counterpart is simply

` kimsindef =def possessive a kim ,(6.56)

where kim is as defined in (6.15).

6.3 The Interaction between Sense and Implicature 207

Next we need a semantics for the nonrestrictive relativizer which in
(6.54). This definition is similar to the definitions for whosnrrc and asparen

given respectively in equations (6.24) and (6.25). As in those definitions,
the type of the nonrestrictive which is

whichnrrc : d1 → d1 ,

defined as before as

whichnrrc =def λD.D ,(6.57)

the identity function on dynamic properties.
The ‘semantically vacuous’ preposition on is modeled similarly, as the

identity function on natural numbers, with the type

on : ω → ω ,

and defined as

on =def λn.n .(6.58)

And lastly, we need a version of the verb have that takes three arguments:
an on-phrase, an object, and a subject. Semantically, this ditransitive is
modeled as

(6.59) haveon =def (dyn3 haveon) ,

where haveon : e → e → e → p is the corresponding static ditransitive.
The dynamic properties name =def (dyn1 name) and fast =def (dyn1 fast)

are defined based on the static properties name : e → p and fast : e → p,
respectively.

Turning to the task of defining the actual lexicon needed for a DyCG
account of (6.54), I begin with the lexical entry corresponding to the posses-
sive Kim’s, which is modeled as a dynamic generalized determiner. Here
I show the indefinite version of the possessive, but the definite version
is exactly the same except that the semantic term is kimsdef instead of
kimsindef. I make the assumption in modeling (6.54), that there is no avail-
able discourse referent to antecede Kim’s bike in order to more clearly show

6.3 The Interaction between Sense and Implicature 208

how the anaphora between sense and implicature works.

` λs f . f (Kim’s · s) : s→ (s→ s)→ s ; N((NP(S)(S ;

kimsindef : d1 → d1 → k

As for the nonrestrictive relativizer which, its lexical entry is nearly identical
to the one for whonrrc, above, which also passes the empty string e to its
argument.

` λ f .which · (f e) : (s→ s)→ s ; (NP(S)(Pred ; whichnrrc : d1 → d1

Then the lexical entry for the ditransitive version of have is one that takes
an on-phrase as its first argument in the abstract syntax, where the abstract
syntactic type On is a new, basic type.

` λstu.u · has · t · s : s→ s→ s→ s ; On(NP(NP(S ; haveon : d3

As for the on-phrases themselves, the corresponding lexical entry makes
sure the abstract syntactic types are correct, and inserts the phonology of
the word on.

` λs.on · s : s→ s ; NP(On ; on : ω → ω

The lexical entry for the common noun name is straightforward, and for
simplicity, the one for is fast incorporates the predicative is syncategoremat-
ically.

` name : s ; N ; name : d1

` λs.s · is · fast : s→ s ; NP(S ; fast : d1

And finally, the lexical entry corresponding to her is defined similarly to
the one for his in §5.2.1.1.

` λs f . f (her · s) ; N((NP(S)(S ; herdef : d1 → d1 → k

Starting with the pheno, the first step is to provide all of the arguments
to has by hypothesis, so that its arguments, all of which are generalized
quantifiers, can take scope. The string s is withdrawn first to make way
for it. (The pheno proof below, and the ones that follow, omit the types to
save space, and as usual, β-reductions are performed in terms whenever

6.3 The Interaction between Sense and Implicature 209

possible.)

(6.60)

` λstu.u · has · t · s
` λs.on · s s ` s

s ` on · s
s ` λtu.u · has · t · on · s t ` t

s, t ` λu.u · has · t · on · s u ` u
s, t, u ` u · has · t · on · s

t, u ` λs.u · has · t · on · s

Then it is combined with the verb phrase with its on-position abstracted
over, so that the possessive her name can take scope. As a last step, the
subject pheno variable is withdrawn to make way for which.
(6.61)

` λs f . f (her · s) ` name

` λ f . f (her · name)

` λ f .(f it)

(6.60)
...

t, u ` λs.u · has · t · on · s
t, u ` u · has · t · on · it

u ` λt.u · has · t · on · it
u ` u · has · her · name · on · it
` λu.u · has · her · name · on · it

Then the relativizer takes the subject-extracted string as its argument:

(6.62) ` λ f .which · (f e)

(6.61)
...

` λu.u · has · her · name · on · it
` which · e · has · her · name · on · it

And next the comma intonation surrounds the whole nonrestrictive relative.
(6.63)

` λs f g.g (f λt.t · (comma s))

(6.62)
...

` which · e · has · her · name · on · it
` λ f g.g (f λt.t · (comma which · e · has · her · name · on · it))

Now the generalized quantifier pheno for Kim’s bike is built.

(6.64)
` λs f . f (Kim’s · s) ` bike

` λ f . f (Kim’s · bike)

6.3 The Interaction between Sense and Implicature 210

This quantifier is then the input to the function derived in (6.64) (here the
pheno term derived in the last proof step is abbreviated to save space).

(6.65)

(6.63)
...

` λ f g.g (f λt.t · (comma which · · ·))

(6.64)
...

` λ f . f (Kim’s · bike)

` λg.g (Kim’s · bike · (comma which · e · has · her · name · on · it))

And finally, this new generalized quantifier pheno takes the verb phrase is
fast as argument.
(6.66)

(6.66)
...

` λg.g (Kim’s · bike · (comma which · · ·)) ` λs.s · is · fast

` Kim’s · bike · (comma which · e · has · her · name · on · it) · is · fast

Thus the lexicon given for (6.54) allows the correct surface string to be
derived.

Now for the semantics and abstract syntax. As for all of the other proofs
split into pheno and abstract syntax/semantics, the steps parallel the pheno
proof. To start, the first argument is provided to has as traces.
(6.67)

` On(NP(NP(S ; haveon

` NP(On ; on NP ; j ` NP ; j
NP ; j ` On ; (on j)

NP ; j ` NP(NP(S ; haveon (on j)

(In all of the abstract syntax/semantics proofs for (6.54), the semantic types
are elided to save space.) Then the object argument is provided as a trace.

(6.68)

(6.67)
...

NP ; j ` NP(NP(S ; haveon (on j) NP ; m ` NP ; m
NP ; j, NP ; m ` NP(S ; haveon (on j)m

6.3 The Interaction between Sense and Implicature 211

Next the subject trace is provided, and the on-phrase’s argument is with-
drawn.
(6.69)

(6.68)
...

NP ; j, NP ; m ` NP(S ; haveon (on j)m NP ; n ` NP ; n
NP ; j, NP ; m, NP ; n ` S ; haveon (on j)m n

NP ; m, NP ; n ` NP(S ; λj.haveon (on j)m n

Then it is combined with the term derived in (6.68), and then the object
position trace is withdrawn to make ready for her name.
(6.70)

` (NP(S)(S ; it

(6.69)
...

NP ; m, NP ; n ` NP(S ; λj.haveon (on j)m n

NP ; m, NP ; n ` S ; itj.haveon (on j)m n

NP ; n ` NP(S ; λm.itj.haveon (on j)m n

Then her name is built so that it can take the term derived in (6.70) as its
argument.
(6.71)

` (NP(S)((NP(S)(S ; herdef ` (NP(S) ; name

` (NP(S)(S ; (herdef name)

The syntax and semantics for her name derived in (6.71) is then combined
with its argument (here the abstract syntactic type (NP(S)(S corre-
sponding to her name has been abbreviated to QP in order to save space).
And next the subject trace is withdrawn.
(6.72)

(6.71)
...

` QP ; (herdef name)

(6.70)
...

NP ; n ` NP(S ; λm.itj.haveon (on j)m n

NP ; n ` S ; (herdef name)m.itj.haveon (on j)m n

` NP(S ; λn.(herdef name)m.itj.haveon (on j)m n

6.3 The Interaction between Sense and Implicature 212

The nonrestrictive relativizer which, whose abstract syntactic type has been
omitted, now takes this term as argument.
(6.73)

` whichnrrc

(6.72)
...

` NP(S ; λn.(herdef name)m.itj.haveon (on j)m n

` Pred ; whichnrrc λn.(herdef name)m.itj.haveon (on j)m n

The nonrestrictive relative is completed by surrounding the term derived
in (6.73) with the comma intonation (in the following proof, none of the
abstract syntactic types are shown to save space).
(6.74)

` comma

(6.73)
...

` whichnrrc λn.(herdef name)m.itj.haveon (on j)m n

` comma (whichnrrc λn.(herdef name)m.itj.haveon (on j)m n)

The abstract syntactic type of the root label of this proof is

((NP(S)(S)((NP(S)(S .

Now the nonrestrictive relative’s anchor Kim’s bike is constructed.
(6.75)

` (NP(S)((NP(S)(S ; kimsindef ` NP(S ; bike

` (NP(S)(S ; (kimsindef bike)

Then the nonrestrictive relative takes its anchor and finally, the verb phrase,
as argument (with some types omitted, the type of syntactic generalized
quantifiers abbreviated to QP, as before, and part of the relative clause
abbreviated, for space).
(6.76)

(6.74)
...

` comma (whichnrrc · · ·)

(6.75)
...

` (kimsindef bike)

` QP ; comma (whichnrrc · · ·) (kimsindef bike) ` NP(S ; fast

` S ; comma (whichnrrc · · ·) (kimsindef bike) fast

6.3 The Interaction between Sense and Implicature 213

So the DyCG sign modeling (6.54) is

` Kim’s · bike · (comma which · has · her · name · on · it) · is · fast : s ; S ;
(6.77)

comma (whichnrrc λn.(herdef name)m.itj.haveon (on j)m n)

(kimsindef bike) fast : k

Reducing the semantics of (6.77) shows how the anaphora between
sense and implicature is modeled for (6.54) by DyCG.

` comma (whichnrrc λn.(herdef name)m.itj.haveon (on j)m n)

(kimsindef bike) fast

= kimsindef bike (

(⇑whichnrrc λn.(herdef name)m.itj.haveon (on j)m n) that fast)

= a (bike that λj.kimi.have j i)

((⇑whichnrrc λn.(herdef name)m.itj.haveon (on j)m n) that fast)

= existsn.(((bike n) and kimi.have n i)and

(⇑(herdef name)m.itj.haveon (on j)m n) and (fast n))

≡ λcλx|c|,y.(bike y) and (have y x(thenamed-kim c)) and

(nonhuman x, y(prononhuman c′′)) and (fast y) |
λx|c|,y.(exists!n:ω|c|c k-entails (named-kim n)) and

(exists!n:ω|c′|c
′ k-entails ((name n) and shem.have n m)) and

(exists!n:ω|c′′|c
′′ k-cons (female n)) and (female x, y(pro female c′′)) and

(exists!n:ω|c′′′|c
′′′ k-cons (nonhuman n)) and

(haveon x, y(prononhuman c′′′) x, y(the (name that λn.shem.have n m) c′′′) y) : k

The intermediate contexts c′, c′′ and c′′′ serve to illuminate how the ana-
phora between the sense and implicature parts is possible. The context
passed to the nonrestrictive relative is

c′ = λx|c|,y.(c x) and (bike y) and (have y x(thenamed-kim c)) and

exists!n:ω|c| .c k-entails (named-kim n) ,

6.3 The Interaction between Sense and Implicature 214

and so, assuming felicity to this point, the the anaphora associated with
herdef name and it in the nonrestrictive relative can resolve to Kim and to
the bike she has, respectively. The context passed to it is

c′′ = λx|c|,y.(c′ x, y) and (female x, y(pro female c′)) and

(exists!n:ω|c′|c
′ k-entails ((name n) and shem.have n m)) and

exists!n:ω|c′| .c
′ k-cons (female n) ,

and similarly, the context passed to haveon is

c′′′ = λx|c|,y.(c′′ x, y) and (nonhuman x, y(prononhuman c′′)) and

exists!n:ω|c′′| .c
′′ k-cons (nonhuman n) ,

and so the two anaphoric antecedents required by the occurrence of have in
the nonrestrictive relative are available, namely the nonhuman discourse
referent and the discourse referent that is the name of the most salient
referent whose entailments do not conflict with being female. (Here I
make the assumption that the world knowledge is incorporated into the
context that the antecedent of her has a unique name.) The nonhuman
discourse referent can resolve to the bike introduced in context c′, while
the antecedents for her and her name are available as long as an antecedent
for Kim is available to start with.

Note that, in the DyCG account of (6.54), not only is the anaphora
handled correctly, but the sense content is kept separate from the implica-
ture content: the sense proposition of (6.77) contains the information that
the newly introduced discourse referent is a fast bike that Kim has; the
implicature proposition, on the other hand, contains the information from
the nonrestrictive relative that Kim’s fast bike additionally has her name
on it. As a result, in a parallel with the DyCG accounts for (2.5) and (2.5′)
given above, the DyCG account of a negated variant of (6.54) like (6.54′)
would correctly yield a negated sense proposition, but the implicature
proposition derived for (6.54) would survive intact.

(6.54′) Kimi’s bikej, which has heri name on itj, is not fast.

I also note briefly that the interaction between sense and implicature
also functions the same way when an expressive is involved, using the

6.3 The Interaction between Sense and Implicature 215

DyCG mechanism for linking anaphors to antecedents. For example, DyCG
captures the anaphora in utterances like

(6.78) Every damn doperi rode hisi bike.

With all of the required lexical entries for modeling (6.78) already defined,
the following DyCG semantics is available.

` (every damn doper)n.(hisdef bike)m.ride m n

= not exists ((non non (damn doper)) that

non ((damn doper) that λn.(hisdef bike)m.ride m n))

≡ λc.λx|c| .not existsy.(doper y) and

not ((doper y) and (ride x(the (bike that λm.hen.have m n) c′) y)) |
λx|c| .(neg doper) and

(exists!n:ω|c′|c
′ k-entails (bike that λm.hen.have m n)) and

exists!n:ω|c′′| .c
′′ k-cons (male n) : k

Here Every is given the semantics of the weak reading, defined in (5.72),
and the definite possessive hisdef is as defined in (5.20). The intermediate
contexts are

c′ = λx|c| .(c x) and (doper xn) and (neg doper)

and

c′′ = λ
x|c′| .(c

′ x) and (bike x(the (bike that λm.hen.have m n) c′)) .

And so the possessive his bike can select the antecedent to his, the doper,
from the previous part of the utterance, without the expressive damn
interfering. A different scoping is available in which the Every takes scope
before his bike:

` (hisdef bike)m.(every damn doper)n.ride m n : k

However, this alternative scoping does not alter either the truth conditions
or the concrete syntax. Likewise, the treatment of anaphora is unchanged
if the indefinite possessive hisindef from (5.23) is used instead of hisdef,
although the truth conditions differ slightly.

6.4 Variable Conventional Implicatures and Contextual Felicity 216

In conjunction with the account given above for (6.52) and (6.54), this
shows that DyCG has quite robust machinery allowing anaphoric links
between sense and implicature, both when the antecedent is in the sense
proposition but the anaphor is not, and vice versa. As such, it represents
a great advance in empirical coverage over Potts’s (2005) theory, which
allows neither.

6.4 Variable Conventional Implicatures and Contex-
tual Felicity

Supplements and expressives fit well into the generalized notion of con-
textual felicity developed in §5.2.2. Just as for anaphoric conventional
implicatures, the notion of felicity is essentially a test for whether the
content of a given utterance is in conflict with its context of interpretation.
For anaphora, infelicity can arise when the associated implicature of the
existence of a discourse referent bearing suitable entailments is in conflict
with the context. For supplements and expressives, as I detail below, infelic-
ity also results when the context conflicts with the implicature in question.
The common thread connecting anaphora and the variable conventional
implicatures, then, is that infelicity arises whenever they conflict with the
context.

I first demonstrate the notion of felicity applied to a variable conven-
tional implicature by examining the DyCG account of the discourse in

(6.79) Lance is not a cyclist. # Lance, a cyclist, is from Texas.

This discourse is a variant of the one in (2.108). The first utterance of the
discourse in (6.79) is straightforwardly modeled as

` not (lance cyclist)

≡ λc.λx|c| .not (cyclist x(thenamed-lance c)) |
λx|c| .exists!n:ω|c| .c k-entails (named-lance n) : k .

Given that the second utterance of (6.79) is interpreted in the context that
is first updated by its first utterance, it is not hard to see why we have

` ¬ (((comma (pred a cyclist) lance) from-texas) felicitous-in

(cc not (lance cyclist) t)) .

6.4 Variable Conventional Implicatures and Contextual Felicity 217

(Here the term (comma (pred a cyclist) lance) from-texas : k is the dy-
namic meaning derived for (2.5), the first utterance of (6.79), in the proof in
(6.13).) The reason for the infelicity observed in (6.79) is simple: as shown
above, the sense of the first utterance is the proposition

not (cyclist x(thenamed-lance c)) ,

which is in direct conflict with one of the implicatures of the second, namely
the proposition

(cyclist x(thenamed-lance c)) ,

as the proof in (6.13) shows. Clearly the dynamic conjunction of any two
contents that incorporate these conflicting propositions yields an incon-
sistent context, and therefore (6.79) is judged infelicitous according to the
notion of contextual felicity given in definition 5.6.

The situation is similar when expressives are used infelicitously. By
way of demonstrating the similarity, consider the following example.

Context (6.80): The speaker is Lance’s doctor, who has administered his
doping program for years and approves of Lance’s doping.

(6.81) # Lance entered the Tour de France, and the damn doper won.

The reason (6.81) is infelicitous in the context (6.80) is the same as the reason
for the supplement above. Assuming, based on context (6.80), that the
context of interpretation for (6.81) contains at least the entailment that the
speaker does not have a negative attitude towards the practice of doping,
the input context to (6.81) contains the proposition

not (neg doper) .

However, just as for the infelicitous supplement in (6.79), the utterance of
(6.81) has as part of its implicature the proposition

(neg doper) ,

as shown by the proof in (6.47). Thus the dynamic meaning of (6.81)
is infelicitous in the input context modeling (6.80), and so definition 5.6
captures the infelicity in this case as well.

6.5 The Binding Problem Revisited 218

And so it seems that the claim that contextual felicity is properly defined
for conventional implicatures generally is borne out. The infelicity that
arises when an anaphor lacks a suitable antecedent, as discussed at length
in chapter 5, is explained by the exact same formal mechanism used to
explain the infelicity that can arise when a variable conventional implicature
conflicts with its context of interpretation. Both are simply instances in
which an associated implicature is inconsistent with some aspect of the
input context, in the sense of contextual felicity formally defined in 5.6.

6.5 The Binding Problem Revisited

For Potts’s (2005) account of supplements, the reason for prohibiting ana-
phora between sense and implicature has to do with the so-called “binding
problem” discussed by Karttunen and Peters (1979, page 53) for sentences
like

(6.82) Someone managed to succeed George V on the throne of England.

The problem Karttunen and Peters’s account has with (6.82), as Potts (2005,
§3.10) discusses, is related to the fact that it is treated as having their analog
of

existsx.(succeed x)

as its sense (Karttunen and Peters call this its extension expression), and

existsy.(hard (succeed y) y)

as its implicature (Karttunen and Peters’s implicature expression). However,
there is no way, in Karttunen and Peters’s theory, to state that the existen-
tially bound variables x and y in these translations have to represent the
same individual. And so (6.82) could be true in a situation in which George
V’s successor claimed the throne with ease, while some other person tried
but failed to succeed him, which are incorrect truth conditions.

Potts (2005) adopts a strategy of making a “virtue” of this necessary
problem with Karttunen and Peters’s theory, by treating sense and im-
plicature content as living on completely separate “dimensions” that are
forbidden to interact. As I discuss in §6.3, Amaral et al. (2007) show why
this strategy of complete separation is empirically inadequate, because in
fact sense and implicature can interact quite freely. But Potts is motivated

6.5.1 A Dynamic Analog of the Binding Problem? 219

by examples like the following, in which a quantificational noun phrase is
purportedly the anchor of an infelicitous appositive:

(6.83) # No reporteri believes that Ames, often a subject of hisi columns,
is a spy.

(Potts, 2005, example 3.70)

(6.84)
{

A
Every

}
Dutch boxer, a famous one, won the tournament.

(Nouwen, 2007, examples 15a and 16a)

DyCG, however, does not resort to the rather extreme move of completely
ruling out any interaction between sense and implicature. In this section
I explore the binding problem, the issues surrounding quantified supple-
ments and expressives, and some possible solutions.

6.5.1 A Dynamic Analog of the Binding Problem?

I start by re-examining in DyCG Karttunen and Peters’s original example
(6.82) associated with the binding problem in order to describe what the
problem is, then give an alternative analysis. By way of demonstrating how
the binding problem does not manifest itself in the theory I present here,
using Karttunen and Peters’s analysis of manage, first define the dynamic
properties person : d1 and succeed : d1 in the usual way:

person =def (dyn1 person)

succeed =def (dyn1 succeed)

Here, person : e→ p and succeed : e→ p are the static properties of being a
person and succeeding, respectively. Then the dynamic meaning of managed
is manage : d1, defined as follows.
(6.85)

manage =def λDnc.(D n c)s | λx|c| .((D n c)i x) and (hard ((D n c)s x) xn)

As the definition shows, the sense proposition of manage is just that
of its complement property, while the implicature proposition inherits
the implicature of its complement but also adds the information that
the accomplishment required effort. Here hard : (e → p) → e → p is
extensionally the relation between an entity x and a property P that says
that attaining P is hard for x.

6.5.1 A Dynamic Analog of the Binding Problem? 220

Then the dynamic meaning of Someone is a generalized quantifier, with
the type d1 → k, defined as

(6.86) someone =def (a person)

based on the weak dynamic indefinite from equation (5.70), and the dy-
namic property person as described above.

The following is a DyCG lexicon for modeling (6.82) based on these
definitions, where the type Bse and Inf are the basic abstract syntactic types
of verbs in base form and infinitive verbs, respectively.

` λ f . f (someone · s) : (s→ s)→ s ; (NP(S)(S ; someone

` λ f s.s ·managed · (f e) : (s→ s)→ s→ s ; Inf(NP(S ; manage

` λ f s.s · to · (f e) : (s→ s)→ s→ s ; Bse(Inf ; λD.D

` λs.s · succeed : s→ s ; Bse ; succeed

In this lexicon, the semantic types are suppressed to save space. The proof
of (6.82) based on this lexicon proceeds in two parts: first the concrete
syntax and then the abstract syntax and semantics.

The concrete syntactic proof starts by combining to with succeed. Here,
and in the following proofs, I follow the practice observed for previous
proofs by performing β- and η-reductions whenever possible.
(6.87)

` λ f s.s · to · (f e) : (s→ s)→ s→ s ` λs.s · succeed : s→ s
` λs.s · to · e · succeed : s→ s

Next, managed takes the derived concrete syntactic term in (6.87) as its
argument. In the proof in (6.88), the type of the pheno term corresponding
to managed is elided to save space.

(6.88) ` λ f s.s ·managed · (f e)

(6.87)
...

` λs.s · to · e · succeed : s→ s
` λs.s ·managed · e · to · e · succeed : s→ s

Lastly, the noun phrase someone takes the concrete syntax from the proof in
(6.88) as its argument. For space, the type of the term derived in (6.88) is

6.5.1 A Dynamic Analog of the Binding Problem? 221

omitted.
(6.89)

` λ f . f (someone · s) : (s→ s)→ s

(6.88)
...

` λs.s ·managed · e · to · e · succeed
` someone ·managed · e · to · e · succeed : s

And so the lexicon given for (6.82) produces the correct surface form.
Turning to the abstract syntactic and semantic parts of the proof, we

start again by combining manage with its argument succeed.
(6.90)

` Inf(NP(S ; manage

` Bse(Inf ; λD.D ` Bse ; succeed

` Inf ; succeed

` NP(S ; (manage succeed)

Then the dynamic generalized quantifier someone takes scope.
(6.91)

` (NP(S)(S ; someone

(6.90)
...

` NP(S ; (manage succeed)

` S ; someone (manage succeed)

Reducing the semantic term derived in (6.91) shows how this analysis of
(6.82) does not replicate the binding problem.

` someone (manage succeed)

= a person (manage succeed)

= exists ((non non person) that (person that manage succeed))

≡ λc.λx|c|,y.(exists person) and (person y) and (succeed y) |

λx|c|,y.(hard (succeed y) y) : k1

To see why this DyCG account of (6.82) avoids recreating a dynamicized
version of the binding problem, at least using an analog of Karttunen and
Peters’s analysis, we promote the content derived in (6.91) to an update

6.5.2 An Alternative Analysis 222

and then apply it to the empty context.

` cc (someone manage succeed) t

≡ λy.(exists person) and (person y) and (succeed y) and

(hard (succeed y) y) : c1

So here we avoid giving problematic truth conditions, namely that some
person y succeeded and some potentially different entity had a hard time
doing so, because of the definition of the cc function in (5.3): promoting a
content to an update ‘collapses together’ both the sense and implicature
content, passing the same discourse referents to the conjoined result.

6.5.2 An Alternative Analysis

However, there are empirical reasons to doubt that Karttunen and Peters’s
(1979) analysis of manage is the correct one. In the terminology established
in chapter 2, their analysis treats manage as a conventional implicature:
it has, as part of its conventional meaning, the implicature that whoever
succeeded had a hard time doing so.

But consider the following variants of (6.82):

(6.82′)
{

Someone
No one

}
managed to succeed George V. No one even tried.

The Someone variant of (6.82′) gives rise to infelicity because someone’s
managing to succeed George V entails that someone actually did succeed
him, and this directly conflicts with entailments in the second utterance.
But for the variant with No one, no infelicity arises. The fact that no one
tried to succeed George V., and therefore that no one had a hard time, is
completely compatible with no one having succeeded him.

Seen from this angle, manage has more in common with nonconventional
implicatures like stop or win than it does with conventional implicatures. If
the implication associated with manage were really conventional in nature,
we would not expect to observe the divergent behavior in the following
examples.

(6.92) # Lance, a cyclist, didn’t enter the Tour de France because Lance
isn’t even a cyclist.

(6.93) It’s not true that someone managed to succeed George V be-
cause no one even tried.

6.5.3 The Problem of Quantified Supplements 223

In (6.92), the supplement a cyclist is a conventional implicature. Part of its
conventional meaning is to contribute the proposition that Lance is a cyclist
to the meaning of the entire utterance. Its conventional nature is evidenced
by the infelicity that arises when the utterance it occurs within is followed
up by one that directly contradicts its content. Similar evidence is given
by the infelicitous example (6.79) in §6.4, above. However, for (6.93), the
situation is different. For this example, no infelicity arises: the entailment
that someone had a hard time is in conflict with the information that no
one tried at all, and therefore the entailment does not persist.

The behavior of manage seems parallel to the following examples with
stop and win, repeated from chapter 2, in which the trigger is embedded
within an attitude predicate.

(2.74) Kim has never smoked in her life, but Robin thinks Kim stopped
smoking.

(2.85) Lance didn’t participate in the Tour de France, but Sandy believes
Lance won the Tour de France.

(6.94) No one has yet tried to take George Vi’s place on the throne, but
Robin thinks someone managed to succeed himi.

For (6.94), just as for stop in (2.74) and win in (2.85), the entailment as-
sociated with manage does not persist because the speaker makes clear
that it does not. On the basis of this similarity, and the dissimilarity with
conventional implicatures demonstrated in (6.92) and (6.93), I claim that
manage is properly classified as a nonconventional implicature that may or
may not give rise to a persistent entailment.

In §7.1, I discuss how persistent entailments should be accounted for
in DyCG. Unfortunately, DyCG is not without problems analogous to
Karttunen and Peters’s binding problem. I turn to these problems in the
next section.

6.5.3 The Problem of Quantified Supplements

The DyCG treatment of supplements makes some unwanted predictions
when the anchor is a quantificational noun phrase. To simplify the analysis
and exposition of this problem, I first demonstrate the differing DyCG
analyses for the following:

(6.95) Lance, a doper, raced in the Tour de France.

6.5.3 The Problem of Quantified Supplements 224

(6.96) # No cyclist, a doper, raced in the Tour de France.

Most of the dynamic meanings of the words in (6.95) and (6.96) are already
defined. I again adopt the simplifying measure of defining the dynamic
property of racing in the Tour de France as simply race =def (dyn1 race),
where race : e→ p is its static counterpart.

With these definitions in place, we have

` comma (pred a doper) lance race : k(6.97)

for (6.95), and for (6.96),

` comma (pred a doper) (no cyclist) race : k .(6.98)

DyCG yields a perfectly plausible treatment of (6.95), but a somewhat odd
one for (6.96). To see why this is, note that (6.97) reduces as follows.

` comma (pred a doper) lance race

= lance ((⇑ pred a doper) that race)

≡ λc.λx|c| .(race x(thenamed-lance c)) |
λx|c| .(exists!n:ω|c|c k-entails (named-lance n)) and

existsy.(doper y) and (y equals x(thenamed-lance c)) : k

And so for (6.95), DyCG generates the intuitively correct dynamic reading:
the sense proposition is that Lance raced, while its implicatures are that
Lance is a doper and that there is a unique discourse referent with the
property of being named Lance.

The difference for (6.96) can be seen by reducing the term derived in
(6.98). Here I use the version of the determiner no defined in (5.52), which
yields the strong reading, as a simplification, since it is equivalent to the
weak reading in (5.71). See §5.4.4.1 for more discussion.

` comma (pred a doper) (no cyclist) race

= no cyclist ((⇑ pred a doper) that race)

= not existsn.(cyclist n) and ((⇑ pred a doper) n) and (race n)

≡ λc.λx|c| .not existsy.(cyclist y) and (race y) |
λx|c| .existsy,z.(doper z) and (z equals y) : k

6.5.4 Potential Solutions 225

The problem that arises for this negated variant has to do with the way
dynamic negation is defined in equation (5.5). Since dynamic negation
targets only discourse referents introduced in the sense, there is a new
existential entailment introduced into the implicature that there is some
entity that has the property of being a doper. This analysis of (6.96) would
be more in line with a hypothetical utterance with a sense corresponding
to No cyclist raced in the Tour de France and an implicature corresponding to
Someone is a doper.

Note that this problem would arise for any dynamic generalized de-
terminer that is defined based on the dynamic negation not that scopes
over both its arguments. And so not only are quantified appositives that
use the determiner No problematic, as in examples (6.83) and (6.96), but
so are, for example, quantified appositives where the determiner is Every,
such as the relevant variant of (6.84). So it seems that the approach of al-
lowing interaction between sense and implicature is not without associated
complications.

6.5.4 Potential Solutions

A naïve attempt to rectify DyCG’s problem with quantified supplements-
discussed above would simply be to redefine the dynamic generalized
quantifiers that employ negation to use a function like the merge func-
tion defined in equation (6.2) that instead places all of the content in the
sense proposition. We might call this the flatten function, and write it
⇓, mnemonically with its cousin, the merge function ⇑ used in modeling
supplements (see §6.1). This function would be typed as

⇓ : ΠD:d1,i .d1,i ,

for a natural number i, and it would be defined as

⇓ =def λDnc.λx|c|,y|D n| .(D n c)s x, y and (D n c)i x, y | t|c|+|D n| .(6.99)

Clearly, the effect of flattening a dynamic property is just to place both its
associated sense and implicature into the sense of the resulting dynamic
property.

6.5.4 Potential Solutions 226

We could then redefine the negation-based dynamic generalized quanti-
fiers as follows:

no =def λDE.not a D (⇓ E)
(6.100)

every =def λDE.foralln.(not not (D n)) implies ((D that (⇓ E)) n)
(6.101)

(As for the analysis of (6.96) in (6.98), this definition of no is based on the
strong version from (5.52) for simplicity.) Note that the definition of a is left
alone, so that for a, any implicature contributed is maintained as part of
the implicature, rather than as part of the sense. So already we can see that
redefining the negation-based quantifiers no and every as in equations
(6.100) and (6.101), respectively, represent a philosophical departure from
the DyCG approach: for these quantifiers, the separation of sense and
implicature is effectively neutralized, with all of the content washed into
the sense proposition.

Assuming we were prepared to ignore this inconsistency in the DyCG
approach to meanings, there are much worse consequences to redefining
the negation-based quantifiers this way: supplements with quantificational
anchors now give incorrect truth conditions. To demonstrate this, consider a
reanalysis of (6.96) using a version of no redefined as in (6.100), a reanalysis
of (6.96) is derivable in DyCG, which reduces as follows.

` comma (pred a doper) (no cyclist) race

= no cyclist ((⇑ pred a doper) that race)

= not existsn.(cyclist n) and (⇓((⇑ pred a doper) that race) n)

≡ λc.λx|c| .not existsy.(cyclist y) and (race y) and

existsz.(doper z) and (z equals y) | t|c| : k

With this redefinition of no, the implicature content now gets caught up in
the quantification, with the result being that (6.96) now has as its meaning
the proposition that there is no doping cyclist that races.

And so the tack of reanalyzing DyCG to yield quantifiers that are based
on the flatten function ⇓ seems less than promising. It makes possible
analyses of supplements with quantificational anchors, which should be
ruled out, and worse, it does so at the cost of losing the distinction between
sense and implicature and yielding odd truth conditions.

6.5.4 Potential Solutions 227

However, notice that there is a straightforward argument about why
supplements with quantificational anchors are odd. In all of the follow-
ing examples, repeated from above, the infelicity is related to pragmatic
concerns associated with the use of the quantificational anchor.

(6.83) # No reporteri believes that Ames, often a subject of hisi columns,
is a spy.

(6.84) # Every Dutch boxer, a famous one, won the tournament.

(6.96) # No cyclist, a doper, raced in the Tour de France.

For (6.83), the oddity is centered around Ames’s supposedly being the
subject of no reporter’s columns. Given what speakers know about tourna-
ments, (6.84) is strange because it states that every boxer one won. And the
infelicity in (6.96) is similar to (6.83) in that adding the information that no
cyclist is a doper is puzzling.

In view of the pragmatic oddity of these examples, we might make an
appeal to a pragmatic process that rules out supplements with quantifica-
tional anchors on the basis of implausibility. Nouwen’s (2007) approach
to ruling out quantified supplements offers a promising way to formalize
this intuition. Nouwen notes that (6.102) and (6.103) are both perfectly
felicitous:

(6.102) Every Dutch boxer took part in the event. They are all famous.

(6.103) Every climber, all experienced adventurers, made it to the summit.
(Nouwen, 2007, examples 10 and 20)

However, (6.102) becomes infelicitous if the second utterance is replaced
by # He is famous, and similarly, (6.103) is no longer acceptable if the
appositive is replaced by # an experienced adventurer. On the basis of such
evidence, he constructs an account in which quantified supplements are
ruled out because “strong quantifiers” (such as every and no) introduce
plural antecedents into the discourse, but any supplements in their scope
expect a singular antecedent, as in (6.84).

An approach like Nouwen’s could be implemented in DyCG, and it
would render the theory incapable of deriving signs for all of (6.83), (6.84),
(6.96), and similar examples in which a supplement has a quantificational
anchor, as desired. Unfortunately, there are still other examples that would
be insusceptible to a remedy like Nouwen’s:

6.5.4 Potential Solutions 228

(6.104) No Tibetan Buddhisti believes that the Dalai Lama, hisi spiritual
mentor, would ever bow to Chinese pressure tactics.
(Carl Pollard, personal communication)

(6.105) Every professional mani I polled said that while hisi wifej, who
had earned a bachelor’s degreek, nevertheless had no work ex-
perience, hei thought shej could use itk to get a good job if shej
needed one.
(Amaral et al., 2007, example 35, intended reading subscripts
mine)

The singular pronoun hisi in (6.104) seems to have no problem accessing its
antecedent, the Tibetan Buddhist in the restrictor of No, as its antecedent.
In (6.105), the nonrestrictive relative who had earned a bachelor’s degree applies
to every professional man’s wife, yet its anchor is the singular hisi wifej.
These examples run counter to Nouwen’s approach of ruling out quantified
supplements when the anaphor is singular.

But notice that there is a crucial difference between the acceptable (6.104)
and (6.105) and the unacceptable (6.84) and (6.96). In the unacceptable
examples, the anchor of the supplement is a generalized quantifier, but for
the acceptable ones, the supplement’s anchor is instead a definite that is
itself anteceded by a quantifier. This difference hints toward an analysis
in which supplements are treated as being anaphoric to an antecedent, so
that in cases like (6.84) and (6.96), the reason for the infelicity is that Every
and No do not give rise to discourse referents that can later serve as the
antecedents for definite anaphora. Such an analysis would also assume
that examples like (6.83), which would otherwise be felicitous, are ruled
out on the basis of pragmatic factors.

In the case of (6.105), part of the challenge seems to be to allow each
professional man’s wife’s bachelor’s degree to be represented in both the
sense and implicature. Similarly, an account of (6.104) needs to give a
representation whose sense is that no Tibetan Buddhist believes the Dalai
Lama would bow to Chinese pressure, and whose implicature is that he
is every Tibetan Buddhist’s spiritual mentor. To be fully successful, an
account would need to accomplish both of these while still disallowing
the quantificational anchor in examples like (6.84) and (6.96). I leave the
implementation of a solution to the problem of quantified supplements in
DyCG as a question for further research.

6.6 Summary 229

6.6 Summary

In this chapter, I showed how the two-level extensions to the DyCG machin-
ery for modeling the implicatures associated with anaphora from chapter
5 can also be extended to handle nonanaphoric conventional implicatures
such as supplements and expressives. For supplements, the approach
I use involves writing lexical entries for the comma intonation that sur-
rounds nominal appositives, nonrestrictive relatives and parentheticals that
essentially treat it as turning sense content into implicature. The lexical
entries for expressives like damn are similar: they are treated as common
noun modifiers that leave their argument’s sense proposition untouched
but contribute the additional implicature of a negative attitude toward the
associated property.

I would argue that the approach pursued in this chapter compares favor-
ably with other accounts of variable conventional implicatures. The work
of Potts (2005), the first major formal attempt to focus on the phenomena
examined here, has some very serious flaws. Probably the most serious was
originally pointed out by Amaral et al. (2007): Potts’s meaning “dimensions”
are simply prohibited from interacting with respect to anaphora, which is
very much at odds with the empirical facts, as I discuss in §6.3. The account
I propose here not only allows anaphora between sense and implicature,
but does so without requiring any further extensions than the mechanisms
for modeling anaphora explored in chapter 5. In addition to this positive
characteristic, my account of supplements also allows them to be stacked
(§6.1.1.1), which a recent alternative to Potts’s theory due to Nouwen (2007)
does not.

One of the other attractive attributes of the account given here is that
it is relatively straightforward compared with alternatives. Its two-level
architecture can be seen as essentially an adaptation of Karttunen and
Peters’s (1979) two-level semantics to the dynamic setting, with one level
for sense content and a second for implicature content. Unlike the accounts
of variable conventional implicatures due to Kubota and Uegaki (2009)
or Barker et al. (2010), the technique of continuations is not pursued, thus
avoiding considerable technical complications. And unlike Nouwen’s (2007)
two-level dynamic semantics, no mechanism is required for managing the
switch between the sense and implicature content types. For DyCG, there
are a few adjustments necessary to move to a two-level semantics, but
beyond those, nearly everything is handled in the lexical entries themselves.

6.6 Summary 230

The DyCG account of variable conventional implicatures also compares
favorably with Potts’s on a technical level in addition to being more empiri-
cally adequate. The theory in Potts 2005 requires the additional complexity
of a separate type hierarchy for meanings that contribute implicatures in
addition to senses, then a rule of “parsetree interpretation” that traverses a
meaning language representation to aggregate all of the implicature con-
tent. For DyCG, sense and implicature are computed compositionally in
parallel, with each combinatoric step resulting in a pair of contexts (each
parameterized by an input entity vector) capturing both types of meaning
as computed up to that point.

I demonstrated in §6.4 that the generalized notion of felicity developed
in chapter 5 really is general enough to capture cases of infelicity involving
supplements and expressives. The cases when these variable conventional
implicature meanings give rise to infelicity is the exact reason that infelicity
can arise for definites: a variable conventional implicature is infelicitous
when its dynamic meaning is in conflict with the context of interpretation
in the sense of yielding an inconsistent context.

Lastly, §6.5 reprises Karttunen and Peters’s “binding problem,” specifi-
cally, discussing how an analog of the binding problem does not arise in
DyCG even if the original analysis of manage were followed. A simpler
analysis in which no problem arises is also provided, based on a reanalysis
of manage as a nonconventional implicature. I then show how a related
problem arises in DyCG for supplements that have a quantificational an-
chor. I propose some potential solutions to this problem, entertaining
the adoption a variant of Nouwen’s (2007) analysis which casts “strong”
quantifiers as yielding plural antecedents. An improved analysis would
likely cast supplements as being anaphoric to an antecedent, although there
are some unresolved issues, as I show.

Chapter 7 presents a conclusion of this thesis, evaluating its approach to
compositionally and dynamically modeling meanings that incorporate both
sense and implicature content. It discusses some remaining loose ends,
and speculates about some possibilities for computationally implementing
DyCG as presented so far.

Chapter 7

Conclusions and Future
Directions

In this thesis, I have developed and formally implemented a characteri-
zation of what Simons et al. (2010) call projective meaning: aspects of the
meanings of utterances that persist even when they occur within the scope
of a semantic operator. This characterization, which expands on Grice’s
(1975) characterization of implicatures, allows phenomena such as ana-
phora, nominal appositives, and expressives, which are often treated as
disparate in the semantics literature, to be classified and accounted for
under a single, general mechanism.

In this way of classifying meanings, presupposition satisfaction and
presupposition failure are not thought of as the primary source of infelicity.
In fact, the felicity constraints usually called presuppositions are simply the
implicatures associated with anaphora, which are merely an instance of a
more general phenomenon in which an implicature gives rise to an incon-
sistent discourse context. The notion of felicity explored in this thesis is
general enough to encompass not only anaphora, but also the variable con-
ventional implicatures associated with appositives, nonrestrictive relatives,
parentheticals, and expressives.

The formal encoding of these ideas is designed as a discourse semantics
that captures the insights of Kamp (1981), Heim (1982), Groenendijk and
Stokhof (1990, 1991), Muskens (1994, 1996), Beaver (2001), and de Groote
(2006) while requiring the least amount of technical machinery. The ap-
proach I propose starts with a basic static semantics that has only the
essentials needed to model a logic of propositions: necessarily true and

231

Chapter 7 Conclusions and Future Directions 232

false propositions, negation, the binary operations of conjunction, disjunc-
tion, and implication, and the existential and universal quantifiers. It makes
no assumptions about how (or even whether) a notion of possible worlds
underlies the propositions themselves, nor about the models needed to
interpret the logic of propositions.

Then a dynamic semantics is built on top of this static logic of proposi-
tions by modeling the meanings of declarative utterances as functions from
contexts to contexts, where a context is simply a function from a vector of
entities to a proposition, and a discourse referent is just an index into the
context’s domain. The upshot is that any static semantics which has a logic
of propositions as a subsystem can be turned into a dynamic semantics by
following this method.

The resulting dynamic semantics itself is based on three central notions
from the dynamic tradition. The first has to do with the asymmetric nature
of conjunction in discourse, with the second conjunct interpreted in the
context obtained by integrating the first conjunct’s content into the input
context. The second is that the existential quantifier, used in the dynamic
meaning of indefinites, has the effect of introducing a new discourse
referent. And the third is that negation limits the scope of discourse
referents, here by existentially binding them. By merely changing the type
of the meanings of declaratives and redefining these three operators, a
dynamic semantics results that can model anaphoric accessibility across
arbitrary stretches of discourse, including so-called ‘donkey anaphora.’

In order to formally encode the empirical characterization of senses
and implicatures I propose, the dynamic semantics is next extended so that
declaratives are treated are functions from a context into a pair of contexts,
rather than a single context. One of these propositions bears the sense
content of an expression, and the other bears any implicatures it gives rise
to. On a conceptual level, this approach can be thought of as a blending
of the two-level semantics proposed by Karttunen and Peters (1979) with
the branch of dynamic semantics most closely associated with Heim (1982,
1983a, 1992) and Beaver (2001).

There is also a sense in which the two-level dynamic semantics I in-
vestigate here is a generalization of Potts’s (2005) logic of conventional
implicatures. However, rather than keeping sense and implicature content
completely separate and then aggregating the two levels together after an
utterance has been fully derived, my formal theory allows sense and impli-
cature to interact at every compositional step. As Amaral et al. (2007) point

7.1 Persistent Entailments in DyCG 233

out, this is more in line with the empirical facts related to implicatures. The
framework I propose also allows a formal account of both anaphora and the
nonanaphoric conventional implicatures using the same basic mechanisms
for managing sense and implicature content.

I argue that the two-level dynamic semantics explored in this thesis
compares favorably with other attempts to model sense and implicature
in discourse, including not only the classic dynamic theories due to Kamp
(1981), Heim (1982), and Groenendijk and Stokhof (1990, 1991), but also
more recent accounts such as those due to Potts (2005), Nouwen (2007),
Kubota and Uegaki (2009), and Barker et al. (2010). In this chapter, I offer
some potential future directions in which the theory presented in this thesis
might be elaborated and implemented.

Specifically, §7.1 points toward a DyCG account of nonconventional im-
plicatures like those associated with factives, achievements, and aspectuals,
which can give rise to persistent entailments. I briefly sketch a way that the
dynamic semantics developed in this thesis might be extended to model
the anchoring of implicatures to different points of view in §7.2, and in §7.3,
I speculate on some issues that would be involved in any computational
implementation of my formal theory of discourse. Finally, §7.4 sums up.

7.1 Persistent Entailments in DyCG

In chapters 5 and 6, I discuss at length a detailed DyCG account of con-
ventional implicatures. The reason there is no chapter dealing with the
nonconventional implicatures discussed in §2.3 is that a DyCG account of
these implicatures is simply not very interesting. The nonconventional im-
plicatures triggered by the use of factives, achievements, and aspectuals are
not part of their conventional meanings, but rather result from entailments
that may persist beyond the scope of enclosing operators.

As a very simple example, I show how a DyCG account of the achieve-
ment win might go, for

(7.1) Lance won the Tour de France.

Since the dynamic meanings of Lance and win have already been given in
equations (5.7) and (6.40), respectively, we only need a DyCG semantics
for the noun phrase the Tour de France. For simplicity, I give a lexical entry

7.1 Persistent Entailments in DyCG 234

corresponding to this noun phrase as follows:

` λ f . f (the · Tour · de · France) ; (NP(S)(S ; the tour-de-france

Here, tour-de-france =def (dyn1 tour-de-france) is the dynamic property
of being the Tour de France, with tour-de-france : e→ p its corresponding
static version.

With this extension to the lexicon, DyCG derives the correct surface
string corresponding to (7.1), namely

` Lance ·won · the · Tour · de · France : s ,

and the derived sign’s abstract syntactic category is S, as expected. A DyCG
semantics for (7.1) can be given as shown below.

` lancen.(the tour-de-france)m.win m n

= (the named-lance)n.(the tour-de-france)m.win m n

≡ λcλx|c| .(win x(the tour-de-france c) x(thenamed-lance c)) |
λx|c| .(exists!n:ω|c|c k-entails (named-lance n)) and

exists!n:ω|c| .c k-entails (tour-de-france n) : k

(A different semantic scoping can also be given for (7.1) in which the Tour
de France outscopes Lance, but the results are equivalent.) This semantics
is unremarkable: ignoring the implicatures associated with the definite
anaphora, the sense proposition simply states that Lance won the Tour de
France, as desired for (7.1). The preparatory phase associated with win that
Lance entered the Tour is just an entailment.

If this DyCG semantics for (7.1) were adapted for a variant in which win
were outscoped by an operator, the entailment of win’s preparatory phase
would not necessarily persist. But the preparatory phase could still be
inferred, for example, in a context where the interlocutors were discussing
which Tours de France Lance participated in, illustrated below.

Context (7.2): The interlocutors are discussing which of the Tours de France
Lance is known to have entered.

(7.1′) Lance didn’t win the Tour de France in 1996.

For (7.1′) uttered in a context like (7.2), the addressee might infer that the
speaker intended for the 1996 Tour to count as one of the ones Lance entered.

7.2 Towards an Account of Anchoring 235

But it seems to me that accounting for the likelihood of an addressee making
such an inference is heavily influenced by the pragmatics of the situation
and the discourse context, and as such, I leave the task of accounting for it
outside the formal semantic theory.

7.2 Towards an Account of Anchoring

Ideally, a semantic theory for implicatures should have a way to represent
anchoring to a point of view since, as chapter 2 discusses, point of view
anchoring is among the criteria that distinguish implicatures. To recall an
implicature that can take on a point of view different from the speaker’s,
consider

(2.74) Kim has never smoked in her life, but Robin thinks Kim stopped
smoking.

In (2.74), it cannot be inferred that the speaker believes Kim used to smoke,
the pre-state implication associated with stopped, because the speaker ex-
plicitly denies it. Instead, the addressee must infer that Kim believes Kim
used to smoke. Compare this with

(2.10) Kim stopped smoking.

Depending on the context in which (2.10) is uttered, the addressee may
infer that the speaker believes the pre-state implication of stopped that Kim
used to smoke. This contrasts with (2.74), where such an inference is only
possible if attributed to Kim. For the following example, the addressee may
infer that the speaker believes Kim used to smoke, depending on the prior
context:

(7.3) Robin thinks Kim stopped smoking.

However, note that the addressee for (7.3) must infer that Robin thinks Kim
used to smoke—the pre-state is an entailment of stopped when it is not
embedded beneath an operator.

Clearly, what determines which inference the addressee makes in the
less constrained (7.3) are sensitive to context and other pragmatic factors,
some of which may even be nonlinguistic. But the importance of these
factors do not necessarily preclude the semantic theory from providing a
representation of anchoring to a specific point of view, even if the theory is
not able to say exactly when and how point of view gets shifted for every

7.2 Towards an Account of Anchoring 236

case. In this section, I sketch a way that certain aspects of point of view
anchoring could be implemented in the DyCG semantic theory.

To start with, the type c of discourse contexts would need to be elabo-
rated so that point of view information could be tracked for each proposi-
tion contributed. Both the sense and implicature propositions would need
to be more finely grained, as (characteristic functions of) sets of pairs of a
discourse referent and a proposition. That is, the type p of propositions
from the definition of c in equation (4.2) would be replaced by the type

P =def (ω× p)→ t .(7.4)

Then the type of contexts would be redefined as

cn =def en → P ,(7.5)

so that contexts are functions from a vector of entities, as before, but the
single proposition is replaced by a set of pairs of a discourse referent and a
proposition. The discourse referent component represents the associated
point of view, and the proposition the meaning contribution, as before.

The contributions made by dynamic meanings would need to change to
pairs of the form 〈n, p〉, where n is a natural number among the discourse
referents in the input vector and p is the proposition anchored to the point
of view associated with n. In view of this, contexts would need to maintain
a distinguished discourse referent as the currently represented point of
view. To access this information, a suitably axiomatized function pov, with
the type

pov : Πc:c.ω|c| ,

could be defined to provide the current point of view for a given context.
A ‘default’ point of view, associated with the speaker, would then need to
be stipulated, for example, the discourse referent 0, although this would
have the implication that no context could ever have arity 0. But with pov

defined, each contribution to the sense or implicature part of a dynamic
meaning would be of the form 〈(pov c), p〉, where c is the current context
and p is the proposition being contributed.

For variable conventional implicatures like appositives, parentheticals,
nonrestrictive relatives, and expressives, for which point of view anchoring
can be altered by contextual factors, the function pov would serve as a
‘hook’ for discourse pragmatics to influence how dynamic meanings are

7.3 Computational Considerations 237

represented. But for the nonconventional implicatures (factives, aspectuals,
achievements), things could be made more concrete. For example, the
meanings of attitude predicates such as think, believe, etc., could be defined
to give them the ability to modify the value returned by pov for the current
context. This way, for (2.74), the dynamic meaning of thinks could inspect
the context to find that the pre-state implication of stopped smoking is in
conflict with the speaker’s stated beliefs, and as a result change the point
of view to the subject of thinks, namely Robin. This approach would
also require a redefinition of the notions of consistency and felicity from
definitions 5.5 and 5.6 to take into account the point of view information.

I did not fully pursue a model of anchoring in this thesis because
there is already so much to say about the conventional implicatures. The
topic of point of view opens the door to so much of indexicality and the
pragmatics of beliefs and belief reports as to put anchoring beyond the
scope of my analysis. But I think the sketch I offer above holds promise
for implementing in a framework like DyCG the parts of point of view
anchoring that belong in a compositional semantics.

7.3 Computational Considerations

The choice to encode DyCG in type theory has many desirable conse-
quences. From a purely formal standpoint, it is reassuring that DyCG is
grounded in a mainstream area of mathematics that has been the object
of a great deal of study for more than 75 years, and about which much is
understood. From the point of view of linguistic methodology, type theory
provides a straightforward way to translate from a syntax, here tensor-
implication logic, to a compositional semantic representation. Moreover,
as I discuss in chapter 4, the additional expressive power of dependent
type theory provides a built-in mechanism for tracking information about
contexts such as the number of available discourse referents, and thus is
well suited to implementing a compositional dynamic semantics.

This section is concerned with the positive attributes of DyCG from
still another vantage point: its prospects for computational implementation.
An implementation of a compositional dynamic theory could have impacts
on natural language processing tasks as diverse as dialog systems, text
mining, document summarization, and machine translation. Such an
implementation already exists in the form of the implementation of van der

7.3 Computational Considerations 238

Sandt’s (1992) and Geurts’s (1999) anaphoric theory of presupposition due
to Blackburn and Bos (1999) and Bos (2003, 2005) in ProLog, which is built
upon a computational rendering of Kamp’s (1981) Discourse Representation
Theory.

However, this approach is in some ways incompatible with the the-
ory I have explored in this thesis. One incompatibility is that van der
Sandt’s approach is too simplistic, theorizing that all implicature is pre-
suppositional, and moreover, that all presupposition behaves exactly as
does anaphora. Although Venhuizen et al. 2013 shows some promise in
terms of generalizing an implementation of the approach advocated by
van der Sandt and Geurts, it is unclear how to reconcile their approach
with the empirical taxonomy of implicatures I give in chapter 2, in which
only the obligatorily speaker-anchored conventional implicatures behave
like anaphora, but other kinds of implicatures show different behavior.

Another incompatibility between DyCG and the approach of van der
Sandt and Geurts is the central role that accommodation plays in their
theory. In their scheme, any unsatisfied presupposition is accommodated
by repairing the context to contain the required information. DyCG has
no such high-powered accommodation mechanism, which, as I argue in
chapter 2, is too unconstrained. Lastly, the van der Sandt approach is
incompatible with DyCG in that it allows for multiple resolution sites,
whereas in DyCG there is only ever a single input context. As I discuss in
§5.5, the criticism of van der Sandt’s theory due to Beaver (2001, 2002) is
compelling, and moreover, the characterization of aspectuals, achievements,
and factives as nonconventional that I develop in chapter 2 implies that
resolution and accommodation are simply unnecessary for these classes of
implicatures.

Van Eijck and Unger (2010, chapter 12) provide a Haskell implemen-
tation of a dynamic semantics that very closely resembles the single-level
version of DyCG presented in chapter 4. Due to its many similarities with
DyCG, the success of their implementation implies that an implementation
of DyCG would not be too difficult. The following list highlights some of
the ways van Eijck and Unger’s implementation resembles DyCG:

• Discourse referents are modeled as natural numbers using the Haskell
type Int.

7.3 Computational Considerations 239

• The dynamic meanings of declaratives are modeled as functions from
lists of entities to propositions, with discourse referents indices into
the domain.

• The dynamic existential quantifier is implemented based on a very
close analog to the extension function (·)+ from definition 4.7, via the
function extends.

• Dynamic conjunction and negation, as well as the dynamic existen-
tial, are basically straightforward Haskell implementations of the
definitions of and, not, and exists from chapter 4.

• The dynamicizer functions dynn from definition 4.4 are implemented
for intransitives, di- and tritransitives via the functions blowUpPred,
blowUpPred2 and blowUpPred3, respectively.

In §12.7, van Eijck and Unger even provide elaborations to their core
implementation for resolving anaphora, with routines for checking the
descriptive content of definites that are not incompatible with the theory of
anaphora I lay out in chapter 5.

There are some prominent differences between DyCG’s semantics and
van Eijck and Unger’s implementation, such as the type system and the
ways the context is updated. But these differences do not seem insurmount-
able, and I speculate that their software could be extended to the two-level
model of semantics explored for DyCG in chapters 5 and 6 of this thesis
without too much difficulty. It also seems entirely possible to port van Eijck
and Unger’s software to another programming language or even to another
programming paradigm, for example, to the object-oriented language Java,
or to a blended language like Scala.

More work would be required to implement the part of a DyCG system
that allowed signs to be derived. Both the DRT-based implementation of
Blackburn and Bos (1999) and Bos (2003, 2005) and the Haskell dynamic
semantics of van Eijck and Unger (2010) use a basic context-free grammar
as their syntax, and so their approach to syntax is not readily adaptable to
handling syntax in the DyCG setting.

The work of Hepple (1996, 1999) on parsing natural deduction proofs
in (multiplicative) linear logic may prove insightful for the task of parsing
text to yield DyCG signs, at least at the level of abstract syntax. Hepple’s
method seems adaptable to DyCG parsing because most of the moves he

7.4 In Sum 240

makes to simplify the task of parsing linear deductions are quite acceptable
in the DyCG setting. In fact, one of Hepple’s (1996) simplifications, that a
variable name can be used at most once, is already required by the DyCG
grammar rules (see definition 3.2).

Some subtleties would be involved in implementing Hepple’s ideas, as
his chart parsing method works on labeled spans in the input string, and
the corresponding DyCG pheno terms are unreduced lambda terms that
may have undischarged hypotheses accompanying them. One approach
may be to perform β-reduction on the pheno terms when a derived term
has the type s, then compare it against the corresponding span in the string.
This approach could potentially integrate some insights from König’s (1994)
chart-parsing algorithm for Lambek grammars with hypothetical proof.
As for the task of reducing the lambda terms derived for the concrete
syntax and the semantics in parallel with the abstract syntactic parse, a
well-known algorithm for lambda calculus reduction could be used, such
as the one described in Lamping 1990.

7.4 In Sum

The empirical characterization of implicatures I have offered in this thesis,
which extends Grice’s (1975) taxonomy of implicatures based in part on
insights from Simons et al. (2010), represents a different take on persistent
meanings that allows anaphora, what are sometimes called presuppositions,
and the phenomena discussed by Potts (2005) to be unified under the
category of conventional implicature. In this way, it fills in a gap in Grice’s
taxonomy: Grice mentioned conventional implicature as a category, but
said very little else about the members of this category, as his primary
purpose was to characterize conversational implicatures, a category I have
left alone.

The taxonomy I discuss in chapter 2 adds a criterion for distinguishing
implicatures in addition to Grice’s conventional/nonconventional distinc-
tion: the criterion of anchoring to a speaker or nonspeaker point of view.
With this cross-cutting distinction, anaphora can be seen as the class of
conventional implicatures that must be anchored to the speaker, and Potts’s
(2005) “CIs” as the conventional implicatures that can possibly have a non-
speaker anchoring. Certain other lexical items, such as factives, aspectuals,
and achievements, which are sometimes characterized as presupposition

7.4 In Sum 241

triggers, are revealed to belong to a class different from anaphora, namely
the nonconventional implicatures. These lexical items may sometimes give
rise to persistent entailments, but their associated implicatures are highly
sensitive to context because they are not part of the conventional mean-
ings of the words themselves. As a result, the term presupposition, used to
apply to triggers other than anaphora, has no distinguished place in this
taxonomy—anaphora and presupposition are synonyms.

Starting in chapter 3, I then define a new theory of grammar with
a two-part syntax which divides the work between a component that
models combinatorics (abstract syntax or tecto) and one that models word
order (concrete syntax or pheno). I then show, in chapter 4, how to take a
generic static propositional semantics and dynamicize it into a theory of
discourse in the tradition of Karttunen (1974), Heim (1982), Muskens (1994,
1996), Beaver (2001) and de Groote (2006). The resulting semantics is both
compositional in the sense of Montague 1973 and dynamic, with utterances
modeled as functions from discourse contexts to discourse contexts. It
is also quite flexible, as I show in chapters 5 and 6, in that with some
simple extensions, it can be turned into a formally explicit encoding of
the taxonomy of conventional implicatures from chapter 2. The formal
account of conventional implicatures presented here is robust and detailed,
and compares favorably with its competitors. Along the way I revise
and critique some notions central to Potts’s (2005) theory of conventional
implicatures, casting anaphora, supplements, and expressives as members
of a more general class, and calling into question Potts’s idea that no lexical
item can contribute to both the sense and the implicature of an expression.

It is my hope that the groundwork I have laid in this thesis will prove
useful to future research. As I discuss in §7.3, the promise of computational
implementation for the formal theory given here is strong. But it also
leaves open several avenues of further research on a purely theoretical
level. For one, as I discuss in §7.2, the semantics discussed here could
also be extended to an account of point of view anchoring, as part of a
larger treatment of indexicality and belief attribution. Another loose end is
that an in-depth investigation of the proper treatment of supplements with
quantificational anchors is needed (see §6.5.3). Finally, there are questions
that have not even been raised in this thesis that the formal theory I
develop could be brought to bear on, for example, what predictions a
formal implementation of Roberts’s (1996) question under discussion would
make about which entailments persist and what is or is not targeted by

7.4 In Sum 242

semantic operators. I aim to explore these and many other questions in the
future, and I project that the semantics given here will prove a very useful
starting point for taking them on.

Appendix A

Tensor-Implication Logic

The tensor-implication fragment of intuitionistic linear logic (Girard, 1987;
Troelstra, 1992; Girard, 1995) is a subsystem that uses only the multiplicative
connectives ⊗ (tensor product) and((linear implication), along with the
unit 1. It does not make use of the quantifiers, the exponentials, any of the
additive connectives, or the multiplicative disjunction.

This fragment is discussed by Girard, Scedrov, and Scott (1992) as rudi-
mentary linear logic and by Hyland and de Paiva (1993) as tensor-implication
logic, a term I adopt. In this appendix, I give the syntax and proof theory for
tensor-implication logic (§A.1 and §A.1.1), as well as an algebraic semantics
based on de Paiva’s (2002) lineales (§A.2).

A.1 Syntax

Definition A.1 (Formulas). There is a set of atomic formulas, and the
nullary connective 1 is a formula. If A and B are formulas, then so are
(A⊗ B) and (A(B). Nothing else is a formula.

Outer parentheses surrounding formulas are dropped, so that, for example,
(A ⊗ B) is written simply A ⊗ B. The binary connective (is written
right-associatively, with A(B(C abbreviating A((B(C), but ⊗
associates to the left, with A⊗ B⊗ C shorthand for (A⊗ B)⊗ C.

Definition A.2 (Contexts). A context is a finite multiset of formulas. For
contexts Γ and ∆, the context Γ] ∆ is the multiset union of Γ and ∆. The
empty multiset is written ∅.

243

A.1.1 Proof Theory 244

A ` A (Id)

Γ, A ` B ((I)
Γ ` A(B

Γ ` A(B ∆ ` A ((E)
Γ, ∆ ` B

Γ ` A ∆ ` B (⊗I)
Γ, ∆ ` A⊗ B

Γ ` A⊗ B ∆, A, B ` C (⊗E)
Γ, ∆ ` C

` 1 (1I) Γ ` 1 ∆ ` A (1E)
Γ, ∆ ` A

Figure A.1: Inference rule schemas for tensor-implication logic, where A
and B are arbitrary formulas and Γ and ∆ multisets of formulas.

Provability is expressed by sequents of the form Γ ` A, where Γ is a
context and and A is a single formula. Sequents of the form ∅ ` A are
abbreviated as simply ` A. The shorthand Γ, ∆ abbreviates the multiset
union Γ] ∆. Lastly, Γ, A is further shorthand for Γ, {A}.

A.1.1 Proof Theory

Figure A.1 diagrams the rules for tensor-implication logic, which are based
on the natural deduction rules found in Troelstra 1992, chapter 6. Girard
et al. (1992) and Hyland and de Paiva (1993) give an equivalent presentation
using Gentzen sequents.

Natural deduction for tensor-implication logic is simple, with rule
schemas for identity (Id), for introducing and eliminating implications ((I
and (E) and products (⊗I and ⊗E). The rule (E is a straightforward
statement of modus ponens: that A and A(B together imply B. The rule
(I captures its inverse. The introduction rule ⊗I conjoins two formulas
in a resource-sensitive way, since eliminating a product of the form A⊗
B requires a proof of both A and B, as ⊗E makes clear. The schemas
pertaining to the connective 1 essentially state that it is a unit with respect
to ⊗. Using 1I, an instance of the unit 1 can be introduced without its
introduction being ‘remembered,’ and it can be eliminated via 1E with no
effect on the rest of the proof’s structure.

A.2 Algebraic Semantics 245

Definition A.3 (Proof). A proof of the sequent Γ ` A consists of a natural
deduction tree labeled with sequents, where

1. The root node’s label is Γ ` A,

2. Every leaf is labeled with an instantiation of the Id rule, and

3. Every mother node’s label is licensed by an instantiation of one of the
rules in figure A.1 with its daughters.

Each instantiation of a deduction rule can optionally be labeled with the
name of the corresponding rule for greater clarity.

Example A.4. An example tensor-implication proof is given in below, for
A, B, and C metavariables over formulas and Γ abbreviating A((B(C)
for readability.

A⊗ B ` A⊗ B

Γ ` A((B(C) A ` A
((E)

Γ, A ` B(C B ` B ((E)
Γ, A, B ` C (⊗E)

A⊗ B, A((B(C) ` C
((I)

A((B(C) ` (A⊗ B)(C

Importantly, although the structural rule of permutation (also known
as exchange) is implicit in the choice to model contexts as multisets, the
structural rules of weakening and contraction are not available. In a proof of
a sequent of the form ` A, this implies that every formula introduced into
the context by an instance of Id must be ‘used’ exactly once.

A.2 Algebraic Semantics

Several different options for modeling linear logic are available, and an
interpretation of tensor-implication logic can be embedded into any of
them. Girard (1987) originally proposed coherent spaces as models for linear
logic (called phase spaces in Girard 1995), and Troelstra (1992) gives both
generalized algebraic models and alternative categorical models for it.
Yetter (1990) provides an interpretation of linear logic using quantales.

Here, I use a class of models called lineales, due to de Paiva (2002). A
lineale is a specialization of a symmetric monoidal closed category to the
case of ordered algebras. Recall that an ordered monoid is a set M together

A.2 Algebraic Semantics 246

with an order v on M, an associative binary operation ◦ on M that is
monotonic in both arguments, and a two-sided identity 1 for ◦. An ordered
monoid is written as a quadruple 〈M,v, ◦, 1〉.

Let 〈M,v, ◦, 1〉 be an ordered monoid. If a ◦ b = b ◦ a for every a, b ∈ M,
then 〈M,v, ◦, 1〉 is called a commutative monoid. If the set

{m ∈ M | a ◦m v b}

has a greatest member, it is called the relative pseudocomplement of a with
respect to b, and is written a(b.

Definition A.5 (Lineale). A lineale is a commutative monoid such that the
relative pseudocomplement exists for all a, b ∈ M. We denote a lineale by a
quintuple 〈M,v, ◦, 1,(〉, where 〈M,v, ◦, 1〉 is a commutative monoid.

Residuation is an important aspect of the relationship between ◦ and(
in a lineale.

Lemma A.6 (Residuation). In a lineale, for all a, b, c ∈ M we have a ◦ b v c if
and only if a v b(c.

Proof. Let 〈M,v, ◦, 1,(〉 be a lineale with a, b, c ∈ M. Suppose that a ◦ b v
c. Then we have b ◦ a v c by commutativity, and since b(c is greatest in
{m ∈ M | b ◦m v c}, it immediately follows that a v b(c.

Conversely, suppose that a v b(c. Note that we have b ◦ (b(c) v c
by definition. Then, by monotonicity, we have b ◦ a v b ◦ (b (c), and
therefore by transitivity b ◦ a v c. Then a ◦ b v c by commutativity.

Because of the property in lemma A.6, the relative pseudocomplement
operation(is called the residual of ◦.

Models for tensor-implication logic are defined following Troelstra’s
(1992) IL-models.

Definition A.7 (TIL Model). A model of tensor-implication logic, or TIL
model, is a lineale 〈M,v, ◦, 1,(〉 together with a mapping I that interprets
formulas, so that I(A) ∈ M for every atomic A. The interpretation mapping
is extended to the connectives as follows:

I(1) = 1 ,

A.2 Algebraic Semantics 247

and for all formulas A, B,

I(A(B) = I(A)(I(B) , and

I(A⊗ B) = I(A) ◦ I(B) .

Multisets of formulas are interpreted as being concatenated by ◦, with the
empty multiset’s interpretation defined to be

I(∅) = 1 ,

and for Γ, ∆ a multiset of formulas,

I(Γ, ∆) = I(Γ) ◦ I(∆) .

For a given TIL model, the sequent Γ ` A is valid if and only if

I(Γ) v I(A) .

If Γ is empty, we say simply that A is valid. We can now show that every
provable sequent is valid.

Theorem A.8 (Soundness). If the sequent Γ ` A is provable, then Γ ` A is
valid in every TIL model.

Proof. The proof is straightforward but a bit tedious. By induction on
the structure of TIL proofs, we assume Γ ` A and show that this implies
I(Γ) v I(A) for a given TIL model. We consider each deduction rule by
cases based on which rule was last used in the proof. First, note that the Ax
schema A ` A is valid for any formula A since I(A) v I(A) by reflexivity.

In the case of the (I rule, validity of I(Γ) v I(A (B) follows
immediately from I(Γ, A) v I(B) because (is a residual of ◦ by the
Residuation lemma A.6. For (E, we need to show that I(Γ, ∆) v I(B)
follows from assuming I(Γ) v I(A)(I(B) and I(∆) v I(A). We start by
showing that the inductive hypothesis corresponding to the major premise

A.2 Algebraic Semantics 248

of(E implies that I(A) v I(Γ)(I(B):

I(Γ) v I(A)(I(B)

I(Γ) ◦ I(A) v I(B) (by residuation)

I(A) ◦ I(Γ) v I(B) (by commutativity)

I(A) v I(Γ)(I(B) (by residuation)

Then by the assumption that I(∆) v I(A), we have:

I(∆) v I(Γ)(I(B) (by transitivity)

I(∆) ◦ I(Γ) v I(B) (by residuation)

I(Γ) ◦ I(∆) v I(B) (by commutativity)

I(Γ, ∆) v I(B)

So Γ, ∆ ` B is valid whenever Γ ` A(B and ∆ ` A are valid.
The case of the ⊗I rule immediately follows from the monotonicity

of ◦ and the transitivity of v. For the ⊗E rule, we need to show that
I(Γ) v I(A⊗ B) and I(∆, A, B) v I(C) together imply that I(Γ, ∆) v I(C).
Note that we have

I(∆) ◦ I(A) ◦ I(B) v I(C)

I(A) ◦ I(B) ◦ I(∆) v I(C) (by commutativity)

I(A) ◦ I(B) v I(∆)(I(C) (by residuation)

and since I(Γ) v I(A) ◦ I(B), we have I(Γ) v I(∆)(I(C) by transitivity,
and I(Γ) ◦ I(∆) v I(C) immediately follows.

The two cases of rules involving 1 are completely straightforward by
the monotonicity of ◦, the properties of the ordering relation v, and the
identity property of the monoidal unit 1.

To show the converse of theorem A.8, that every valid sequent is prov-
able, we first need to construct a lineale. The method used here uses a
Lindenbaum algebra based on equivalence classes of formulas.

Define the equivalence relation ∼ on the set F of all formulas in terms
of mutual implication, so that for all A, B ∈ F ,

A ∼ B iff ` A(B and ` B(A .

A.2 Algebraic Semantics 249

It is easy to see that ∼ is an equivalence relation on sets of formulas. For
any formula A, the corresponding equivalence class is

[A]∼ = {B | A ∼ B} ,

and is written simply [A] by convention, suppressing the subscript.
The relation v is then defined so that [A] v [B] if and only if ` A(

B. This relation induces the following equivalence on F/ ∼, the set of
equivalence classes of formulas: [A] = [B] if and only if [A] v [B] and
[B] v [A]. That is, v is an order on F/ ∼.

Proposition A.9. Let F/ ∼ and v be defined as above, and for all formulas A
and B, define

[A] ◦ [B] = [A⊗ B] , and

[A]([B] = [A(B] .

Then 〈F/ ∼,v, ◦, {1} ,(〉 is a lineale.

Proof. Clearly ◦ and(are well defined. To see that {1} is an identity for
◦, note that [1] = {1} and for all A ∈ F it is easy to check that

[1⊗ A] = [A] = [A⊗ 1] .

One part of this equivalence follows from proofs of ` (A⊗ 1)(A and
` A ((A ⊗ 1); the other part is demonstrated in a similar way. The
associativity and commutativity of ◦ are also readily verified.

To show that ◦ is monotonic in both arguments, we need to prove that,
for all [A], [B], [C] ∈ F/ ∼, if [A] v [B] then both [A] ◦ [C] v [B] ◦ [C] and
[C] ◦ [A] v [C] ◦ [B]. For the first, note that the following proof is available
from assuming ` A(B:

A⊗ C ` A⊗ C

` A(B A ` A ((E)
A ` B C ` C (⊗I)

A, C ` B⊗ C (⊗E)
A⊗ C ` B⊗ C ((I)

` (A⊗ C)((B⊗ C)

From this it follows that the assumption [A] v [B] leads to [A ⊗ C] v
[B⊗ C], and therefore we have [A] ◦ [C] v [B] ◦ [C], as desired. The proof
that ◦ is monotonic in its second argument is similar.

A.2 Algebraic Semantics 250

It remains to show that the relative pseudocomplement exists for all
[A], [B] ∈ F/ ∼. That is, we need to prove that the set

R = {X ∈ F/ ∼ | [A] ◦ X v [B]}

has a greatest member. Note first that [A] ([B] ∈ R, since the sequent
` (A⊗ (A(B))(B is provable. To see that [A]([B] is greatest in R,
let [C] ∈ R. Since we have [A] ◦ [C] v [B], and therefore ` (A⊗ C)(B,
we can prove the following:

` (A⊗ C)(B
A ` A C ` C (⊗I)

A, C ` A⊗ C
((E)

A, C ` B ((I)
C ` A(B ((I)` C(A(B

Then [C] v [A]([B], and we have shown that 〈F/ ∼,v, ◦, {1} ,(〉 is a
lineale.

Since 〈F/ ∼,v, ◦, {1} ,(〉 is a lineale, we are in a position to prove
completeness. The proof strategy follows Troelstra (1992, chapter 8), but
with respect to a different class of models.

Theorem (Completeness). If I(Γ) v I(A) holds in a TIL model, then Γ ` A is
provable.

Proof. Let 〈F/ ∼,v, ◦, 1,(, I〉 be a TIL model constructed from a lineale
as described above in A.7 and A.9 based on the set F/ ∼ of equivalence
classes of formulas, where I(A) = [A] for every atomic A. It is not hard to
see that I interprets every formula into its corresponding equivalence class.
Now suppose that A is a valid formula, that is, I(∅) v I(A), assuming that
Γ = ∅ without loss of generality. Then we have [1] v [A], and so ` 1(A,
from which ` A follows immediately by 1I and(E.

Appendix B

Type Theory with Cartesian
Products

Type theory, also known as higher-order logic, is a formal system that allows
quantification over variables of all types. It has much in common with the
(simply) typed lambda calculus, with the most important difference being that
the notion of reduction is expressed in the object language rather than in
the metalanguage.

This formalization of type theory essentially follows Church’s (1940)
simple theory of types, with the semantics given by Henkin (1950), extended
with cartesian product types and the associated term constructors and
identities for surjective pairing following Barendregt, Dekkers, and Statman
2013. I adopt many of the elaborations and refinements due to Henkin
(1963) and Andrews (2002) with the exception that I use a simplified axiom
corresponding to β-conversion after Carpenter 1997 (see axiom schema
(B.5) in definition B.12, below).

B.1 Syntax

Definition B.1 (Types). There is a set of basic types that includes at least
the type t of truth values and the unit type 1. Then if A and B are types, so
are (A→ B) and (A× B), and nothing else is a type.

The types t and 1 are the sole logical types; other members of the set of
basic types are called nonlogical types. Unlike Church’s original 1940 system,
which uses a logical type ι of individuals (sometimes written e), there is

251

B.1 Syntax 252

no logical type of individuals. Types of the form A→ B are interpreted as
functions from type A to type B, and types of the form A× B as cartesian
products of the types A and B, with 1 the type of the nullary cartesian
product. Outer parentheses surrounding types built using the binary type
constructors → and × are almost always dropped. Function types are
written right-associatively, with A → B → C abbreviating A → (B → C),
while product types associate to the left, so that A× B× C is shorthand for
(A× B)× C.

Definition B.2 (Variables). There is a countably infinite set of variables of
each type A, written xA

n for n a natural number.

Variable names are usually abbreviated by dropping the subscripted num-
ber and superscripted type when they are irrelevant or clear from context. I
also usually write, for example, x, y, z for xA

0 , xA
1 , xA

2 , respectively, observing
the usual convention that different stand-ins are used for distinct xA

i .

Definition B.3 (Logical Constants). There is a logical constant ∗ of type 1.
For each type A, there is a corresponding logical constant =A, of type
A→ A→ t.

The constant ∗, the nullary cartesian product term, is the only term with the
unit type 1, enforced by equation (B.4), below. The family of constants =A
expresses identity between terms of type A (the rules for term formation are
given below in definition B.4; definition B.12 axiomatizes the =A constants).
The identity constant is usually written infix, with (a =A b) abbreviating
((=A a) b). As a further shorthand, the subscript is usually dropped in
practice when the type is clear from context, so that just = is often written.
In addition to the logical constants, there may also be some nonlogical
constants that are stated in order to model aspects of the empirical domain
in question. Different instances of type theories are obtained by specifying
different sets of nonlogical types and nonlogical constants.

Definition B.4 (Term Formation). Every term is associated with a type. If
a is a term and A is a type, the (typing) declaration a : A says that the type
of a is A.

The set of terms is formed recursively according to the following rules:

1. A variable or constant is a term.

2. If x : A is a variable and b : B, then (λx:Ab) : A→ B.

B.1 Syntax 253

3. If f : A→ B and a : A, then (f a) : B.

4. If a : A and b : B, then 〈a, b〉 : A× B.

5. If c : A× B, then (π1c) : A and (π2c) : B.

In a declaration of the form a : A, the term a is said to be an inhabitant
of the type A. A term can be thought of as a proof that its corresponding
type is inhabited (see chapter 4 of Sørensen and Urzyczyn 2006 for a lucid
overview of the Curry-Howard perspective on terms, types, and proofs).
Terms of the form (λx:Aa) are called (λ-)abstracts; terms of the form (f a)
are called applications. The term 〈a, b〉 is the (ordered) pair of a and b, while
terms of the form (π1c) and (π2c) are the first and second projections of c,
respectively.

Outer parentheses around both abstracts, applications, and projections
are often dropped, and the typing declaration is often elided from variables
occurring as subscripts on a λ symbol when the typing information can be
inferred from context, so that (λx:Aa) becomes simply (λxa). The symbol
. abbreviates parentheses surrounding an abstract, allowing (λxa) to be
shortened to λx.a. Nested abstracts are sometimes abbreviated with a
single . symbol, for example, λxλy.a. Abstracts are sometimes further
abbreviated by subscripting several variables to a single λ symbol, as in
λxy.a. Parentheses around applications and projections are written left-
associatively, with ((f a) b) is abbreviated by (f a b). The angled brackets
surrounding pairs also associate to the left, with 〈a, b, c〉 shorthand for
〈〈a, b〉 , c〉.

Definition B.5 (Variable Contexts). A (variable) context is a finite, unordered
set of declarations of the form {x1 : A1, . . . , xn : An} in which all of the
variables xi are distinct (but the types Ai need not be). For contexts Γ and
∆, the context Γ ∪ ∆ is the union of Γ and ∆.

Similar conventions are observed for variable contexts as for the contexts
of tensor-implication logic (see definition A.2). The context Γ ∪ ∆ is abbre-
viated Γ, ∆, and the context Γ, a : A is shorthand for Γ, {a : A}. The curly
set-formation brackets surrounding contexts are nearly always elided in
practice.

Definition B.6 (Typing Judgments). A (typing) judgment of the form

Γ ` a : A

B.1 Syntax 254

is a metalanguage statement that the declaration a : A is derivable in the
context Γ.

In case Γ is empty, then a : A is a (formal) theorem of type theory and the
corresponding judgment is written simply ` a : A. Judgments with the
truth-value type t are often abbreviated, with Γ ` a : t shortened to Γ ` a.
The notation Γ 0 a : A is used to state that the judgment a : A cannot be
derived in Γ. A term identity is sometimes stated simultaneously with a
typing judgment in the form Γ ` a =A b : A, which is interpreted as saying
that in the context Γ, a and b are proved identical and have the type A.

The following defines some commonly used term shorthands in the
usual way.

Definition B.7 (Term Shorthands). In these definitions, the symbol =def
denotes definitional equality, which is distinct from the term identity
constants =A.

T =def (=t =t→t→t =t)

(∀x:Aa) =def (λx:A.a =A→t λx:A.T)

F =def (∀x:tx)

∧ =def λx:tλy:t.(λ f :t→t→t(f T T)) =(t→t→t)→t (λ f :t→t→t(f x y))

⇒ =def λx:tλy:t.x =t (x ∧ y)

⇔ =def λx:tλy:t.(x ⇒ y) ∧ (y⇒ x)

¬ =def (=t F)

(a 6= b) =def (¬ (a =A b))

∨ =def λx:tλy:t.(¬((¬x) ∧ (¬y)))

(∃x:Aa) =def (¬ (∀x:A(¬ a)))

(∃!x:Aa) =def ∃y:A.((λx:Aa) =A→t (=A y))

Note that the shorthands in definition B.7 are all defined in terms of
λ-abstraction, application, and the logical constant =. The following abbre-
viations are often used. The binary logical connectives are usually written
infix, and outer parentheses are almost always dropped for ¬ and for the bi-
nary functions =, ∧,⇒ and ∨ when they are written infix. The quantifiers
∀ and ∃ observe the same notational shorthand as for λ, so that, for x : A
a variable, ∀x.a and ∃x.a are often written instead of (∀x:Aa) and (∃x:Aa).

B.1.1 Term Identification and Reduction 255

A similar shorthand to the one used for λ is followed for subscripting
multiple variables onto a single quantifier, as in ∀xy.a.

Definition B.8 (Truth-Value Description Operator). The truth-value descrip-
tion operator ιt : (t→ t)→ t is defined as

ιt =def λ f :t→t. f = (λx:tx) .

That is, ιt tests whether a function f : t→ t is the identity function on t.

Theorem B.9 (Generalized Description Operators). If A is a type, then for
each f : A → t, the description operator ιA : (A → t) → A yields the unique
inhabitant a : A such that (f a) = T, provided one exists. Otherwise, ιA yields a
distinguished fixed inhabitant of A.

Proof. See Henkin 1963, §4.9.

The description operators use the following shorthand, by analogy to the
quantifiers ∀ and ∃:

(ι

x:Aa) =def (ιA λx:A.a)

Here, a : t and A is any type.

B.1.1 Term Identification and Reduction

Definition B.10 (Binding and Substitutability). An occurrence of the vari-
able x is (λ-)bound in the term a if it is in a part of a of the form (λxb). An
occurrence of x is otherwise free in a. The term b is substitutable for x in a if
x does not occur free in a part of a of the form (λyc), where y occurs free
in b.

Note that in the judgment Γ ` a : A, the free variables of a are contained in
Γ. If a term a contains no free occurrence of a variable, then a is said to be
closed.

Terms are derived based on previously-derived term identities by in-
voking the substitution rule in definition B.11.

Definition B.11 (Substitution Rule). If a : A and b = c, then a term of type
A is obtainable by replacing a single free instance of b with c in a.

The notation a[b/x] is used to denote the term that results from repeatedly
applying the substitution rule to replace each free occurrence of the variable

B.1.1 Term Identification and Reduction 256

x in a with b. The term a[b/x] is called the capture-avoiding substitution of b
for x in a, and can be performed even when b is not substitutable for x in
a because a term equivalent to a with different bound variable names can
always be obtained (see the α-conversion theorem B.16, below). In view
of this, I observe the usual practice of renaming bound variables without
mention in invocations of the substitution rule where the substitutability
provision fails.

The term identities in definition B.12 are the (logical) axiom schemas
of type theory. They provide a starting point for applying the substitution
rule by stipulating the behavior of the logical constants. Nonlogical axioms
are also definable by stating judgments with empty contexts of the form
` c : A, where c is a nonlogical constant.

Definition B.12 (Axioms for Term Identity).

((f T) ∧ (f F)) =t ∀x:t.(f x) for f : t→ t(B.1)

(x =A y)⇒ ((f x) =t (f y)) for x : A, y : A, f : A→ t(B.2)

(f =A→B g) =t ∀x:A.(f x) =B (g x) for f : A→ B, g : A→ B(B.3)

u =1 ∗ for u : 1(B.4)

((λx:Ab) a) =B b[a/x] for a : A, b : B(B.5)

(π1 〈a, b〉) =A a for a : A, b : B(B.6)

(π2 〈a, b〉) =B b for a : A, b : B(B.7)

〈(π1c), (π2c)〉 =A×B c for c : A× B(B.8)

The first three of the axioms in definition B.12 ensure that functions behave
as expected. Equation (B.1) essentially states that there are exactly two
truth values: if a function of type t→ t (a property of truth values) holds
for both T and F, then it holds for every truth value. The fact that identical
terms are indiscernible is expressed by (B.2), which states that x : A and
y : A being identical implies that every property with domain A yields
the same value for both. (A more general version of the axiom in (B.2) is
straightforwardly derivable with f : A→ B for any type B.) Equation (B.3)
encodes extensionality for functional terms by requiring that two functions
yielding the same value on every input be identical, and (B.4) says that the
term of the unit type 1 is unique.

Substitution of suitable arguments into the body of abstracts is ax-
iomatized in (B.5), and the projection of pair terms to their respective

B.1.1 Term Identification and Reduction 257

components is defined in (B.6) and (B.7). Taken together, (B.5), (B.6), and
(B.7) encode the notion of β-conversion from the lambda calculus (Baren-
dregt, 1980) as term identities. Equation (B.8) encodes surjective pairing,
which can be thought of as a form of η-conversion for products terms (see
theorem B.15, below). Based on the substitution rule and the axioms in
definition B.12, analogs of modus ponens, the deduction theorem, universal
generalization and instantiation, etc., are available for the term logic of type
theory. See Andrews 2002 for details.

Theorem B.13 (Term Equivalence). The term identity constant =A induces an
equivalence relation on the set of terms of type A, since for all terms a : A, b : A
and c : A, we have:

a = a (reflexivity)

If a = b and b = c, then a = c (transitivity)

If a = b, then b = a (symmetry)

Proof. For reflexivity, invoke the β-conversion axiom in (B.5) using the
identity function λx.x : A → A applied to a. The rest of the proof is
straightforward based on reflexivity and the substitution rule in definition
B.11.

Theorem B.14 (Identity of Biimplication). For every x : t and y : t, we have
(x ⇔ y) = (x = y).

Proof. Let x : t and y : t. First, note that the ∧ operation, as defined in B.7,
is commutative: (x ∧ y) = (y∧ x). Suppose that both (x ⇒ y) and (y⇒ x).
Then by the definition of ⇒, we have x = (x ∧ y) and y = (y ∧ x), and
therefore x = y by the substitution rule, the commutativity of ∧, and the
properties of = established in the Term Equivalence theorem (B.13).

Conversely, assume that x = y. It follows that x = (x∧ x) = (y∧ y) = y,
and so (x ⇔ y) by substitution and Term Equivalence.

In light of theorem B.14, I often observe the convention of writing⇔ rather
than =t.

Two important term identities corresponding to η-conversion and α-
conversion in the lambda calculus are derivable in type theory.

Theorem B.15 (η-Conversion). If f : A → B and x : A is a variable not
occurring free in f , then λx.(f x) = f .

B.1.1 Term Identification and Reduction 258

Proof. Invoke the substitution rule along with the functional extensionality
(B.3) and β-conversion (B.5) axiom schemas.

The intuition behind η-conversion is that functional terms do not change
when their λ-bindings are stripped away as long as bound variables do not
become free.

Theorem B.16 (α-Conversion). Let a : A and x : B, y : B be variables such that
y is substitutable for x in a but y does not occur free in a. Then λx.a = λy.a[y/x].

Proof. Use the η-conversion theorem and the β-conversion axiom schema
in (B.5).

The identity in theorem B.16 shows that the choice of variable names is
irrelevant, since abstracts are equivalent up to alphabetic change of their
bound variables. Chapter 5 of Andrews 2002 contains proofs for both of
these identities that use a slightly different, but equivalent, axiomatization
of the term identities in definition B.12.

In an instance of η-conversion of the form λx.(f x) = f , the term to the
left of the = symbol is called an η-redex, and the term to the right is called an
η-contractum. The substitution of a η-redex for its corresponding contractum
is called η-expansion. An η-reduction occurs when a η-contractum replaces
its corresponding redex. Similar terminology is used for β-conversions that
instantiate the axiom schemas in (B.5), (B.6), and (B.7). The term reduction
subsumes both β- and η-reduction, and similarly for expansion. The cover
term (λ-)conversion is used for α-, β-, and η-conversion.

Lastly, we have the following, reflecting the fact that the term logic is
classical.

Theorem B.17 (Double Negation Elimination). For every a : t, we have

(¬ (¬ a)) = a .

Proof. Let a : t and note that, by definition B.7, we have (¬ a) = (a = F).
By axiom (B.1), there are two cases, depending on whether a = T or
a = F. Supposing a = T, we have ((T = F) = F) = T by substitution and
“Rule T” (Andrews, 2002). On the other hand, supposing a = F, we have
((F = F) = F) = F. See Andrews 2002, chapter 5 for more details.

B.1.2 Term Normalization 259

B.1.2 Term Normalization

Definition B.18 (Normal Form). A term a is in (βη-)normal form if there
is no term that can be obtained from a by reduction. A term rendered in
normal form is said to be normalized.

Example B.19. Consider the functional term

S =def λ f λgλx. f x (g x) : (A→ B→ A)→ (A→ B)→ A→ A

applied to two variants of constant functions, defined schematically as

KA,B =def λaλb.a : A→ B→ A ,

so that they always return the value of their first argument regardless of
what the value of the second is. Assuming y : B, the term (S KA,B (KB,A y))
can be reduced to a normal form as follows, invoking the substitution rule
in conjunction with the indicated identity at each step:

S KA,B (KB,A y) = (λ f λgλx.(f x (g x))KA,B (KB,A y)) (definition)

= (λgλx.(KA,B x (g x)) (KB,A y)) (β-reduction (B.5))

= λx.KA,B x (KB,A y x) (β-reduction)

= λx.(λaλb.a x) (KB,A y x) (definition)

= λx.(λaλb.a x) (λb.y x) (definition)

= λx.(λaλb.a x) y (β-reduction)

= λx.(λbx) y (β-reduction)

= λx.x (β-reduction)

Since no further reduction is possible, λx.x : A→ A (the identity function
on A), is a normal form for S KA,B (KB,A y). This is a type-theoretic recon-
struction of a well-known identity in combinatory logic (Curry and Feys,
1958).

Term reduction in type theory shares some notable properties of the
typed lambda calculus. Like the typed lambda calculus, but in contrast
with the untyped lambda calculus, we have the following:

Theorem B.20 (Normalizability). Every term has a normal form.

B.1.3 Proof Theory 260

Moreover, every reduction strategy for a given term terminates, that is,
every term is strongly normalizable.

Theorem B.21 (Strong Normalization). If a is a term, then there is no infinite
sequence of reductions starting from a.

An important implication of the normalizability and strong normalization
properties is that a normal form for any term can always be obtained after
finitely many reduction steps. Thus every term is normalizable regardless
of the chosen reduction strategy.

Finally, we have the Church-Rosser property, sometimes referred to as the
diamond property or the property of confluence:

Theorem B.22 (Church-Rosser). If a = b and a = c, then there is a term d such
that b = d and c = d.

This theorem states, intuitively, that in terms where multiple reductions
are possible, the order in which the reductions are carried out is irrelevant
because every term has a (unique) normal form. As a consequence of the
Church-Rosser property and the fact that all terms are strongly normaliz-
able, any two terms can be compared for identity by normalizing them and
then comparing their normal forms.

See Sørensen and Urzyczyn 2006, chapter 3 for proofs of theorems B.20,
B.21, and B.22 in the context of an in-depth discussion of reduction in
the simply typed lambda calculus. Barendregt (1980) gives two proofs of
the Church-Rosser theorem for the untyped lambda calculus, and Lambek
and Scott (1986) provide a proof for type theory in a categorical setting.
Barendregt et al. (2013) extend the proofs of normalizability, strong nor-
malization, and the Church-Rosser property for the typed lambda calculus
extended with surjective pairing, results that do not hold for the untyped
lambda calculus.

B.1.3 Proof Theory

The inference rules for type theory are given in figure B.1 in a natural
deduction presentation. Note that the structural rules of permutation,
weakening, and contraction are implicit since contexts are modeled as sets
of typing declarations.

The rules for introducing and eliminating functional types (→I and
→E) capture clauses 2 and 3 for term formation in definition B.4. Rules ×I

B.1.3 Proof Theory 261

` c : A (Const) x : A ` x : A (Var)

Γ, x : A ` b : B (→I)
Γ ` (λxb) : A→ B

Γ ` f : A→ B ∆ ` a : A
(→E)

Γ, ∆ ` (f a) : B

Γ ` a : A ∆ ` b : B (×I)
Γ, ∆ ` 〈a, b〉 : A× B

Γ ` a : A1 × A2 (×Ei) i ∈ {1, 2}
Γ ` (πia) : Ai

Figure B.1: Inference rule schemas for type theory. The symbols c in the
Const rule and x in the Var rule are metavariables over (both logical and
nonlogical) constants and variables, respectively. The symbols A, B, A1,
and A2 are metavariables over types, and both Γ and ∆ are metavariables
over contexts.

and ×Ei provide the counterpart of→I and→E for pairing and projection
in clauses 4 and 5. The rule ×Ei is expressed as a shorthand for two distinct
rules, one for the first projection of a pair (×E1), and one for the second
projection (×E2).

When a variable is introduced into a derivation via the Var rule, the in-
troduction is ‘remembered’ by the variable context. This contrasts with the
Const rules for introducing constants, which does not add the introduced
constant to the context because it is not a variable and therefore cannot be
used to create an abstract.

The structural rules of permutation (also known as exchange), weakening,
and contraction are available, and are diagrammed in natural deduction
presentation in figure B.2. Instances of the structural rules are usually
elided without mention.

The definition of proof is similar to the one given in definition A.3
for tensor-implication logic, except that sequents are replaced by typing
judgments.

Definition B.23 (Proofs). A proof of the typing judgment Γ ` a : A is a
natural deduction tree labeled with typing judgments, where

1. The label of the root is Γ ` a : A,

2. The label of each leaf is an instantiation of either Const or Var, and

B.1.3 Proof Theory 262

Γ, x : A, y : B, ∆ ` c : C
(Permutation)

Γ, y : B, x : A, ∆ ` c : C

Γ, x : A ` c : C (Weakening)
Γ, x : A, y : B ` c : C

Γ, x : A, x : A ` c : C (Contraction)
Γ, x : A ` c : C

Figure B.2: Structural rule schemas for type theory, with x and y ranging
over variables, c a metavariable over terms, and A, B, and C metavariables
over types.

3. The label of each mother node is licensed by an instantiation of one
of the rules in figure B.1 or B.2 by its daughters.

As for tensor-implication proofs, rule labels are sometimes given to
clarify a proof’s structure. The following example demonstrates a basic
syntactic result that can be obtained using the inference rules for type
theory.

Example B.24. The following is a proof that suitably typed functions can
be composed, with A, B, and C metavariables over types and Γ shorthand
for the context { f : A→ B, x : A}.
(B.9)

g : B→ C ` g : B→ C
f : A→ B ` f : A→ B x : A ` x : A

(→E)
Γ ` (f x) : B

(→E)
g : B→ C, Γ ` (g (f x)) : C

(→I)
g : B→ C, f : A→ B ` λx.g (f x) : A→ C

This proof shows that, assuming functions f : A → B and g : B → C, the
function λx.g (f x) : A→ C can be obtained that composes the effects of f
and g.

Importantly, the judgment labeling the root node of the tree contains
all of the information needed to reconstruct a proof of the resulting term.
Each application of the form (a b) corresponds to an instantiation of the
→E schema, and the occurrence of the λ-bound variable corresponds to an
instantiation of→I. The bound variable x itself corresponds to an instance

B.2 Semantics 263

of the Var rule, as do the undischarged functional variables f : A→ B and
g : B→ C, which remain as hypotheses. The→I rule can then be invoked
twice to give a term that composes any two suitably typed functions:

(B.9)
...

g : B→ C, f : A→ B ` λx.g (f x) : A→ C
(→I)

f : A→ B ` λgx.g (f x) : (B→ C)→ A→ C
(→I)

` λ f gx.g (f x) : (A→ B)→ (B→ C)→ A→ C

Thus function composition is a theorem of type theory, provided the func-
tions in question are suitably typed.

B.2 Semantics

The model-theoretic semantics for type theory with cartesian products is a
slight extension of the usual semantics due to Henkin (1950) and Andrews
(2002). Recall that for two sets A and B, BA is the set of all functions from
A to B and A× B is the cartesian product of A and B.

Definition B.25 (Domains and Frames). For every type A, there is a corre-
sponding set DA, called the domain of A. A frame D is some collection of
nonempty domains DA for each type A, defined so that

1. The domain of truth values is Dt =def {0, 1},

2. The domain of a functional type A→ B is DA→B ⊆ DDA
B ,

3. The domain of the nullary product type D1 is a singleton, and

4. The domain of a nonnull product type A× B is DA×B ⊆ DA × DB.

To handle description operators, define UA ⊆ DA→t for each A so that
each member of UA is the characteristic function of the singleton set {x}
for some x ∈ DA. Then define the function uniqA : DA→t → DA so that, for
every P ∈ DA→t and x ∈ DA,

uniqA(u) = x if P ∈ UA, and(B.10)

uniqA(u) = a otherwise, where a is some fixed element of DA.(B.11)

B.2 Semantics 264

For every domain DA, define the function eqA : DA → DA → Dt for all
x, y ∈ DA as follows:

(B.12) eqA(x)(y) =
{

1 if x = y
0 otherwise

Let D be a frame and V the set of variables of any type. An assignment
is a function ϕ : V → ⋃D that maps each variable x of type A to a member
of DA. For x : A a variable and y ∈ DA, the assignment ϕx

y is derived from
the assignment ϕ as follows, for any variable z:

(B.13) ϕx
y =

{
y if z = x
ϕ(z) otherwise

That is, ϕx
y coincides with ϕ on all variables except possibly for x, which is

mapped to y.

Definition B.26 (Interpretations). An interpretation 〈D, I〉 is a frame together
with a function I that maps every logical constant to its corresponding
domain, so that

I(∗) is the member of the singleton D1, and for each type A,

I(=A) = eqA and

I(ιA) = uniqA .

Definition B.27 (General Models). An interpretation 〈D, I〉 is a general
model if and only if there is an extension Iϕ of I relative to every assignment
ϕ such that Iϕ(a) ∈ DA for every term a : A and the following conditions
are satisfied:

Iϕ(x) = ϕ(x) if x is a variable,

Iϕ(c) = I(c) if c is a constant,

Iϕ((f a)) = Iϕ(f)(Iϕ(a)) ,

Iϕ(λx:A.b) is the function mapping

every a ∈ DA to Iϕx
a (b),

B.2 Semantics 265

and for c = 〈a, b〉 a product term,

Iϕ(π1c) = Iϕ(a) ,

Iϕ(π2c) = Iϕ(b) , and

Iϕ(c) =
〈

Iϕ(π1c), Iϕ(π2c)
〉

.

A term a : t is true in a general modelM = 〈D, I〉 if and only if, for every
extension Iϕ of I, we have Iϕ(a) = 1. Conversely, just in case Iϕ(a) = 0 for
every Iϕ, a is said to be false inM. If a is true in every general model, then
a is valid, written � a.

Some important results for the semantics of type theory are based on
the formalization of general models in definition B.27. One is that type
theory is well-behaved in the sense of being consistent, since no provable
theorem can be false.

Theorem B.28 (Consistency). 0 F.

Another important result, first due to Henkin (1950), states that every
provable theorem is valid and every valid theorem is provable.

Theorem B.29 (Soundness and Completeness). For every term a : t, we have
` a if and only if � a.

Proof. The soundness and completeness proofs in Andrews 2002, chapter 5
must be extended to account for cartesian product terms. For soundness,
this requires proving the soundness of the substitution rule in definition
B.11 for the product case, and the validity of the projection axioms in (B.6)
and (B.7) and the surjective pairing axiom in (B.8). For completeness, it
needs to be shown that general models still exist for type theory extended
with cartesian products. To accomplish these, first let M = 〈D, I〉 be a
general model.

Taking the case of the substitution rule, note that the case of the nullary
product ∗ is trivial since I(u) is the same for every u : 1 by definition of
M. Now let a and b be terms and suppose that Iϕ(a) = Iϕ(b) for every
extension Iϕ of I. Suppose also that the term 〈c′, d′〉 is obtained from 〈c, d〉
by invoking the substitution rule at most once to replace an occurrence
of a with b. Proceeding by induction on the construction of 〈a, b〉, we
have that Iϕ(c) = Iϕ(c′) and Iϕ(d) = Iϕ(d′) by the inductive hypothesis.
Therefore, Iϕ(〈c, d〉) =

〈
Iϕ(c), Iϕ(d)

〉
=
〈

Iϕ(c′), Iϕ(d′)
〉
= Iϕ(〈c′, d′〉), and

the substitution rule is sound for the case of product terms.

B.2 Semantics 266

To see that the axioms for projection are valid, first note that for any
a : A and b : B we can instantiate axiom (B.6) as (π1 〈a, b〉) =A a. Similarly,
axiom (B.7) can be instantiated as (π2 〈a, b〉) =B b. Since for every Iϕ

extending I, we have Iϕ(π1 〈a, b〉) = Iϕ(a) and Iϕ(π2 〈a, b〉) = Iϕ(b) by the
definition of general models in definition B.27, the axioms for projection
are valid. Similarly, instantiate (B.8) for some c : A × B, and note that〈

Iϕ(π1c), Iϕ(π2c)
〉
= Iϕ(c) for every Iϕ sinceM is a general model.

Finally, the proof tactic for showing completeness of grouping terms
together into equivalence classes, used by both Henkin and Andrews, is
easily extended to the case of products. For the nullary cartesian product,
take I(∗) as a singleton that is the only member of D1. Now suppose that
the domains DA and DB have already been defined as sets of equivalence
classes for the respective inhabitants of A and B. Also suppose a : A and
b : B are terms, and let Iϕ be the extension of some interpretation function
I. Define Iϕ(π1 〈a, b〉) ∈ DA and Iϕ(π2 〈a, b〉) ∈ DB as the respective equiv-
alence classes corresponding to a and b. Then define Iϕ(〈a, b〉) ∈ DA×B as
the set

{
c | c =

〈
Iϕ(a), Iϕ(b)

〉}
. Clearly Iϕ(〈a, b〉) is an equivalence class,

and the requirements for product terms in a general model in definition
B.27 are satisfied.

Andrews (2002) also gives a detailed proof of the consistency theorem B.28,
and provides an elaborate discussion of the behavior of type theory with
respect to both general models and the important special case of standard
models, which are general models in which DA→B = DDA

B for all types A
and B. For standard models that additionally account for product types,
the stipulation that DA×B = DA × DB for all types A and B would also
be required. But a discussion of product types with respect to standard
models is beyond the scope of this thesis.

Appendix C

Dependent Typing with Sums

As discussed in appendix B, terms in type theory may depend on other
terms. For example, the functional term f : A→ B depends in some sense
on a term of type A: given a : A, the application (f a) : B can be formed,
and if a is a variable, the abstract λa. f a : A→ B can also be formed. This
dependency does not extend to types in the simple type theory of appendix
B, however. Aside from the set of basic types, the only ways to form types
are via the type constructors → and ×. But to form the types A → B or
A× B, all that is required are two types A and B, and neither depends on
the other.

With dependent types, functional types can be constructed in which one
of the component types may depend on the other. Similarly, it is possible to
construct product types where the pair’s second projection can depend on
the first. The system of dependent types discussed here is a generalization
of type theory that additionally allows types that depend on terms. It is
similar to the system λP of Barendregt (1991, 1992) and to the (Edinburgh)
Logical Framework (LF) of Harper, Honsell, and Plotkin (1993).

In addition to the usual dependent product types, this system is extended
with dependent sums that generalize the cartesian products in appendix B,
following Aspinall and Hofmann (2005). Martin-Löf (1984, 1998) also dis-
cusses both dependent products and sums in the context of an intuitionistic
type theory. The simplified formulation given here resembles the compact
λP of Sørensen and Urzyczyn (2006, chapter 14), and is based in part on
the exposition of Church-style dependent types in Hindley and Seldin 2008,
chapter 13. Some example applications of dependent typing are discussed

267

C.1 An Enriched Typing Ontology 268

in §C.3, and in §C.4, I discuss a method of extending Barendregt’s pure type
systems to include dependent sum types, after Barthe 1995.

Dependent types are mainly interesting because they give a type system
more expressive power while at the same time imposing a certain amount
of discipline. Because of this, most authors, including the ones mentioned
above, limit their discussion of dependent types to the syntactic and proof-
theoretic levels. However, Hofmann (1997) and Jacobs (1999) both give a
categorical semantics for dependent types.

C.1 An Enriched Typing Ontology

The central idea in dependent typing is to make a system more expressive
by moving the task of defining types from the metalanguage, as it is in
the type theory in appendix B, to the object language. So the elaborated
type system must account not only for types but also for (type) constructors,
type symbols that may contain free term variables. Type constructors are
interpreted as functions that yield types given certain arguments.

Accordingly, the type system is enriched to include the notions of sort
and kind in addition to the notion of type. The constants ? and 2, both
sorts, differentiate kinds, of sort 2, from the types of sort ?. Kinds classify
constructors: functions from some number of terms to a type. For example,
a constructor that requires two terms to produce a type is of a different
kind than one requires only one. The sort ? is sometimes referred to as the
sort of proper types, reflecting the fact that a type can be thought of as a
zero-argument function that yields a type. That is, the sort of types has a
dual status because it is also the kind of nullary constructors.

In dependent type theory, the set of terms is bifurcated into objects,
which are associated with a type, and kinds, associated with a sort. The
type-inhabiting objects of dependent type theory are exactly the terms of
type theory. (Dependent) product types, notated with Π, are a generalization
of type-theoretic functions that subsumes functions from objects to objects
and functions from objects to types. The cartesian products of type theory
are similarly generalized as (dependent) sum types at both the level of objects
and of kinds, notated with Σ. Dependent products differ from ordinary
type-theoretic functions in that the result type may depend on the value
provided as the argument. Dependent sums differ from the cartesian

C.2 Syntax 269

products of simple type theory because the type of the second component
may depend on the first.

C.2 Syntax

The syntax of the dependent type theory λPΣ is an extension of the syntax
of the simple type theory in appendix B. The metalanguage definition of
types in definition B.1 is instead handled by the inference rules in figure
C.1.

As before, there is a countably infinite set of variables for each type A,
and there is in addition a similar set of variables for each constructor of
kind K. The same notational conventions are observed for variables of any
kind. There is also a set of basic type constants, some of which may require
one or more objects to form a type.

Since type symbols can now contain variables, the definitions of object
and types cannot be kept separate. Both objects and types are instances of
pseudoterms, which generalizes the notion of terms for simple type theory
in definition B.4.

Definition C.1 (Pseudoterms). The set of pseudoterms is defined as follows.

1. A variable or constant is a pseudoterm.

2. If f and a are pseudoterms, then so is (f a).

3. If x is a variable and A, f are pseudoterms, then so is (λx:A f).

4. If A and f are pseudoterms and x is a variable not occurring free in
A, then both (Πx:A f) and (Σx:A f) are pseudoterms.

Similar notational shorthands to those for simple type theory are used
for applications, pairing, and for abstracts formed via Π and Σ. Also,
analogous notions of substitutability and variable binding apply to Π and
Σ, and the notation a[b/x] is used in the same way (see definition B.10).

Variable contexts are also more finely grained in λPΣ because a variable
declaration may contain free variables that occur elsewhere in the context.

Definition C.2 (Variable Contexts). A (variable) context Γ is a list of variable
declarations of the form x1 : α1, . . . , xn : αn, where α ranges over both types
and kinds, and the following conditions hold:

C.2 Syntax 270

1. All of the variables xi are distinct, and

2. Γ is sequentially valid: the free variables of each αi are found in
{x1, . . . , xi−1}.

The domain of a context Γ, written dom(Γ) is defined as the set

{x | x : α occurs in Γ, for some α}

of variables in Γ.

This definition differs from the definition of type-theoretic variable
contexts (definition B.5) by requiring that contexts are lists rather than sets,
and that free variables occurring in kinds are mentioned ‘earlier’ (further
to the left) in the list.

The notation for typing declarations is overloaded, with the syntax
a : A extended to apply to declarations of both types and kinds. As before,
when a is an object and A is a type, the notation a : A is a metalanguage
statement that a is a object of type A. But the kinding declaration A : ? says
that A is a type, while ? : 2 says that ? is the kind of nullary constructors,
and Πx:A.? : 2 says that Πx:A.? is the kind of constructors that take an
inhabitant of A to a type. If a declaration of the form Γ ` A : B is derivable,
where Γ is a context according to definition C.2, then A and B are called
terms.

Judgments are written just as for type theory (definition B.6), so that
Γ ` a : A states that the declaration a : A is derivable in the context Γ.
Suppose Γ ` a : A is a judgment, where Γ is a variable context according to
definition C.2. Then the a is a term that is either an object or a constructor,
and A is a term that is either a type or a kind, depending on whether a : A
is a typing or kinding declaration.

For a given formulation of dependent type theory, axioms correspond-
ing to the basic types are stated as judgments. For instance, rather than
stating in the metalanguage that t is a basic type, as in type theory, it is
instead axiomatized as a basic type constant via the judgment ` t : ? (and
similarly for any nonlogical basic types).

The notion of β-conversion in λPΣ is defined for pseudoterms, not
terms as in simple type theory (see axiom (B.5)), and η-conversion holds
for terms of a fixed type (Geuvers, 1992, 1993). Results analogous to
the strong normalization (theorem B.21) and the Church-Rosser (theorem

C.2.1 Proof Theory 271

B.22) properties for type theory are available for λP, see Barendregt (1992),
Geuvers (1992, 1993), and references therein.

C.2.1 Proof Theory

A natural deduction presentation of the inference rules of λPΣ is given
in figure C.1 on page 272. These rules are essentially the ones used by
Barendregt (1991, 1992) extended with the rules for dependent sums found
in Barthe 1995. The Conv rule follows Geuvers (1992, 1993) in allowing β- or
η-equivalent types to be substituted for one another, whereas Barendregt’s
variant allows only β-equivalence. No structural rules are specified because
contexts must meet definition C.2, however, contexts can be harmlessly
permuted as long as the property of sequential validity is retained. As for
the inference rules for tensor-implication logic and type theory, the rule
labels are optional. Proof trees are defined in a similar way as those in
type theory (definition B.23), except that a leaf may either be an axiom
corresponding to a basic type constant or an instance of the Ax rule.

The rule Ax is an axiom stating that ? is a kind. This rule is instrumental
in proving kinds of higher arities, as (C.1) shows.

(C.1) ` A : ?
` ? : 2 ` A : ? (Weak)

x : A ` ? : 2 (Prod)` Πx:A.? : 2

Assuming A is a type, this proof demonstrates that one kind of constructor
is Πx:A.? : 2, the kind that map a variable x : A to a type. As its name im-
plies, the Weak rule is an explicit statement of its analog in type theory, the
structural rule of weakening, which is not otherwise available in dependent
type theory due to the higher complexity of variable contexts.

The Var rule simply states that variables are available both for objects
and for constructors. The Prod rule not only allows kinds of constructors to
be derived (as in (C.1)), but also generalizes the type-theoretic constructor
→ when s = ?:

(C.2) ` A : ?
` B : ? ` A : ? (Weak)

x : A ` B : ? (Prod)` Πx:A.B : ?

The proof in (C.2) is an object-language restatement of the rule of type
formation via → in definition B.1. It says that, supposing A and B are

C.2.1 Proof Theory 272

` ? : 2 (Ax)

Γ ` A : s (Var) x 6∈ dom(Γ)
Γ, x : A ` x : A

Γ ` A : B Γ ` C : s (Weak) x 6∈ dom(Γ)
Γ, x : C ` A : B

Γ ` A : B Γ ` C : s (Conv) B =βη C
Γ ` A : C

Γ ` A : ? Γ, x : A ` B : s (Prod)
Γ ` Πx:A.B : s

Γ, x : A ` C : B Γ ` Πx:A.B : s
(Abs)

Γ ` λx:A.C : Πx:A.B

Γ ` C : Πx:A.B Γ ` D : A (App)
Γ ` (C D) : B[D/x]

Γ ` A : ? Γ, x : A ` B : s (Sum)
Γ ` Σx:A.B : s

Γ ` C : A Γ ` D : B[A/x] Γ ` Σx:A.B : s
(Pair)

Γ ` 〈C, D〉 : Σx:A.B

Γ ` c : Σx:A.B (Proj1)
Γ ` (π1c) : A

Γ ` c : Σx:A.B (Proj2)
Γ ` (π2c) : B[(π1c)/x]

Figure C.1: Inference rule schemas for λPΣ. The metavariable s ranges over
the set {?,2} of sorts, and =βη denotes the relation of sharing a βη-normal
form. These rules make the implicit assumption that all contexts meet the
conditions given in definition C.2.

C.2.1 Proof Theory 273

types, the type Πx:A.B of functions from A to B is derivable. In view of
this, the type A→ B is defined for types A and B as the special case of a
product type in which B does not depend on an object of type A:

(C.3) A→ B =def Πx:A.B where x does not occur free in B.

To simplify the notation, I use the abbreviation A→ B wherever possible.
Analogously to the Prod rule, the rule Abs generalizes the inference

rule→I of type theory (see figure B.1). As a prerequisite, (C.4) shows that
a variable of type B is derivable in a context with a variable of type A.

(C.4)
` B : ? (Var)

b : B ` b : B
` A : ? ` B : ? (Weak)

b : B ` A : ? (Weak)
b : B, x : A ` b : B

The proof in (C.5) then shows that, for the special case when s = ?, Abs
simply restates the exact content of →I, with an extra leaf to ensure that
the type Πx:A.B is derivable.

(C.5)
(C.4)

...
b : B, x : A ` b : B

(C.2)
...

` Πx:A.B : ? ` B : ?
(Weak)

b : B ` Πx:A.B : ?
(Abs)

b : B ` λx:A.b : Πx:A.B

With the definition in (C.3) in place, this is simply a proof of the judgment
b : B ` λx:A.b : A→ B, since x is not free in B.

For the other case s = 2, where Abs is used to form a constructor,
assume that Bx is a basic type constant depending on a variable of type A
(see (C.1) for proof that Πx:A.? : 2 is derivable). To derive the corresponding
constructor, a proof similar to the one in (C.4) is used to get a version of Bx

with the variable x : A represented in the context.

(C.6)
` Bx : Πx:A.? ` A : ?

(Weak)
x : A ` Bx : Πx:A.?

` A : ? (Var)
x : A ` x : A (App)

x : A ` (Bx x) : ?[x/x]

The declaration in the root label of (C.6) reduces to Bx : ? because x is
vacuously substituted for x in Bx. Then the constructor is derivable as
follows, starting by converting ?[x/x] to simply ?, which is a licensed use

C.2.1 Proof Theory 274

of Conv since x does not occur in ?.
(C.7)

(C.6)
...

x : A ` Bx : ?[x/x]
` ? : 2 ` A : ? (Var)

x : A ` ? : 2
(Conv)

x : A ` Bx : ?

(C.1)
...

` Πx:A.? : 2
(Abs)` λx:A.Bx : Πx:A.?

The different instantiations of Abs in (C.5) and (C.7) also show the dif-
ference between instantiations of the App rule for constructors as opposed
to object-level functions. First, the abstract labeling the root of the proof in
(C.5) is applied to a suitable argument of type A:

(C.8)

(C.5)
...

b : B, y : A ` λx:A.b : Πx:A.B

` A : ? ` B : ? (Weak)
b : B ` A : ? (Var)

b : B, y : A ` y : A
(App)

b : B, y : A ` (λx:A.b y) : B[y/x]

(In the proof in (C.8), there is a suppressed instance of Weak that augments
the context of (C.5) to contain the variable y : A.) Since x does not occur free
in either b or B, the root label of this proof reduces to b : B, y : A ` b : B, and
so the instance of App in (C.8) is exactly like the type-theoretic inference
rule →E. The situation is different for the constructor derived in (C.7),
however.

(C.9)

(C.7)
...

` λx:A.Bx : Πx:A.? ` A : ?
(Weak)

y : A ` λx:A.Bx : Πx:A.?
` A : ? (Var)

y : A ` y : A
(App)

y : A ` (λx:A.Bx y) : ?[y/x]

Note that the declaration in the root label of the proof in (C.9) reduces to
By : ? because Bx contains an occurrence of x but ? does not.

The proof in (C.9) allows objects of the type Ba to be derived for any
derivation of some a : A in a context Γ (in the following proof, some

C.2.1 Proof Theory 275

instances of Weak are omitted).
(C.10)

...
Γ ` A : ?

(C.9)
...

Γ, y : A ` By : ?[y/x]

...
Γ, y : A ` ? : 2

(Conv)
Γ, y : A ` By : ?

(Prod)
Γ ` Πy:A.By : ?

...
Γ ` a : A

(App)
Γ ` (By a) : ?[a/y]

Noting that the root label of (C.10) reduces to Γ ` Ba : ?, the proof of an
object of type Ba just involves using the Conv and Var rules (with some
instances of Weak suppressed):

(C.11)

(C.10)
...

Γ ` Ba : ?[a/y]

...
Γ ` ? : 2

(Conv)
Γ ` Ba : ? (Var)

Γ, b : Ba ` b : Ba

The Sum rule derives dependent sum types in a way parallel to the
Prod rule: when the variable s is instantiated as the sort ? of proper types,
it is exactly equivalent to the rule ×I from type theory.

(C.12) ` A : ?
` B : ? ` A : ? (Weak)

x : A ` B : ? (Sum)` Σx:A.B : ?

(Compare this proof with the one in (C.2) for the special case of products
with s = ?.) Since the type B does not depend on the variable x, the
dependent sum type Σx:A.B is the type-theoretic cartesian product type of
pairs 〈a, b〉 where a : A and b : B. Analogously to→, the type constructor ×
is then defined, for A and B types, as the special case when the dependency
is not present:

(C.13) A× B =def Σx:A.B where x does not occur free in B.

As for→, I use × where possible as a simplification. For the generalized
case, the proof in (C.1) of the kind of product constructors can be modified
so that the last inference rule invoked is Sum instead of Prod, yielding

C.2.1 Proof Theory 276

` Σx:A.? : 2, the kind of constructors that form pair types where the first
component is of type A.

The Pair rule forms objects and constructors with a dependent sum
type the same way the Abs rule does for the dependent product type. First,
the special case when there is no dependency between the components
(s = ?) requires that an object of the type B[a/x] be proved.

(C.14)

(C.5)
...

b : B ` λx:A.b : Πx:A.B

...
` a : A ` B : ? (Weak)

b : B ` a : A (App)
b : B ` (λx:A.b a) : B[a/x]

And since a is not free in b, we have ` b : B[a/x] by the β-conversion axiom
in (B.5). Then the pair 〈a, b〉 can be formed as follows:

(C.15)
...

b : B ` a : A

(C.14)
...

b : B ` b : B[a/x]

(C.12)
...

b : B ` Σx:A.B : ?
(Pair)

b : B ` 〈a, b〉 : Σx:A.B

In (C.15), the leftmost and rightmost subproofs use contexts that are derived
by omitted applications of the Weak rule. Similarly to (C.5), the proof in
(C.15) combined with the definition of nondependent pairing in (C.13) is
equivalent to a proof of ` 〈a, b〉 : A× B. So just as for the rule Abs for
the case s = ?, the instantiation of the Pair rule in (C.15) is again just an
object-language restatement of the type-theoretic pair formation rule ×I.

For an instance of pairing where a dependency between the components
is present, invoke the proof in (C.6) in an instance of the Sum rule (the
following proof omits instances of both Weak and Conv).

(C.16) ` A : ?

(C.6)
...

x : A ` Bx : ? (Sum)` Σx:A.Bx : ?

Invoking the proof in (C.10) in conjunction with (C.16), a pair can then be
formed in which the second component depends on the first. To start, we

C.2.1 Proof Theory 277

derive b : Bx[a/x]:
(C.17)

...
x : A ` b : Bx

` A : ?

(C.6)
...

x : A ` Bx : ? (Prod)` Πx:A.Bx : ?
(Abs)` λx:A.b : Πx:A.Bx

...
` a : A (App)

` (b a) : Bx[a/x]

In (C.17), an instance of Conv is omitted. Since (b a) reduces to b, we can
proceed with the following proof.

(C.18)
...

` a : A

(C.17)
...

` b : Bx[a/x]

(C.16)
...

` Σx:A.Bx : ?
(Pair)

` 〈a, b〉 : Σx:A.Bx

The pair derived in this proof is one in which the type of the second
component depends on the first component.

The rules for projection show how the dependency information is main-
tained for such pairs. The Proj1 rule simply retrieves the first component of
a pair in a way exactly parallel to the type-theoretic rule ×E1, as shown in
the following proof:

(C.19)

(C.18)
...
` 〈a, b〉 : Σx:A.Bx (Proj1)
` (π1 〈a, b〉) : A

But the Proj2 rule substitutes the bound variable in the second component
with the first component, as the proof in (C.20) shows.

(C.20)

(C.18)
...
` 〈a, b〉 : Σx:A.Bx (Proj2)
` (π2 〈a, b〉) : Bx[(π1 〈a, b〉)/x]

Since (π1 〈a, b〉) = a and (π2 〈a, b〉) = b, the judgment in the conclusion of
(C.20) reduces to ` b : Ba by an application of β-reduction and the Conv

C.3.1 Von Neumann-style Natural Numbers 278

rule:
(C.21)

(C.20)
...

` b : Bx[a/x]

(C.7)
...

` λx:A.Bx : Πx:A.?

(C.19)
...

` a : A (App)
` Ba : ?[a/x] ` ? : 2

(Conv)` Ba : ?
(Conv)` b : Ba

In this proof, a β-reduction is performed in the instance of App to substitute
a for the bound variable x in the abstract in the root label of (C.7).

Notice that, as for proofs in type theory, proofs can be reconstructed
using the structure of objects and types, since each instance of Π corre-
sponds to an invocation of Prod or Abs, every Σ signals the use of the Sum
or Pair rule, round or angled brackets correspond to App or Pair, and an
instance of π1 or π2 indicates that one of the Proj rules was used. Variables
remaining in the context imply that either Var or Weak was invoked.

C.3 Applications

Some applications benefit from knowing that the value of the inhabitants of
some type are bounded somehow. In this section, I give three applications
for dependent type theory: natural numbers defined similarly to Von
Neumann’s set-theoretic definition (§C.3.1), vector types based on cartesian
products (§C.3.2), and typing a bit vector selection function (§C.3.3).

C.3.1 Von Neumann-style Natural Numbers

The dynamic semantics discussed in this thesis starting in chapter 4 makes
use of a type ωn, which, for each n is intuitively the type of natural numbers
less than n. To define the types ωn in dependent type theory, we start with
the type n of natural numbers, which we assume is defined in the usual
way with ` 0 : n, a function mapping each inhabitant of n to its successor,
the linear order <, and the addition and subtraction operations + and −.
This type n may simply be assumed as a basic type and interpreted in the
obvious way in every model, or defined, for example, following Andrews
(2002).

C.3.1 Von Neumann-style Natural Numbers 279

We then add the axiom

(C.22) ` ωn : Πn:n.?

to our dependent type theory, which states simply that the type ωn depends
on a natural number n. Then for each n : n, the function natn : Πωn .n
ensures that the type ωn has the desired inhabitants, due to the following
axioms:

` ∀m:n∀n:n.(m < n)⇔ (∃!i:ωn(natn i) = m)(C.23)

` ∀n:n∀i:ωn∀j:ωn .((natn i) = (natn j))⇒ (i = j)(C.24)

The axiom in (C.23) states that an inhabitant of ωn exists for each m < n;
the one in (C.24) ensures that natn is an injection. Then for each pair of
natural numbers with m < n, we define

mn =def

ι

i:ωn .(natn i) = m ,

where ι: (ωn → t) → ωn is defined based on theorem B.9. That is, mn is
shorthand for the unique member of ωn which is mapped to m by natn.
These axioms guarantee, for example, that ω3 has the inhabitants 03, 13,
and 23.

However, this axiomatization of ωn and the natn function also implies
that there is an inhabitant 0n of every ωn except for ω0. This is somewhat
inconvenient, as we often need to use the inhabitant 0 : ωn for some n,
without being concerned about the actual value of n. To connect all of these
inhabitants, which intuitively represent the same natural number across
different ωn, we define the coercion function coercem,n : ωm → ωn for each
pair m, n of natural numbers with m < n:

coercem,n =def λi:ωm . ι

j:ωn .(natm i) = (natn j)

This function allows us to drop the subscripts on inhabitants of some type
ωn when they are irrelevant. For example, assuming that 0m : ωm, we
can adopt the notational convention of writing simply 0 : ωn instead of
(coercem,n 0m) : ωn in a context where it is understood that m < n. It also
allows us to engage in the mild but convenient notational abuse of writing
inhabitants of ωn for some n interchangeably with their natural number
counterparts.

C.3.2 Vectors as n-ary Cartesian Products 280

Defining the type ω as

ω =def Σn:n.ωn ,

we can equip ω with analogs of the < order and + and − operations on the
natural numbers. This is done by defining the linear order <ω : ω → ω → t
and the addition and subtraction operations +ω and −ω, both of type
ω → ω → ω. These functions are axiomatized based on their natural
number counterparts, as follows:

` ∀m:ω∀n:ω.(m <ω n) = ((nat (π2m)) < (nat (π2n)))

` ∀m:ω∀n:ω.(nat (π2(m +ω n))) = ((nat (π2m)) + (nat (π2n)))

` ∀m:ω∀n:ω.(nat (π2(m−ω n))) = ((nat (π2m))− (nat (π2n)))

In practice, the subscript on these functions is omitted.

C.3.2 Vectors as n-ary Cartesian Products

DyCG contexts must be able to keep track of an arbitrary number of
discourse referents, and the n-ary vectors for every type, defined in this
section, fit the bill. The idea is to use the notion of n-ary cartesian products
to model vectors, so that the type An is informally the type

n times︷ ︸︸ ︷
A× · · · × A ,

for n a natural number.

Definition C.3 (Vectors). For each type A, there is a basic type constant
An : Πn:n.?, which for each n : n gives the type of n-ary cartesian products
whose factors are each of type A, and is defined recursively as follows:

A0 =def 1

An+1 =def An × A

For example, the only inhabitant of type A0 is ∗, the constant of the
unit type 1; inhabitants of A1 are of the form 〈∗, a〉 for some a : A; A2

has inhabitants 〈〈∗, a〉 , b〉 for a and b inhabitants of A, etc. To distinguish
variables of vector types from variables of other types, write, for example,
a for a variable of a type An.

C.3.2 Vectors as n-ary Cartesian Products 281

Definition C.4 (Vector Length). The length of a vector is obtained by the
function

|·|n : Πn:nΠa:An .n ,

which is defined1 for each natural number n as simply

|·|n =def λa.An .n

The natural number subscript is usually dropped from the vector length
function when it is irrelevant or contextually determinable.

Definition C.5 (Accessing Coordinates of a Vector). Recalling that, for
example, the triple 〈a, b, c〉 is defined as the pair 〈〈a, b〉 , c〉, vector data
is accessed via the functions headn : Πn:nΠa:An+1 .A, which gets the last
element, and tailn : Πn:nΠa:An+1 .An, which gets the embedded tuple. The
axioms governing these functions are the following:

` ∀n:n∀a:An+1 .(headn a) = (π2a)(C.25)

` ∀n:n∀a:An+1 .(tailn a) = (π1a)(C.26)

Note that neither of the functions headn or tailn can be called on an empty
vector due to their types.

For an n-ary vector a on A, the function

coordn : Πn:nΠa.An Πω|a| .A

retrieves the coordinate of a at a specified index, which is type-constrained
to be among the indices in a. This function is abbreviated using subfix
notation, so that for every vector a : An and natural number i < |a|, ai
abbreviates (coordn a i).

The following axioms recursively spell out how coordinates of a vector
are selected.

` ∀n:n∀a:An .a|a|−1 = (head|a|−1 a)(C.27)

` ∀n:n∀a:An∀i:ω|a|−1
.ai = (coord|a|−1 (tail|a|−1 a) i)(C.28)

1Functions like the arity function for vectors |·| might be said to be written in outfix
notation, the opposite of infix notation, because they surround their argument rather than
being surrounded by their arguments.

C.3.2 Vectors as n-ary Cartesian Products 282

As an example, letting x = 〈〈〈∗, x〉 , y〉 , z〉 be a vector of type X3 for
some type X, we have

x2 = (coord3 x 2)

= (head2 x) (by (C.27))

= z (C.25) ,

x1 = (coord3 x 1)

= (coord2 (tail2 x) 1) (C.28)

= (head1 (tail2 x)) (C.27)

= y (C.25) and (C.26) ,

and

x0 = (coord3 x 0)

= (coord2 (tail2 x) 0)

= (coord1 (tail1 (tail2 x)) 0) (C.28)

= (head0 (tail1 (tail2 x))) (C.27)

= x (C.25) and (C.26) .

Similarly to the other functions involving vectors, the subscript n on
the function coordn is often dropped in practice.

For a one-coordinate vector x, since there is only a single coordinate
accessible via coord, we might like to identify x with its sole coordinate.
But this is impossible because the type A1 is not the same as the type A of
x’s coordinate. However, we do have the following.

Proposition C.6. Every f : A→ B is interderivable with

λx:A1 .(f x0) : A1 → B .

Proof. If we suppose that f : A → B, then the proof below is available,
suppressing some instances of Weak, omitting rule labels, and performing

C.3.2 Vectors as n-ary Cartesian Products 283

β-reductions when possible.

` f : A→ B

` coord1 : Πa:A1 Πω|a| .A x : A1 ` x : A1

x : A1 ` (coord1 x) : ω|x| → A ` 0 : ω1

x : A1 ` x0 : A
x : A1 ` (f x0) : B

` λx:A1 .(f x0) : A1 → B

Conversely, if we suppose λx:A1 .(f x0) : A1 → B, then we can prove the
following.

` λx:A1 .(f x0) : A1 → B
` ∗ : 1 x : A ` x : A

x : A ` 〈∗, x〉 : A1

x : A ` (f x) : B
` λx.(f x) : A→ B

The term of the root label λx.(f x) is then identical to f by η-reduction
(theorem B.15).

Because of the interderivability in proposition C.6, I often substitute a
function with its counterpart whose domain is a one-coordinate vector
without comment in proofs.

Definition C.7 (Vector Concatenation). The concatenation operation on
vectors

•m,n : Πm:nΠn:n.Am → An → Am+n

is axiomatized by the following:

` ∀m:n∀n:n∀a:Am∀b:An∀i:ωm .(coordm+n (a •m,n b) i) = ai(C.29)

` ∀m:n∀n:n∀a:Am∀b:An∀i:ωn .(coordm+n (a •m,n b)m + i) = bi(C.30)

The subscripts on the vector concatenation symbol • are often dropped,
and concatenations are usually further abbreviated as

a, b =def a • b

for vectors a and b.

C.3.2 Vectors as n-ary Cartesian Products 284

For every type A, define εA : A0 as the empty vector on A. Then the
following holds:

Proposition C.8 (Identity Under Concatenation). For every vector a : An on
A, we have a • εA = a and εA • a = a.

Proof. Let a : An be an n-ary vector on A and ε : A0 the empty vector. First
note that (a • ε) : An and (ε • a) : An by definition C.7. Then by simple
induction and axiom (C.29), for every i < n, (coord (a • ε) i) = ai. A similar
induction shows that (coord (ε • a) 0 + i) = ai, invoking axiom (C.30) for
each i < n. Since both (a • ε) and (ε • a) agree with a at every coordinate,
we have (a • ε) = a = (ε • a).

The vector concatenation function is also associative, implying that for
every type A, the set of all vectors An where n : n has a monoidal structure.
However, the proof of associativity is somewhat tedious, and so I spare the
reader the details here since they are not directly relevant to the current
purpose.

Definition C.9 (Vector Prefixes). The n-ary prefix of a vector a : Am is
available for all n ≤ m via the function

prefixm : Πm:nΠa:Am Πn:ω|a|+1 .An ,

axiomatized by the following:

` ∀m:ω∀a:Am .(prefixm a 0) = ∗
` ∀m:ω∀a:Am∀n:ω|a|+1 .(0 < n)⇒ ∀i:ω(nat n)

.(coordn (prefixm a n) i) = ai

In words, the nullary prefix of any vector is the unit ∗, and for some vector
a : Am and natural number n with 0 < n ≤ |a|, the vector (prefixm a n) is
the vector of arity n whose coordinates coincide with the first n coordinates
of a.

The subscript on the prefix function is usually suppressed. As shorthand,
for a : Am, write

na =def (prefixm a n)

to denote the n-ary prefix of a.

C.3.3 Bit Vector Selection 285

C.3.3 Bit Vector Selection

A more concrete demonstration of the utility of dependent types is their
application to bit vectors, n-ary sequences of boolean values. Using depen-
dent types, the type of a function picking out an index in a given bit vector
can be defined in a way that makes it impossible for an out-of-range index
to be specified.

First note that the truth value type t can be thought of as a boolean type
because it has only two possible values (see equation (B.1)). Define the type
of n-ary arrays of bits (truth values) using the cartesian product type tn

from definition C.3, above. Here we adopt a different strategy than the one
used for vectors in definition C.3, storing the length of a bit vector rather
than providing a length function for it. Since the axiom ` n : ? is available,
the dependent sum type Σn:n.tn can be derived from the axiom schema in
definition C.3 as follows. First we derive the type tn for some n : n:
(C.31)

...
n : n ` λi.ti : Πi:n.?

` n : ? (Var)
n : n ` n : n (App)

n : n ` tn : ?[n/n]
` ? : 2 ` n : ? (Weak)

n : n ` ? : 2
(Conv)

n : n ` tn : ?

(The proof in (C.31) has a suppressed instanced of Weak.) And next the
sum type is formed:

(C.32)
` n : ?

(C.31)
...

n : n ` tn : ? (Sum)` Σn:n.tn : ?

This type provides the desired functionality: it is the type of pairs whose
first component is a natural number n and whose second is a bit array of
length n, and so the length of the bit array is stored along with its data.

To actually retrieve an element of a bit vector of type Σn:n.tn, a selection
function must be defined to take a bit vector v and an index i and return
the element of the vector at i. The caveat immediately arises that the index
may be greater than the vector’s length. Such issues are sometimes handled
by simply saying that the value of a length function is undefined for inputs
that are out of range. But dependent type theory offers a more elegant
solution.

C.3.3 Bit Vector Selection 286

To this end, note that with a proof closely resembling (C.1), the product
Πn:n.? : 2 can now be derived, which is the kind of constructors that take
a natural number to a type. It is then possible to form a constructor based
on this type and the axiom in (C.22) as follows.

(C.33)

(C.22)
...

n : n ` ωi : Πi:n.?
` n : ? (Var)

n : n ` n : n (App)
n : n ` ωn : ?

...
` Πn:n.? : 2 (Abs)` λn:n.ωn : Πn:n.?

(In this proof, an instance of both Weak and Conv has been suppressed,
and a reduction step is not shown.) The bit vector type Σn:n.tn makes the
following proof available:

(C.34)

(C.32)
...
` Σn:n.tn : ? (Var)

v : Σn:n.tn ` v : Σn:n.tn
(Proj1)

v : Σn:n.tn ` (π1v) : n

Then an instance of App gives the type of natural numbers smaller than
the length of a given bit vector. The proof is as follows, with Γ abbreviating
v : Σn:n.tn:

(C.35)

(C.33)
...

Γ ` λn.ωn : Πn:n.?

(C.34)
...

Γ ` (π1v) : n
(App)

Γ ` (λn:nωn (π1v)) : ?[(π1v)/n]

(Here again, an instance of the Weak rule has been suppressed.) This proof,
whose root label reduces to Γ ` ω(π1v) : ? following an instance of Conv,
demonstrates that the type ωn can be formed where n is the length of some
bit vector v.

Next, the Weak rule is invoked in conjunction with the axiom that t is a
type, to produce an appropriately-situated variable of the type derived in

C.4 Extending Pure Type Systems with Dependent Sums 287

(C.35).

(C.36) ` t : ?

(C.32)
...

` Σn:n.tn : ? (Weak)
v : Σn:n.tn ` t : ?

(C.35)
...

v : Σn:n.tn ` ω(π1v) : ?
(Weak)

v : Σn:n.tn, i : ω(π1v) ` t : ?

Finally, the Prod rule is applied twice to create the type of the selection
function for bit vectors.
(C.37)

(C.32)
...

` Σn:n.tn : ?

(C.35)
...

v : Σn:n.tn ` ω(π1v) : ?

(C.36)
...

v : Σn:n.tn, i : ω(π1v) ` t : ?
(Prod)

v : Σn:n.tn ` Πi:ω(π1v)
.t : ?

(Prod)` Πv:Σn:n.tn Πi:ω(π1v)
.t : ?

The judgment derived in (C.37) is the type of functions that take two
arguments. The first argument v is a bit vector, a pair of a natural number
that is the length of the vector and the data itself. Importantly, the second
argument, an index into the bit vector v, depends on the length of the
first argument because its type is ω(π1v), the type of natural numbers less
than the length of v. A function retrieving the lengths of bit vectors with
this typing cannot be called with an index that is out of bounds for the
vector in question, and no object-level axioms are required to enforce the
boundedness constraint.

C.4 Extending Pure Type Systems with Dependent
Sums

A pure type system (Barendregt, 1991, 1992) is a further generalization of
systems like λP that allows all of the systems of Barendregt’s λ-cube, all
with differing expressive power, to be specified in a single framework.
Barendregt’s original pure type systems generalized the Ax and Prod rules
of λP, but did not include dependent sum types. Fortunately, as Barthe
(1995, appendix) discusses, extending pure type systems to account for

C.4 Extending Pure Type Systems with Dependent Sums 288

` s1 : s2 (Ax) 〈s1, s2〉 ∈ A

Γ ` A : s1 Γ, x : A ` B : s2 (Prod) 〈s1, s2, s3〉 ∈ RΠΓ ` Πx:A.B : s3

Γ ` A : s1 Γ, x : A ` B : s2 (Sum) 〈s1, s2, s3〉 ∈ RΣΓ ` Σx:A.B : s3

Figure C.2: Inference rules for pure type systems, with A the set of axioms
and RΠ and RΣ the sets of rules.

dependent sums is straightforward and follows the original pattern used
for the Prod rule.

Definition C.10 (Pure Type Systems with Sum Types). A pure type system
is a set S of sorts, a set A ⊆ S × S called the axioms, and two sets RΠ ⊆
S × S × S and RΣ ⊆ S × S × S , called the Π- and Σ-rules, respectively.
The typing rules are the same as those for λPΣ except with Ax, Prod, and
Sum replaced by the generalized rules in figure C.2.

Everything else about the syntax of pure type systems is the same as for
λPΣ: the notions of variables, contexts, and conversion are all unchanged.
What is new is that a single framework can specify systems with as little
power as the typed lambda calculus and with as much power as the calculus
of constructions.

For example, the pure type system defined based on definition C.10
with following axioms and rules is the type theory extended with cartesian
products from appendix B (letting the set S of sorts be {?,2}, as before):

A =def {〈?,2〉}
RΠ =def {〈?, ?, ?〉}
RΣ =def {〈?, ?, ?〉}

The reason is that, with the set of rules so instantiated, Prod and Sum can
only be used to derive product types of the form Πx:A.B : ? and sum types
of the form Σx:A.B : ?. Nothing of the kind 2 of a type constructor can
be formed using this system, only nondependent functions A → B and
cartesian products A× B are available.

C.4 Extending Pure Type Systems with Dependent Sums 289

But consider the slight elaboration of the set of rules to

RΠ = RΣ =def {〈?, ?, ?〉 , 〈?,2,2〉} .

Then the resulting system is λPΣ, because the kinds Πx:A.? : 2 and Σx:A.? :
2 can additionally be derived. This elaboration could be continued to
provide dependent sum types for all of the systems of the λ-cube. Aspinall
and Hofmann (2005) sketch an extended proof of strong normalization for
dependent sum types in an extension of LF that is essentially an instance
of a pure type system as presented here with RΠ = {〈?, ?, ?〉 , 〈?,2,2〉}
and RΣ = {〈?, ?, ?〉}.

Bibliography

Abbott, Barbara. Presuppositions as nonassertions. Journal of Pragmatics,
32(10):1419–1437, 2000. doi:10.1016/S0378-2166(99)00108-3.

Abusch, Dorit. Presupposition triggering from alternatives. Journal of
Semantics, 27(1):37–80, 2010. doi:10.1093/jos/ffp009.

Amaral, Patricia, Craige Roberts, and E. Allyn Smith. Review of The Logic
of Conventional Implicatures by Chris Potts. Linguistics and Philosophy,
30(6):707–749, 2007. doi:10.1007/s10988-008-9025-2.

AnderBois, Scott, Adrian Brasoveanu, and Robert Henderson. Crossing
the appositive/at-issue meaning boundary. In Proceedings of the 20th
Conference on Semantics and Linguistic Theory, 2010.

Andrews, Peter B. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof, volume 27 of Applied Logic Series. Kluwer Academic
Publishers, 2002.

Aspinall, David and Martin Hofmann. Dependent types. In B. C. Pierce,
editor, Advanced Topics in Types and Programming Languages, pages 45–86.
MIT Press, Cambridge, Massachusetts, 2005.

Barendregt, Henk. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
1980.

Barendregt, Henk. Introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, 1991.

Barendregt, Henk. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, pages 117–309. Oxford University Press, 1992.

290

http://dx.doi.org/10.1016/S0378-2166(99)00108-3
http://dx.doi.org/10.1093/jos/ffp009
http://dx.doi.org/10.1007/s10988-008-9025-2

Bibliography 291

Barendregt, Henk, Wil Dekkers, and Richard Statman. Lambda Calculus with
Types. Perspectives in Logic. Cambridge University Press, 2013.

Barker, Chris. Possessive Descriptions. Ph.D. thesis, University of California,
Santa Cruz, 1991.

Barker, Chris. Definite possessives and discourse novelty. Theoretical Lin-
guistics, 26(3):211–228, 2000. doi:10.1515/thli.2000.26.3.211.

Barker, Chris, Rafaella Bernardi, and Chung-chieh Shan. Principles of
interdimensional meaning interaction. In Proceedings of the 20th Conference
on Semantics and Linguistic Theory, 2010.

Barthe, Gilles. Extensions of pure type systems. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Typed Lambda Calculi and Applications, number 902
in Lecture Notes in Computer Science, 1995. doi:10.1007/BFb0014042.

Barwise, Jon and Robin Cooper. Generalized quantifiers and
natural language. Linguistics and Philosophy, 4(2):159–220, 1981.
doi:10.1007/BF00350139.

Beaver, David. Have you noticed that your belly button lint colour is
related to the colour of your clothing? In R. Bäuerle, U. Reyle, and T. E.
Zimmermann, editors, Presuppositions and Discourse: Essays offered to Hans
Kamp. Elsevier, 2010. doi:10.1163/9789004253162_004.

Beaver, David and Henk Zeevat. Accommodation. In G. Ramchand and
C. Reiss, editors, Oxford Handbook of Linguistic Interfaces. Oxford Univer-
sity Press, 2007. doi:10.1093/oxfordhb/9780199247455.013.0017.

Beaver, David I. Presupposition and Assertion in Dynamic Semantics. CSLI
Publications, 2001.

Beaver, David I. Presupposition projection in DRT: A critical assessment.
In D. Beaver, L. D. C. Martínez, B. Z. Clark, and S. Kaufmann, editors,
The Construction of Meaning. CSLI Publications, 2002.

Blackburn, Patrick and Johan Bos. Representation and Inference for Natural
Language: A First Course in Computational Semantics. Volume 2 of Black-
burn and Bos 2005, 1999. Unpublished volume subtitled Working with
Discourse Representation Structures.

http://dx.doi.org/10.1515/thli.2000.26.3.211
http://dx.doi.org/10.1007/BFb0014042
http://dx.doi.org/10.1007/BF00350139
http://dx.doi.org/10.1163/9789004253162_004
http://dx.doi.org/10.1093/oxfordhb/9780199247455.013.0017

Bibliography 292

Blackburn, Patrick and Johan Bos. Representation and Inference for Natural
Language: A First Course in Computational Semantics, volume 1. CSLI
Publications, 2005.

Boër, Steven E. and William G. Lycan. The myth of semantic presupposition.
In A. M. Zwicky, editor, Papers in Nonphonology, number 21 in Working
Papers in Linguistics, pages 1–90. Ohio State University Department of
Linguistics, 1976.

Bos, Johan. Implementing the binding and accommodation theory for ana-
phora resolution and presupposition projection. Computational Linguistics,
29(2):179–210, 2003. doi:10.1162/089120103322145306.

Bos, Johan. Towards wide-coverage semantic interpretation. In Proceedings
of the Sixth International Workshop on Computational Semantics, 2005.

Carpenter, Bob. Type Logical Semantics. MIT Press, Cambridge, Mas-
sachusetts, 1997.

Chierchia, Gennaro. Anaphora and dynamic binding. Linguistics and
Philosophy, 15(2):111–183, 1992. doi:10.1007/BF00635805.

Chierchia, Gennaro. The Dynamics of Meaning: Anaphora, Presupposition, and
the Theory of Grammar. University of Chicago Press, 1995.

Chierchia, Gennaro and Sally McConnell-Ginet. Meaning and Grammar: An
Introduction to Semantics. MIT Press, Cambridge, Massachusetts, 1990.

Chierchia, Gennaro and Mats Rooth. Configurational notions in DR theory.
In C. Jones and P. Sells, editors, Proceedings of the 14th Meeting of the North
Eastern Linguistics Society, 1984.

Church, Alonzo. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56–68, 1940. doi:10.2307/2266170.

Cooper, Robin. The interpretation of pronouns. In F. Heny and H. Schnelle,
editors, Selections from the Third Groningen Round Table, volume 10 of
Syntax and Semantics, pages 61–92. Academic Press, New York, 1979.

Curry, Haskell. Some logical aspects of grammatical structure. In
R. Jakobson, editor, Structure of Language and its Mathematical As-
pects, number 12 in Proceedings of Symposia in Applied Mathemat-

http://dx.doi.org/10.1162/089120103322145306
http://dx.doi.org/10.1007/BF00635805
http://dx.doi.org/10.2307/2266170

Bibliography 293

ics. American Mathematical Society, Providence, Rhode Island, 1961.
doi:10.1090/psapm/012/9981.

Curry, Haskell B. and Roert Feys. Combinatory Logic, volume I. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1958.

de Groote, Philippe. Towards abstract categorial grammars. In As-
sociation for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference, 2001.
doi:10.3115/1073012.1073045.

de Groote, Philippe. Towards a Montagovian account of dynamics. In
Proceedings of the 16th Conference on Semantics and Linguistic Theory, 2006.

de Groote, Philippe and Ekaterina Lebedeva. Presupposition accommo-
dation as exception handling. In Proceedings of SIGDIAL 2010: The 11th
Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2010.

de Groote, Philippe and Mark-Jan Nederhof, editors. Formal Grammar, num-
ber 7395 in Lecture Notes in Computer Science. 2012. doi:10.1007/978-3-
642-32024-8.

de Paiva, Valeria. Lineales: Algebras and categories in the semantics of
linear logic. In D. Barker-Plummer, D. I. Beaver, J. van Benthem, and P. S.
di Luzio, editors, Words, Proofs, and Diagrams. CSLI Publications, 2002.

Dekker, Paul. Grounding dynamic semantics. In Reimer and Bezuidenhout
2005, pages 484–502.

Evans, Gareth. Pronouns, quantifiers and relative clauses. Canadian Journal
of Philosophy, 7:467–536, 1977.

Evans, Gareth. Pronouns. Linguistic Inquiry, 11(2):337–362, 1980.

Frege, Gottlob. Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, 100:25–50, 1892. English translation titled On Sense
and Reference in Geach and Black 1952, pages 56–78.

Gallin, Daniel. Intensional and Higher Order Modal Logic, volume 19 of
Mathematics Studies. North-Holland, Amsterdam, 1975.

http://dx.doi.org/10.1090/psapm/012/9981
http://dx.doi.org/10.3115/1073012.1073045
http://dx.doi.org/10.1007/978-3-642-32024-8
http://dx.doi.org/10.1007/978-3-642-32024-8

Bibliography 294

Gauker, Christopher. Against accommodation: Heim, van der Sandt and the
presupposition projection problem. Philosophical Perspectives, 22(1):171–
205, 2008. doi:10.1111/j.1520-8583.2008.00145.x.

Geach, Peter. Reference and Generality: An Examination of Some Medieval and
Modern Theories. Cornell University Press, Ithaca and London, 1962.

Geach, Peter and Max Black. Translations from the Philosophical Writings of
Gottlob Frege. Blackwell, Oxford, 1952.

Geurts, Bart. Local satisfaction guaranteed: a presupposition the-
ory and its problems. Linguistics and Philosophy, 19(3):259–294, 1996.
doi:10.1007/BF00628201.

Geurts, Bart. Presuppositions and Pronouns, volume 3 of Current Research in
the Semantics/Pragmatics Interface. Elsevier, 1999.

Geuvers, Herman. The Church-Rosser property for βη-reduction in typed
λ-calculi. In Proceedings of the Seventh Annual IEEE Symposium on Logic in
Computer Science, 1992. doi:10.1109/LICS.1992.185556.

Geuvers, Jan Herman. Logics and Type Systems. Ph.D. thesis, Universiteit
Nijmegen, 1993.

Girard, Jean-Yves. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987. doi:10.1016/0304-3975(87)90045-4.

Girard, Jean-Yves. Linear logic: Its syntax and semantics. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, number
222 in London Mathematical Society Lecture Note Series, pages 1–42.
Cambridge University Press, 1995.

Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott. Bounded linear
logic: A modular approach to polynomial time computability. Theoretical
Computer Science, 97(1):1–66, 1992. doi:10.1016/0304-3975(92)90386-T.

Grice, H. P. Meaning. The Philosophical Review, 66(3):377–388, 1957.
doi:10.2307/2182440.

Grice, H. Paul. Logic and conversation. In P. Cole and J. Morgan, editors,
Speech Acts, volume 3 of Syntax and Semantics, pages 43–58. Academic
Press, New York, 1975. Reprinted in Martinich 2001, pages 165–175.

http://dx.doi.org/10.1111/j.1520-8583.2008.00145.x
http://dx.doi.org/10.1007/BF00628201
http://dx.doi.org/10.1109/LICS.1992.185556
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.2307/2182440

Bibliography 295

Groenendijk, Jeroen, Theo M. V. Janssen, and Martin Stokhof, editors. Truth,
Interpretation, and Information: Selected Papers from the Third Amsterdam
Colloquium. Number 2 in Groningen-Amsterdam Studies in Semantics.
Foris, Dordrecht, 1984. doi:10.1515/9783110867602.1.

Groenendijk, Jeroen and Martin Stokhof. Dynamic Montague grammar.
In L. Kálmán and L. Pólos, editors, Papers from the Second Symposium on
Logic and Language. Akadémiai Kiadó, 1990.

Groenendijk, Jeroen and Martin Stokhof. Dynamic predicate logic. Linguis-
tics and Philosophy, 14(1):39–100, 1991. doi:10.1007/BF00628304.

Harper, Robert, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–184,
1993. doi:10.1007/BFb0014042.

Harris, Jesse A. and Christopher Potts. Perspective-shifting with appos-
itives and expressives. Linguistics and Philosophy, 32(6):532–552, 2009.
doi:10.1007/s10988-010-9070-5.

Heim, Irene. The Semantics of Definite and Indefinite Noun Phrases. Ph.D.
thesis, University of Massachusetts, Amherst, 1982.

Heim, Irene. File change semantics and the familiarity theory of def-
initeness. In R. Bäuerle, C. Schwarze, and A. von Stechow, editors,
Meaning, Use and the Interpretation of Language. De Gruyter, Berlin, 1983a.
doi:10.1515/9783110852820.164.

Heim, Irene. On the projection problem for presuppositions. In M. Barlow,
D. Flickinger, and M. Westcoat, editors, WCCFL2: Second Annual West
Coast Conference on Formal Linguistics. Stanford University, 1983b.

Heim, Irene. E-type pronouns and donkey anaphora. Linguistics and
Philosophy, 13(2):137–178, 1990a. doi:10.1007/BF00630732.

Heim, Irene. Presupposition projection. In R. van der Sandt, editor, Pre-
supposition, Lexical Meaning, and Discourse Processes: Workshop Reader.
University of Nijmegen, 1990b.

Heim, Irene. Presupposition projection and the semantics of attitude verbs.
Journal of Semantics, 9(3):183–221, 1992. doi:10.1093/jos/9.3.183.

http://dx.doi.org/10.1515/9783110867602.1
http://dx.doi.org/10.1007/BF00628304
http://dx.doi.org/10.1007/BFb0014042
http://dx.doi.org/10.1007/s10988-010-9070-5
http://dx.doi.org/10.1515/9783110852820.164
http://dx.doi.org/10.1007/BF00630732
http://dx.doi.org/10.1093/jos/9.3.183

Bibliography 296

Henkin, Leon. Completeness in the theory of types. Journal of Symbolic
Logic, 15(2):81–91, 1950. doi:10.2307/2266967.

Henkin, Leon. A theory of propositional types. Fundamenta Mathematicae,
52:323–344, 1963.

Hepple, Mark. A compilation-chart method for linear categorial deduc-
tion. In Proceedings of the 16th International Conference on Computational
Linguistics, 1996. doi:10.3115/992628.992721.

Hepple, Mark. An Earley-style predictive chart parsing method for Lambek
grammars. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics, 1999. doi:10.3115/1034678.1034749.

Hindley, J. Roger and Jonathan P. Seldin. Lambda Calculus and Combinators,
An Introduction. Cambridge University Press, 2008.

Hofmann, Martin. Syntax and semantics of dependent types. In A. M. Pitts
and P. Dybjer, editors, Semantics and Logics of Computation, Publications
of the Newton Institute, pages 79–130. Cambridge University Press, 1997.
doi:10.1017/CBO9780511526619.004.

Hyland, Martin and Valeria de Paiva. Full intuitionistic linear logic (ex-
tended abstract). Annals of Pure and Applied Logic, 64(3):273–291, 1993.

Jacobs, Bart. Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. Elsevier, 1999.

Kadmon, Nirit. Uniqueness. Linguistics and Philosophy, 13(3):273–324, 1990.
doi:10.1007/BF00627710.

Kamp, Hans. A theory of truth and semantic representation. In J. Groe-
nendijk, T. Janssen, and M. Stokhof, editors, Formal Methods in the Study
of Language. Mathematical Center, Amsterdam, 1981. Reprinted in Groe-
nendijk, Janssen, and Stokhof 1984, pages 1–42.

Kamp, Hans and Uwe Reyle. From Discourse to Logic: Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic, and Discourse Rep-
resentation Theory. Number 42 in Studies in Linguistics and Philosophy.
Kluwer Academic Publishers, Dordrecht, 1993.

http://dx.doi.org/10.2307/2266967
http://dx.doi.org/10.3115/992628.992721
http://dx.doi.org/10.3115/1034678.1034749
http://dx.doi.org/10.1017/CBO9780511526619.004
http://dx.doi.org/10.1007/BF00627710

Bibliography 297

Kanazawa, Makoto. Weak vs. strong readings of donkey sentences and
monotonicity inference in a dynamic setting. Linguistics and Philosophy,
17(2):109–158, 1994. doi:10.1007/BF00984775.

Karttunen, Lauri. Some observations on factivity. Papers in Linguistics,
4(1):55–69, 1971. doi:10.1080/08351817109370248.

Karttunen, Lauri. Presuppositions of compound sentences. Linguistic
Inquiry, 4(2):169–193, 1973.

Karttunen, Lauri. Presupposition and linguistic context. Theoretical Linguis-
tics, 1:181–194, 1974. doi:10.1515/thli.1974.1.1-3.181.

Karttunen, Lauri. Discourse referents. In J. McCawley, editor, Notes from the
Linguistic Underground, volume 7 of Syntax and Semantics, pages 363–385.
Academic Press, New York, 1976. doi:10.3115/990403.990490.

Karttunen, Lauri and Stanley Peters. Conventional implicature. In C.-K.
Oh and D. A. Dineen, editors, Presupposition, volume 11 of Syntax and
Semantics, pages 1–56. Academic Press, New York, 1979.

Keenan, Edward L. and Jonathan Stavi. A semantic characterization of
natural language determiners. Linguistics and Philosophy, 9(3):253–326,
1986. doi:10.1007/BF00630273.

Kierstead, Gregory and Scott Martin. A multistratal account of the pro-
jective Tagalog evidential ‘daw’. In Proceedings of the 22nd Conference on
Semantics and Linguistic Theory. CLC Publications, 2012.

König, Esther. A hypothetical reasoning algorithm for linguis-
tic analysis. Journal of Logic and Computation, 4(1):1–19, 1994.
doi:10.1093/logcom/4.1.1.

Kripke, Saul A. Presupposition and anaphora: Remarks on the formula-
tion of the projection problem. Linguistic Inquiry, 40(3):367–386, 2009.
doi:10.1162/ling.2009.40.3.367.

Kubota, Yusuke and Wataru Uegaki. Continuation-based semantics for con-
ventional implicatures: The case of Japanese benefactives. In Proceedings
of the 19th Conference on Semantics and Linguistic Theory, 2009.

Lambek, Joachim. The mathematics of sentence structure. American Mathe-
matical Monthly, 65(3):154–170, 1958. doi:10.2307/2310058.

http://dx.doi.org/10.1007/BF00984775
http://dx.doi.org/10.1080/08351817109370248
http://dx.doi.org/10.1515/thli.1974.1.1-3.181
http://dx.doi.org/10.3115/990403.990490
http://dx.doi.org/10.1007/BF00630273
http://dx.doi.org/10.1093/logcom/4.1.1
http://dx.doi.org/10.1162/ling.2009.40.3.367
http://dx.doi.org/10.2307/2310058

Bibliography 298

Lambek, Joachim and Phil J. Scott. Introduction to Higher-Order Categorical
Logic, volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1986.

Lamping, John. An algorithm for optimal lambda calculus reduction. In
Proceedings of the 17th Association for Computing Machinery Symposium on
Principles of Programming Languages, 1990. doi:10.1145/96709.96711.

Langendoen, D. Terence and Harris Savin. The projection problem for
presuppositions. In C. Fillmore and D. T. Langendoen, editors, Studies in
Linguistic Semantics. Holt, Reinhart, and Winston, New York, 1971.

Lebedeva, Ekaterina. Expression de la dynamique du discours à l’aide de
continuations. Ph.D. thesis, Université de Lorraine, 2012.

Lewis, David. Adverbs of quantification. In E. Keenan, editor, Formal
Semantics of Natural Language, pages 3–15. Oxford University Press, 1975.
doi:10.1017/CBO9780511897696.003.

Lewis, David. Scorekeeping in a language game. Journal of Philosophical
Logic, 8:339–359, 1979. doi:10.1007/BF00258436.

Martin, Scott. Dynamic semantics in direct style, 2010. Unpublished
manuscript, Ohio State University.

Martin, Scott. Weak familiarity and anaphoric accessibility in dy-
namic semantics. In de Groote and Nederhof 2012, pages 287–306.
doi:10.1007/978-3-642-32024-8_19.

Martin, Scott and Carl Pollard. A higher-order theory of presupposition.
Studia Logica, 100(4):729–754, 2012a. doi:10.1007/s11225-012-9427-6. Spe-
cial issue on logic and natural language.

Martin, Scott and Carl Pollard. Hyperintensional dynamic semantics: Ana-
lyzing definiteness with enriched contexts. In de Groote and Nederhof
2012, pages 114–129. doi:10.1007/978-3-642-32024-8_8.

Martin-Löf, Per. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopo-
lis, 1984.

Martin-Löf, Per. An intuitionistic theory of types. In G. Sambin and J. M.
Smith, editors, Twenty-Five Years of Constructive Type Theory, volume 36 of
Oxford Logic Guides. Clarendon Press, 1998.

http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1017/CBO9780511897696.003
http://dx.doi.org/10.1007/BF00258436
http://dx.doi.org/10.1007/978-3-642-32024-8_19
http://dx.doi.org/10.1007/s11225-012-9427-6
http://dx.doi.org/10.1007/978-3-642-32024-8_8

Bibliography 299

Martinich, A. P., editor. The Philosophy of Language. Oxford University Press,
2001.

Mihaliček, Vedrana. Serbo-Croatian Word Order: A Logical Approach. Ph.D.
thesis, Ohio State University, 2012.

Mihaliček, Vedrana and Carl Pollard. Distinguishing phenogrammar from
tectogrammar simplifies the analysis of interrogatives. In de Groote and
Nederhof 2012, pages 130–145. doi:10.1007/978-3-642-32024-8_9.

Montague, Richard. The proper treatment of quantification in ordinary
English. In K. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches
to Natural Language. D. Reidel, Dordrecht, 1973. doi:10.1007/978-94-010-
2506-5_10. Reprinted in Thomason 1974, pages 247–270.

Moortgat, Michael. Categorial type logics. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language, pages 93–177. Elsevier,
Amsterdam, 1997. doi:10.1016/B978-044481714-3/50005-9.

Morrill, Glyn. Type Logical Grammar: Categorial Logic of Signs. Kluwer,
Dordrecht, 1994.

Muskens, Reinhard. Categorial grammar and discourse representation
theory. In Proceedings of the 15th Conference on Computational Linguistics,
1994. doi:10.3115/991886.991974.

Muskens, Reinhard. Combining Montague semantics and discourse
representation theory. Linguistics and Philosophy, 19(2):143–186, 1996.
doi:10.1007/BF00635836.

Muskens, Reinhard. λ-grammars and the syntax-semantics interface. In
R. van Rooy and M. Stokhof, editors, Proceedings of the 13th Amsterdam
Colloquium, 2001.

Muskens, Reinhard. Sense and the computation of reference. Linguistics
and Philosophy, 28(4):473–504, 2005. doi:10.1007/s10988-004-7684-1.

Muskens, Reinhard. Separating syntax and combinatorics in categorial
grammar. Research on Language and Computation, 5(3):267–285, 2007.
doi:10.1007/s11168-007-9035-1.

Neale, Stephen. Descriptions. MIT Press, Cambridge, Massachusetts, 1990.

http://dx.doi.org/10.1007/978-3-642-32024-8_9
http://dx.doi.org/10.1007/978-94-010-2506-5_10
http://dx.doi.org/10.1007/978-94-010-2506-5_10
http://dx.doi.org/10.1016/B978-044481714-3/50005-9
http://dx.doi.org/10.3115/991886.991974
http://dx.doi.org/10.1007/BF00635836
http://dx.doi.org/10.1007/s10988-004-7684-1
http://dx.doi.org/10.1007/s11168-007-9035-1

Bibliography 300

Nouwen, Rick. On appositives and dynamic binding. Research on Language
and Computation, 5(1):87–102, 2007. doi:10.1007/s11168-006-9019-6.

Oehrle, Richard T. Term-labeled categorial type systems. Linguistics and
Philosophy, 17(6):633–678, 1994. doi:10.1007/BF00985321.

Parigot, Michel. λµ-calculus: An algorithmic interpretation of classical
natural deduction. In Proceedings of the International Conference on Logic
Programming and Automated Reasoning, number 624 in Lecture Notes in
Computer Science, pages 190–201, 1992. doi:10.1007/BFb0013061.

Parigot, Michel. On the computational interpretation of negation. In
Computer Science Logic, number 1862 in Lecture Notes in Computer
Science, pages 472–484, 2000. doi:10.1007/3-540-44622-2_32.

Partee, Barbara H. Nominal and temporal anaphora. Linguistics and Philoso-
phy, 7(3):243–286, 1984.

Plummer, Andrew and Carl Pollard. Agnostic possible worlds semantics. In
Logical Aspects of Computational Linguistics, number 7351 in Lecture Notes
in Computer Science, pages 201–212. Springer, 2012. doi:10.1007/978-3-
642-31262-5_14.

Pollard, Carl. Hyperintensional questions. In Logic, Language, Information,
and Computation, number 5110 in Lecture Notes in Computer Science,
pages 272–285, 2008a. doi:10.1007/978-3-540-69937-8_24.

Pollard, Carl. Hyperintensions. Journal of Logic and Computation, 18(2):257–
282, 2008b. doi:10.1093/logcom/exm003.

Pollard, Carl and E. Allyn Smith. An alternative explanation for presup-
position projection variability. ESSLLI Workshop on Projective Meaning,
Ljubljana, Slovenia, August, 2011.

Potts, Christopher. The Logic of Conventional Implicatures. Oxford University
Press, 2005.

Pullum, Geoffrey K. Formal linguistics meets the boojum. Natural Language
and Linguistic Theory, 7:137–143, 1989.

Reimer, Marga and Anne Bezuidenhout, editors. Descriptions and Beyond.
Oxford University Press, 2005.

http://dx.doi.org/10.1007/s11168-006-9019-6
http://dx.doi.org/10.1007/BF00985321
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/3-540-44622-2_32
http://dx.doi.org/10.1007/978-3-642-31262-5_14
http://dx.doi.org/10.1007/978-3-642-31262-5_14
http://dx.doi.org/10.1007/978-3-540-69937-8_24
http://dx.doi.org/10.1093/logcom/exm003

Bibliography 301

Roberts, Craige. Modal subordination and pronominal anaphora
in discourse. Linguistics and Philosophy, 12(6):683–721, 1989.
doi:10.1007/BF00632602.

Roberts, Craige. Information structure in discourse: Towards an integrated
formal theory of pragmatics. In J.-H. Yoon and A. Kathol, editors, Papers
in Semantics, number 49 in Working Papers in Linguistics, pages 91–136.
Ohio State University Department of Linguistics, 1996. Reprinted as
Roberts 2012c.

Roberts, Craige. Uniqueness in definite noun phrases. Linguistics and
Philosophy, 26(3):287–350, 2003.

Roberts, Craige. Pronouns as definites. In Reimer and Bezuidenhout 2005,
pages 503–543.

Roberts, Craige. Retrievability and incomplete descriptions, 2010. Unpub-
lished manuscript, Ohio State University.

Roberts, Craige. Only, a case study in projective meaning. In B. H. Partee,
M. Glanzberg, and J. Šķilters, editors, Formal Semantics and Pragmatics:
Discourse, Context, and Models, volume 6 of The Baltic International Yearbook
of Cognition, Logic and Communication, pages 1–56. New Prairie Press,
Manhattan, Kansas, 2011. doi:10.4148/biyclc.v6i0.1581.

Roberts, Craige. Accommodation in a language game, 2012a. To appear in
a volume on David Lewis edited by Barry Loewer and Jonathan Schaffer
for Blackwell.

Roberts, Craige. Information structure: Afterword. Semantics and Pragmatics,
5(7):1–19, 2012b. doi:10.3765/sp.5.7.

Roberts, Craige. Information structure in discourse: Towards an integrated
formal theory of pragmatics. Semantics and Pragmatics, 5(6):1–69, 2012c.
doi:10.3765/sp.5.6. Accompanying afterword in Roberts 2012b.

Roberts, Craige. Solving for interpretation, 2012d. Unpublished manuscript,
Ohio State University.

Roberts, Craige. Some types of suppositions, 2012e. Unpublished
manuscript, Ohio State University.

http://dx.doi.org/10.1007/BF00632602
http://dx.doi.org/10.4148/biyclc.v6i0.1581
http://dx.doi.org/10.3765/sp.5.7
http://dx.doi.org/10.3765/sp.5.6

Bibliography 302

Roberts, Craige. Only, presupposition and implicature. Journal of Semantics,
to appear.

Roberts, Craige, Mandy Simons, David Beaver, and Judith Tonhauser.
Presupposition, conventional implicature, and beyond: A unified account
of projection. In N. Klinedinst and D. Rothschild, editors, Proceedings of
New Directions in the Theory of Presupposition, 2009.

Rooth, Mats. Noun phrase interpretation in Montague grammar, file change
semantics, and situation semantics. In P. Gärdenfors, editor, Generalized
Quantifiers. Reidel, Dordrecht, 1987. doi:10.1007/978-94-009-3381-1_9.

Rothschild, Daniel. Explaining presupposition projection with dynamic
semantics. Semantics and Pragmatics, 4(3):1–43, 2011. doi:10.3765/sp.4.3.

Russell, Bertrand. On denoting. Mind, 66:479–493, 1905.
doi:10.1093/mind/XIV.4.479.

Schlenker, Philippe. Anti-dynamics: presupposition projection without
dynamic semantics. Journal of Logic, Language and Information, 16(3):325–
356, 2007. doi:10.1007/s10849-006-9034-x.

Schubert, Lenhart K. and Francis Jeffry Pelletier. Generically speaking, or,
using discourse representation theory to interpret generics. In G. Chier-
chia, B. H. Partee, and R. Turner, editors, Properties, Types and Meaning
volume 2: Semantic Issues, number 39 in Studies in Linguistics and Philos-
ophy, pages 193–268. Kluwer, Dordrecht, 1989. doi:10.1007/978-94-009-
2723-0_6.

Simons, Mandy. On the conversational basis of some presuppositions. In
Proceedings of the 11th Conference on Semantics and Linguistic Theory, 2001.

Simons, Mandy, Craige Roberts, David Beaver, and Judith Tonhauser. What
projects and why. In Proceedings of the 20th Conference on Semantics and
Linguistic Theory, 2010.

Smith, E. Allyn. Correlational Comparison in English. Ph.D. thesis, Ohio State
University, 2010.

Sørensen, Morton Heine and Paweł Urzyczyn. Lectures on the Curry-Howard
Isomorphism, volume 149 of Studies in Logic and the Foundations of Mathe-
matics. Elsevier, Amsterdam, 2006.

http://dx.doi.org/10.1007/978-94-009-3381-1_9
http://dx.doi.org/10.3765/sp.4.3
http://dx.doi.org/10.1093/mind/XIV.4.479
http://dx.doi.org/10.1007/s10849-006-9034-x
http://dx.doi.org/10.1007/978-94-009-2723-0_6
http://dx.doi.org/10.1007/978-94-009-2723-0_6

Bibliography 303

Stalnaker, Robert. Presuppositions. Journal of Philosophical Logic, 2(4):447–
457, 1973. doi:10.1007/BF00262951.

Stalnaker, Robert. Assertion. In P. Cole, editor, Pragmatics, volume 9 of
Syntax and Semantics, pages 315–332. Academic Press, New York, 1978.

Stalnaker, Robert. On the representation of context. Journal of Logic, Lan-
guage, and Information, 7(1):3–19, 1998. doi:10.1093/0198237073.003.0006.

Steedman, Mark. The Syntactic Process. MIT Press, Cambridge, Mas-
sachusetts, 2000.

Stone, Matthew and Bonnie Webber. Textual economy through close cou-
pling of syntax and semantics. In Proceedings of the Ninth International
Workshop on Natural Language Generation, 1998.

Thomason, Richmond. A model theory for propositional attitudes. Linguis-
tics and Philosophy, 4(1):47–70, 1980. doi:10.1007/BF00351813.

Thomason, Richmond H., editor. Formal Philosophy: Selected Papers of Richard
Montague. Yale University Press, 1974.

Thomason, Richmond H. Accommodation, meaning, and implicature:
Interdisciplinary foundations for pragmatics. In P. Cohen, J. Morgan,
and M. Pollack, editors, Intentions in Communication, pages 325–363. MIT
Press, Cambridge, Massachusetts, 1990.

Thomason, Richmond H., Matthew Stone, and David DeVault. Enlightened
update: A computational architecture for presupposition and other prag-
matic phenomena, 2006. Draft for the Ohio State University workshop
on Presupposition and Accommodation.

Tonhauser, Judith, David Beaver, Craige Roberts, and Mandy Simons.
Towards a taxonomy of projective content. Language, 89(1):66–109, 2013.
doi:10.1353/lan.2013.0001.

Troelstra, Anne S. Lectures on Linear Logic. Number 29 in CSLI Lecture
Notes. CSLI Publications, 1992.

van der Sandt, Rob A. Presupposition projection as anaphora resolution.
Journal of Semantics, 9(4):333–377, 1992. doi:10.1093/jos/9.4.333.

http://dx.doi.org/10.1007/BF00262951
http://dx.doi.org/10.1093/0198237073.003.0006
http://dx.doi.org/10.1007/BF00351813
http://dx.doi.org/10.1353/lan.2013.0001
http://dx.doi.org/10.1093/jos/9.4.333

Bibliography 304

van Eijck, Jan and Christina Unger. Computational Semantics with Functional
Programming. Cambridge University Press, 2010.

Venhuizen, Noortje J., Johan Bos, and Harm Brouwer. Parsimonious seman-
tic representations with projection pointers. In Proceedings of the Tenth
International Workshop on Computational Semantics, 2013.

Visser, Albert. The donkey and the monoid: Dynamic semantics with
control elements. Journal of Logic, Language and Information, 11(1):107–131,
2002. doi:10.1023/A:1013026830239.

von Fintel, Kai. What is presupposition accommodation, again? Philosophi-
cal Perspectives, 22(1):137–170, 2008. doi:10.1111/j.1520-8583.2008.00144.x.

Yetter, David N. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55(1):41–64, 1990. doi:10.2307/2274953.

Zeevat, Henk. Presuppositions and accommodation in update semantics.
Journal of Semantics, 9(4):379–412, 1992. doi:10.1093/jos/9.4.379.

http://dx.doi.org/10.1023/A:1013026830239
http://dx.doi.org/10.1111/j.1520-8583.2008.00144.x
http://dx.doi.org/10.2307/2274953
http://dx.doi.org/10.1093/jos/9.4.379

Index of Citations

Abbott (2000), 39, 52
Abusch (2010), 17, 39, 52
Amaral et al. (2007), 2, 18, 19, 31, 37,

183, 204, 206, 218, 228, 229,
232

AnderBois et al. (2010), 154, 183
Andrews (2002), 7, 103, 251, 257, 258,

263, 265, 266, 278
Aspinall and Hofmann (2005), 8, 267,

289
Barendregt et al. (2013), 251, 260
Barendregt (1980), 257, 260
Barendregt (1991), 8, 267, 271, 287
Barendregt (1992), 8, 267, 268, 271,

287
Barker et al. (2010), 183, 229, 233
Barker (1991), 29
Barker (2000), 30, 144
Barthe (1995), 268, 271, 287
Barwise and Cooper (1981), 71, 110,

170
Beaver and Zeevat (2007), 53
Beaver (2001), 3, 26, 49, 88, 90, 91,

127, 130, 138, 150, 154, 181,
231, 232, 238, 241

Beaver (2002), 182, 238
Beaver (2010), 39, 52
Blackburn and Bos (1999), 3, 7, 154,

238, 239
Blackburn and Bos (2005), 154

Boër and Lycan (1976), 39, 44
Bos (2003), 3, 7, 154, 182, 238, 239
Bos (2005), 154, 238, 239
Carpenter (1997), 251
Chierchia and McConnell-Ginet (1990),

13
Chierchia and Rooth (1984), 154
Chierchia (1992), 88, 154, 166, 169,

171
Chierchia (1995), 3, 6, 31, 49, 88, 154,

155, 166, 169–172
Church (1940), 7, 251
Cooper (1979), 90, 155
Curry and Feys (1958), 259
Curry (1961), 4, 5, 55, 86
Dekker (2005), 90
Evans (1977), 155
Evans (1980), 90, 155
Frege (1892), 12, 13, 19
Gallin (1975), 68
Gauker (2008), 39, 52
Geach (1962), 89, 118
Geurts (1996), 181
Geurts (1999), 49, 51, 90, 181, 238
Geuvers (1992), 270, 271
Geuvers (1993), 270, 271
Girard et al. (1992), 243, 244
Girard (1987), 7, 243, 245
Girard (1995), 243, 245
Grice (1957), 12, 25

305

Index of Citations 306

Grice (1975), 1, 2, 4, 11, 25, 39, 48, 49,
51, 134, 145, 146, 231, 240

Groenendijk and Stokhof (1990), 3,
31, 88, 127, 130, 153, 196, 231,
233

Groenendijk and Stokhof (1991), 3,
88, 127, 130, 153, 155, 156,
184, 231, 233

Harper et al. (1993), 267
Harris and Potts (2009), 2, 18, 31, 37
Heim (1982), 2, 3, 6, 21–25, 31, 88–92,

95, 103, 127, 130, 146, 153,
156, 161, 164, 166, 180, 181,
231–233, 241

Heim (1983a), 31, 88, 153, 181, 232
Heim (1983b), 14, 39, 49, 51, 90, 181
Heim (1990a), 155
Heim (1990b), 26, 149, 150, 152
Heim (1992), 88, 90, 153, 232
Henkin (1950), 7, 8, 251, 263, 265, 266
Henkin (1963), 7, 251, 255
Hepple (1996), 239, 240
Hepple (1999), 239, 240
Hindley and Seldin (2008), 267
Hofmann (1997), 268
Hyland and de Paiva (1993), 243, 244
Jacobs (1999), 268
König (1994), 240
Kadmon (1990), 169
Kamp and Reyle (1993), 88, 130, 153
Kamp (1981), 3, 6, 22, 31, 88, 89, 91,

92, 127, 130, 146, 153, 166,
231, 233, 238

Kanazawa (1994), 6, 31, 166, 168, 169,
171, 172

Karttunen and Peters (1979), 4, 6, 7,
11, 49, 129, 131, 137, 180, 183,

184, 218, 219, 221–223, 229,
230, 232

Karttunen (1971), 17, 43
Karttunen (1973), 17, 49
Karttunen (1974), 3, 14, 39, 49, 51, 52,

89, 180, 241
Karttunen (1976), 21, 22, 31, 89, 93,

180
Keenan and Stavi (1986), 170
Kierstead and Martin (2012), 91, 128,

183, 186
Kripke (2009), 26, 27, 152
Kubota and Uegaki (2009), 183, 229,

233
Lambek and Scott (1986), 69, 260
Lambek (1958), 55, 57, 87
Lamping (1990), 240
Langendoen and Savin (1971), 13, 49
Lebedeva (2012), 154
Lewis (1975), 166
Lewis (1979), 2, 3, 14, 28, 39, 49, 51–

53, 89, 180
Martin and Pollard (2012a), 25, 43,

49, 91, 128, 135, 154
Martin and Pollard (2012b), 49, 91,

128, 135, 154
Martin-Löf (1984), 267
Martin-Löf (1998), 267
Martinich (2001), 2, 145, 146
Martin (2010), 91
Martin (2012), 49, 91, 128, 130, 143,

153, 154, 156, 157
Mihaliček and Pollard (2012), 55, 87
Mihaliček (2012), 55
Montague (1973), 62, 68, 71, 76, 87,

88, 110, 131, 241
Moortgat (1997), 55, 87
Morrill (1994), 55, 87

Index of Citations 307

Muskens (1994), 3, 88, 91, 154, 231,
241

Muskens (1996), 3, 88, 91, 127, 154,
231, 241

Muskens (2001), 4, 55, 60
Muskens (2005), 62
Muskens (2007), 4, 55, 60
Neale (1990), 155
Nouwen (2007), 6, 129, 154, 183, 196,

219, 227–230, 233
Oehrle (1994), 56, 71
Parigot (1992), 91
Parigot (2000), 91
Partee (1984), 166
Plummer and Pollard (2012), 5, 62,

65, 67–69
Pollard and Smith (2011), 2, 11, 18,

20, 24, 29, 30, 34, 39, 43, 52,
144

Pollard (2008a), 62, 68, 69, 87
Pollard (2008b), 62, 68
Potts (2005), 1–6, 11, 14, 17, 18, 20,

21, 31, 35–37, 48–50, 54, 131,
134, 180–186, 195, 196, 199,
203, 204, 216, 218, 219, 229,
230, 232, 233, 240, 241

Roberts et al. (2009), 2, 11, 13, 16, 21,
27, 39, 52

Roberts (1989), 19, 20, 46, 154
Roberts (1996), 11, 147, 241
Roberts (2003), 6, 24, 25, 31, 122, 130,

156, 160, 181
Roberts (2005), 25, 31, 137, 155, 156,

160, 161, 164, 172
Roberts (2010), 25, 27
Roberts (2011), 53
Roberts (2012a), 52, 53
Roberts (2012c), 11

Roberts (2012d), 24, 25
Roberts (2012e), 11
Roberts (to appear), 53
Rooth (1987), 31, 166, 167
Rothschild (2011), 90
Russell (1905), 25, 155
Schlenker (2007), 90
Schubert and Pelletier (1989), 167
Simons et al. (2010), 2, 4, 11, 12, 39,

52, 231, 240
Simons (2001), 39, 44, 52
Smith (2010), 55
Stalnaker (1973), 49
Stalnaker (1978), 2, 14, 39, 49, 51
Stalnaker (1998), 28
Steedman (2000), 55, 87
Stone and Webber (1998), 25, 137
Sørensen and Urzyczyn (2006), 253,

260, 267
Thomason et al. (2006), 53
Thomason (1980), 62
Thomason (1990), 52
Tonhauser et al. (2013), 21, 23, 24, 27,

33, 34, 39
Troelstra (1992), 7, 243–246, 250
Venhuizen et al. (2013), 154, 238
Visser (2002), 196
Yetter (1990), 245
Zeevat (1992), 33, 34
de Groote and Lebedeva (2010), 51,

130, 154
de Groote (2001), 4, 55
de Groote (2006), 3, 88, 91, 127, 128,

130, 154, 231, 241
de Paiva (2002), 7, 243, 245
van Eijck and Unger (2010), 3, 7, 127,

154, 238, 239

Index of Citations 308

van der Sandt (1992), 49, 51, 131, 181,
182, 237, 238

von Fintel (2008), 28, 52

	Abstract
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	Thesis Outline
	Some Conventions

	The Empirical Domain
	An Overview of Implicatures
	Conventional Implicatures
	Obligatory Speaker Commitments
	Definite Anaphora
	Iterative Adverbs
	Possessives
	Honorifics

	Variable Speaker Commitment Status
	Descriptive Content
	Supplements and Expressives

	Nonconventional Implicatures
	Aspectuals
	Achievements
	Factives

	Taking Stock
	Felicity, Accommodation, and Variability

	Curryesque Categorial Grammar
	A Logic of Signs
	Signs, Contexts, and the Lexicon
	Grammar Rules
	Axiomatizing the Pheno Logic
	An Agnostic Semantic Theory
	Two Notable Sects

	A Small Fragment of English
	Quantifier Scope Ambiguity
	Peripheral and Medial Extraction

	Summary

	Dynamic Categorial Grammar
	Motivation for a Dynamic Approach
	A Compositional Dynamic Semantics
	Preliminaries
	Contexts, Contents, and Updates

	Dynamicizing a Static Semantics
	Dynamic Connectives and Quantifiers
	Dynamic Entailment and Definiteness

	A Dynamic Fragment
	Dynamic Quantifier Scope
	Donkey Anaphora

	Grammar Rules for Modeling Discourse
	Summary and Comparison with Other Theories

	Anaphora
	Extending Dynamic Categorial Grammar
	Redefining the Dynamic Logic

	Anaphora in a Two-Level Setting
	Generalized Definiteness
	Possessives

	A Broader Notion of Contextual Felicity
	The Iterative Adverb `Too'

	Generalized Familiarity and Accessibility
	Implementing Weak Familiarity

	Determiner Strength
	Strong and Weak Readings of Determiners
	Kanazawa's Tonicity-Based Approach
	Chierchia's Dynamic/E-Type Account
	A Synthesized Dynamic Proposal
	Weakening Dynamic Determiners

	Summary and Comparison with Other Theories

	Variable Conventional Implicatures
	Supplements
	Analyzing Supplements
	Stacking

	Expressives
	The Interaction between Sense and Implicature
	Variable Conventional Implicatures and Contextual Felicity
	The Binding Problem Revisited
	A Dynamic Analog of the Binding Problem?
	An Alternative Analysis
	The Problem of Quantified Supplements
	Potential Solutions

	Summary

	Conclusions and Future Directions
	Persistent Entailments in DyCG
	Towards an Account of Anchoring
	Computational Considerations
	In Sum

	Tensor-Implication Logic
	Syntax
	Proof Theory

	Algebraic Semantics

	Type Theory with Cartesian Products
	Syntax
	Term Identification and Reduction
	Term Normalization
	Proof Theory

	Semantics

	Dependent Typing with Sums
	An Enriched Typing Ontology
	Syntax
	Proof Theory

	Applications
	Von Neumann-style Natural Numbers
	Vectors as n-ary Cartesian Products
	Bit Vector Selection

	Extending Pure Type Systems with Dependent Sums

	Bibliography
	Index of Citations

